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Abstract

We provide two methods to construct zero-range processes with superlinear rates on
Zd. In the first method these rates can grow very fast, if either the dynamics and the
initial distribution are translation invariant or if only nearest neighbour translation
invariant jumps are permitted, in the one-dimensional lattice. In the second method
the rates cannot grow as fast but more general dynamics are allowed.
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1 Introduction

The zero-range process was introduced by Spitzer [10] as a Markov process on NS0 ,
where N0 is the set of non-negative integers, and S is a denumerable set. In this process
particles are indistinguishable, and a particle leaves a given site x at rate g(n), where n
is the number of particles present at x. Once a particle jumps from x it moves to a site
y chosen according to a transition probability matrix p(x, y) on S. The choice of target
site y is independent of the time at which the jump occurs and of the past of the process.
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Zero-range processes with rapidly growing rates

Throughout this paper S will be an integer lattice and p(x, y) will be the transition matrix
of a random walk on that lattice. On occasions we will write p(z) for p(0, z).

The existence of the dynamics was proved initially by Holley [6] and Liggett [7].
Their results were extended by Andjel [1] who adapted to the zero range process a
technique introduced by Liggett and Spitzer [8]. Andjel assumes that the rates satisfy a
Lipschitz condition supn≥0 |g(n + 1)− g(n)| < ∞, thus imposing that the rates grow at
most linearly. More recently, Balázs, Rassoul-Agha, Seppäläinen and Sethuraman [3]
construct the zero-range process with totally asymmetric dynamics p(x, y) = 1(y − x = 1)

and nearest neighbour jumps in the one-dimensional lattice Z, under the assumption
that the jump rates are non-decreasing and grow at most exponentially. Under these
conditions, they prove that the process is Markov and admits a one parameter family of
extremal invariant measures. Their proofs are based on a representation of the model
as a system of columns with monotonically increasing heights, for which the totally
asymmetric assumption on the dynamics is crucial.

In this article we introduce two methods to construct zero-range processes with
superlinear rates on integer lattices, and identify the associated martingales. The first
method allows for quite general rate functions g, but requires either nearest neighbour
transition probabilities on the one-dimensional lattice Z, or that both the dynamics and
the initial distribution be translation invariant on Zd. The second method can be applied
to quite general random walks on Zd, but is more restrictive on the rate functions.

2 Notation and results

Throughout the article the set of sites will be the integer lattice, S = Zd. Given a
transition matrix p(·, ·) on Zd and rate function g : N0 → [0,+∞) such that g(0) = 0, our
goal is to construct an associated Markov process on the state space

X := NZ
d

0

endowed with the product topology. Elements η ∈ X will be called configurations, with
η =

(
η(x) : x ∈ Zd

)
, η(x) ∈ N0, the number of particles at site x. We also define

Xf :=
{
η ∈ X,

∑
x

η(x) <∞
}

(2.1)

the set of configurations with finitely many particles. We say that a function f : X → R

is local if there exists a finite set A ⊂ Zd such that f(η) = f(ξ) whenever η(x) = ξ(x) for
all x ∈ A. We call the smallest such set the support of f .

Let g : N0 → R≥0, g(0) = 0. The formal generator of our dynamics is

Lf(η) =
∑

x,y∈Zd,x 6=y

g(η(x))p(x, y)
(
f(ηx,y)− f(η)

)
, (2.2)

where f : X → R is a bounded local function, and

ηx,y(z) =


η(x)− 1, z = x and η(x) ≥ 1,

η(y) + 1 z = y and η(x) ≥ 1,

η(z) otherwise.

(2.3)

Informally, at rate g(k) a site x containing k particle loses one that jumps to site y with
probability p(x, y). We will say that a process (ηt, t ≥ 0) on a subset of X is a solution of
the martingale problem associated to L if for any local bounded function f

f(ηt)− f(η0)−
∫ t

0

Lf(ηs)ds, t ≥ 0
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Zero-range processes with rapidly growing rates

is a martingale. We also say that the process satisfies the integrated forward equation if
for any f as above

E
[
f(ηt)

]
= f(η0) +

∫ t

0

E
[
Lf(ηu)

]
du ∀t ≥ 0. (2.4)

In some cases we can show a stronger result, the forward equation, that is:

d

dt
Eη0 [f(ηt)] = Eη0

[
Lf(ηt)

]
. (2.5)

We are interested in the situation when the rates are non-decreasing and diverge at
∞,

g(n) ≤ g(n+ 1), n ∈ N0, and lim
n→∞

g(n) =∞. (2.6)

Condition (2.6) will imply that the processes we construct are attractive, that is, the
coordinate-wise partial order of configurations

η, ξ ∈ X, η ≤ ξ ⇐⇒ η(x) ≤ ξ(x)∀x ∈ Zd

is preserved by the dynamics. This means that there exists a coupled process
(
(ηt, ξt), t ≥

0
)

with initial value (η, ξ) such that P
(
ηt ≤ ξt ∀t ≥ 0

)
= 1 and both (ηt, t ≥ 0) and

(ξt, t ≥ 0) follow (2.2); the coupling in this case is said to be increasing. One such
coupling is the basic coupling, which tries to match the two marginal processes as
much as possible, and supplements the rates to get the right marginal distributions. Its
generator is given by

Lcoupf(η, ξ) =
∑

x,y∈Zd, x 6=y

g(η(x) ∧ ξ(x)) p(x, y)
(
f(ηx,y, ξx,y)

)
− f(η, ξ)

)
+

∑
x,y∈Zd, x 6=y

[g(η(x))− g(η(x) ∧ ξ(x))] p(x, y)
(
f(ηx,y, ξ)

)
− f(η, ξ)

)
+

∑
x,y∈Zd, x 6=y

[g(ξ(x))− g(η(x) ∧ ξ(x))] p(x, y)
(
f(η, ξx,y)

)
− f(η, ξ)

)
,

(2.7)

f : X ×X → R a local, bounded function. This partial order on X induces a partial order
on the set of probability measures on X: given two such measures µ and ν we say that
µ ≤ ν if ∫

f(η)dµ(η) ≤
∫
f(η)dν(η)

for any bounded local, increasing function f . By Strassen’s Theorem, µ ≤ ν if and only if
there exists a probability measure ψ on X ×X concentrating on {(η, ξ) ∈ X ×X : η ≤ ξ}
whose first and second marginals are µ and ν respectively.

The zero-range process started from an initial configuration η ∈ Xf is a well defined
continuous time Markov process with bounded rates on a countable state space. We will
denote by S(t) the semigroup associated to L acting on configurations with finitely many
particles,

S(t)f(η) = Eη[f(ηt)], η ∈ Xf , f a bounded local function.

The semigroup S(t) also acts on probability measures on Xf : if µ is such a measure, then
µS(t) is the unique measure such that∫

fS(t)(dµ) =

∫
S(t)fdµ ∀ bounded local function f.

It then follows from the attractiveness of the process that for any bounded local function
f , t ≥ 0, and η ≤ ξ ∈ Xf , we have S(t)f(η) ≤ S(t)f(ξ). And if µ ≤ ν are probability
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Zero-range processes with rapidly growing rates

measures on Xf then µS(t) ≤ νS(t). In words, the semigroup S(t) maps increasing
functions into increasing functions and preserves the order of measures on Xf .

When the initial configuration η ∈ X \Xf , we can consider an increasing sequence
ηn → ξ, ηn ∈ Xf for all n ≥ 1, and apply basic coupling to obtain a limiting process
ηt = limn→∞ ηnt , t ≥ 0; this paper is concerned with finding conditions under which
this process is well defined for all times, and identifying its martingales and invariant
measures.

A set of transition probabilities {p(x, y)}x,y∈Zd is translation invariant when the
random walk they determine is translation invariant; that is, p(x, y) = p(y − x) with
{p(z)}z∈Zd such that p(z) ≥ 0, z ∈ Zd, and

∑
z p(z) = 1. Let us now define a family

{T x : x ∈ Zd} of translation operators acting on X, on C(X) and on the set P of
probability measures on X as follows,

T x(η)(y) = η(y − x), T xf(η) = f(T xη) ∀x, y ∈ Zd, η ∈ X, f ∈ C(X), (2.8)

and ∫
fd(T xµ) =

∫
(T xf)dµ ∀x ∈ Zd, µ ∈ P, f ∈ C(X) bounded. (2.9)

We say that µ ∈ P is translation invariant if T xµ = µ for all x ∈ Zd.
The first result shows that the process can indeed be constructed starting from a

translation invariant measure µ on X. In order to state it, we need to introduce a family
of auxiliary measures associated to µ. Let us first define [µ]n on X as

[µ]n
(
η : η(x1) = k1, . . . η(xi) = ki, η(y1) = 0, . . . , η(yj) = 0

)
= µ

(
η : η(x1) = k1, . . . η(xi) = ki

)
,

(2.10)

for all i, j ∈ N, all k1, . . . ki ∈ N0, all x1, . . . , xn ∈ [−n, n]d and all y1, . . . , yj /∈ [−n, n]d.

Proposition 2.1. Let {g(n)}n≥0 be as in (2.6), and consider translation invariant transi-
tion probabilities {p(x, y)}x,y∈Zd . Let µ be a translation invariant probability measure
on X such that

∫
η(0)dµ(η) <∞. Then, for all t ≥ 0, the sequence [µ]nS(t) converges as

n→∞ to a probability measure µt on X satisfying:

i) µt is translation invariant,

ii)

∫
η(0)dµt(η) ≤

∫
η(0)dµ(η),

iii) Semigroup property: for s, t ≥ 0, µt+s = (µt)s,

and if µn is an increasing sequence of probability measures on Xf that converge weakly
to µ, then

iv) lim
n
µnS(t) = µt.

It follows from this proposition that if µ is a translation invariant measure with finite
mean, then the process started from almost any configuration with respect to µ will not
suffer explosions. Unfortunately, we cannot deduce from this that the same holds for any
given unbounded deterministic initial condition.

A natural question is whether equality holds in part ii) of this proposition. In §4.1
we answer the question affirmatively when p(x, y) corresponds to a nearest neighbour
random walk on Z.

Given a parameter φ > 0, consider the product measures µφ with i.i.d. marginal
distributions

µφ
(
η(x) = k

)
=

1

z(φ)
w(k)φk, x ∈ Zd, k ∈ N0, (2.11)
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Zero-range processes with rapidly growing rates

where

w(0) = 1 and w(k) =

k∏
j=1

1

g(j)
, k ≥ 1.

The parameter φ is called the fugacity, and the measure exists as long as

z(φ) :=

∞∑
k=0

w(k)φk <∞.

With the hypotheses (2.6) the measures are well defined for all choices of φ, and they
have finite moments of all orders. The particle density is given by

R(φ) := Eµφ [η(x)] =
1

z(φ)

∑
k≥1

kw(k)φk

which turns out to be strictly increasing in the parameter φ,

∂φR(φ) =
1

φ

{ 1

z(φ)

∞∑
k=1

k2w(k)φk − 1

z2(φ)

( ∞∑
k=1

kw(k)φk
)2}

> 0

by Jensen’s inequality. We also point out that limφ→0R(φ) = 0 and

R(φ)↗∞ as φ→∞.

Finally, for any φ > 0 we have

Eµφ [g(η(x))] =
1

z(φ)

∞∑
k=1

g(k)φk w(k) = φ, x ∈ Zd. (2.12)

It is known that the measures {µφ}φ>0 are invariant for the zero-range dynamics
when this is well defined, see e.g. [1, 10]. The following result states that this remains
so under our hypotheses.

Theorem 2.2. Invariant measures
Let the rates {g(n)}n≥0 be as in (2.6). Consider translation invariant transition probabil-
ities {p(x, y)}x,y∈Zd . Then µφ satisfies (µφ)t = µφ, for all φ ∈ (0,∞) and t > 0.

For η ∈ X and n ∈ N let

ηn(x) = η(x) if |x| ≤ n and ηn(x) = 0 if |x| > n. (2.13)

The process ηnt with initial value ηn is well defined.
Let us now recall the following graphical construction, first developed by Harris in

[5], which for simplicity we describe in the particular setting of translation invariant
zero-range processes.

Graphical representation. Let {p(z)}z∈Zd be such that p(z) ≥ 0, z ∈ Zd,
∑
z p(z) = 1.

Independently for each site x, x ∈ Zd, consider a marked Poisson process

Γx∗ =
{(

(y, t),mx
(y,t)

)
, (y, t) ∈ Γx

}
, (2.14)

where Γx is an intensity 1-Poisson process on {(y, t) ∈ [0,∞) × [0,∞)}, and the marks
{m(y,t), (y, t) ∈ Γx} are i.i.d. random vectors in Zd with distribution {p(z)}z∈Zd . We
will now give an explicit construction of the zero-process (ηt, t ≥ 0) associated to a
finite initial configuration η ∈ Xf , a rate function g(n) and an underlying translation
invariant{p(y − x)}x,y∈Zd random walk. Assume that the zero-range process (ηs, s < t)
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Zero-range processes with rapidly growing rates

has been built up to time t−. Then, if the Poisson point process Γx has an atom at (y, t)

and ηt−(x) ≥ 1, the site x will lose a particle if g
(
ηt−(x)

)
≥ y. If that is the case, the

particle will jump to the site z ∈ Zd such that mx
(y,t) = z − x.

The advantage of this method is that it allows us to construct zero-range processes for
all initial finite-particle configurations in the same probability space. Furthermore, in the
particular case d = 1 we might improve the construction so that we can simultaneously
construct all nearest neighbour zero-range processes. To see this, independently for
each x ∈ Z, consider a marked Poisson point process Γ̃x∗ =

{(
(y, t), Ux(y,t)

)
, (y, t) ∈ Γx

}
,

where as before Γx is an intensity 1-Poisson process on {(y, t) ∈ [0,∞)× [0,∞)}, and the
marks are independent uniform random variables, Ux(y,t) ∼ U [0, 1], (y, t) ∈ Γx. For given

transition probabilities p(1) = p, p(−1) = q = 1− p and x ∈ Z, let mx,(p,q)
(y,t) = 1 if Ux(y,t) ≤ p,

and mx,(p,q)
(y,t) = −1 otherwise. Then the process (η

(p,q)
t , t ≥ 0) constructed using the atoms

and marks of the marked Poisson process Γ̃
x,(p,q)
∗ :=

{(
(y, t),m

x,(p,q)
(y,t)

)
, (y, t) ∈ Γx

}
, is a

nearest neighbour zero-range process with underlying (p, q)-dynamics.
Applying the graphical representation to simultaneously construct the processes

(ηnt , t ≥ 0), we obtain ηnt (x) ≤ ηn+1
t (x) for all x, t, n. We can now let

ηt(x) = lim
n
ηnt (x), (2.15)

where the process ηt takes values in (N0 ∪ {∞})Z
d

. The rest of the article focuses on
finding a subset Y ⊆ X and conditions on the rates and jump distributions so that
(ηt, t ≥ 0) is a Markov process on Y .

In § 4 we consider the one-dimensional case X = NZ0 with nearest neighbour transi-
tions, p(x, y) = 0 if |x− y| > 1. Then, we let

Y = {η ∈ X : lim sup
1

2n+ 1

n∑
x=−n

η(x) <∞} (2.16)

be the space of configurations with bounded Cesàro mean, and prove:

Theorem 2.3. Let d = 1, let {g(n)}n≥0 be as in (2.6), and let {p(x, y)}x,y∈Z be the
transition probability matrix of a nearest neighbour random walk. If η0 ∈ Y , then
(ηt, t ≥ 0) is a Markov process on Y .

Next, we show that this process solves the martingale problem associated to the
generator (2.2). Note that when p(·, ·) is symmetric our proof requires that the rate
function g is bounded by an exponential function.

Theorem 2.4. Let d = 1, let {g(n)}n≥0 be as in (2.6) and let {p(x, y)}x,y∈Z be the
transition probability matrix of a nearest neighbour random walk.
i) If p(0, 1)−p(0,−1) 6= 0 then (ηt, t ≥ 0) is a solution of the martingale problem associated
to L and (2.4) holds.
ii) If g is bounded by an exponential function, g(n) ≤ ceθn, for some c, θ > 0, and all
n ∈ N, then (ηt, t ≥ 0) is a solution of the martingale problem associated to L and (2.5)
holds.

In §5 we find an alternative set of conditions ensuring the good definition of the
process; these are more restrictive on the jump rates, but allow for general finite range
transitions and any dimension. In order to derive the results of that section we need to
construct our process with a different limiting procedure. Given η ∈ X we enumerate the
particles of η in an arbitrary manner. Then we let xi be the position of the i-th particle
and for each N ∈ N we define

ηN (z) :=

N∑
i=1

1(xi = z), z ∈ Zd
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and

h(n) := sup
1≤j≤n

(g(j)− g(j − 1)). (2.17)

Then, for a given continuous time random walk on Zd and z ∈ Zd we let τ0 be the hitting
time of the origin, P z the law of the random walk starting from z and

Fz(t) := P z(τ0 ≤ t).

Finally, for η ∈ X, t ≥ 0 and z ∈ Zd we let

mz(t, η) =
∑
i∈N

Fxi−z(h(i)t).

In §5 we will see that mz(t, η) is an upper bound for the expected number of particles
reaching z ∈ Zd over the time interval [0, t], for the initial configuration η.

The following result is a version of Theorem 2.4 with different hypotheses on the
jump rates and transition probabilities, for general dimension d ≥ 1.

Theorem 2.5. Let η0 ∈ X, g : N0 → [0,∞) as in (2.6), T > 0, p(x, y) a set of finite-range,
translation-invariant transition probabilities such that

i) for any z ∈ Zd
mz(T, η0) <∞, (2.18)

ii) there exist positive θ, c such that g(n) ≤ ceθn for any n ∈ N0.

Then the process {Mf
t ; t ∈ [0, T ]} given by

Mf
t := f(ηt)− f(η0)−

∫ t

0

Lf(ηs)ds (2.19)

for any t ∈ [0, T ], is a martingale for any local, bounded function f : X → R. Moreover
(2.5) holds.

An application of this theorem is given by the following corollary.

Corollary 2.6. Assume that the initial configuration of particles has finite Cesàro mean
ρ = lim supm→∞

1
(2m+1)d

∑
‖x‖≤m η0(x) and that the rates satisfy (2.6). Let p(x, y) be

translation invariant, finite-range transition probabilities. Then, the conclusions of
Theorem 2.5 hold for any T > 0, if either of the following conditions is satisfied,

a)
∑
z∈Zd z p(0, z) = 0 and there exists a < 2

d such that supn g(n)n−a <∞,

b) limn g(n)n−1/d = 0.

Finally, we note that by the law of large numbers, for any φ > 0, the measure µφ
in (2.11) is supported on Y . Then, once the zero-range process is well defined, for
instance under the hypotheses of Theorems 2.3 or 2.5, Theorem 2.2 identifies a family of
translation invariant, invariant measures.

The proofs in this paper are presented as follows: In § 3 we prove Proposition 2.1,
Theorem 2.2 and a lemma establishing some properties of the invariant measures µφ. In
§ 4 we restrict the setting to Z with nearest neighbour transition matrices p(x, y) = 0 if
|x− y| > 1. We first show that the process started from an arbitrary configuration in Y
does not undergo explosions, then that it satisfies the Markov property and after that a
conservation of mass property for translation invariant initial distributions. Finally, in
the last part of that section we prove Theorem 2.4. In § 5 we prove Theorem 2.5 and
Corollary 2.6. We conclude the paper stating some open problems in § 6.
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3 Translation invariant initial distributions

In this section we first prove Proposition 2.1, where the zero-range process is con-
structed for translation invariant initial distributions having a finite mean. We then prove
Theorem 2.1 concerning invariant measures.

Proof of Proposition 2.1. To prove ii) let {[µ]n}n∈N be the family of probability measures
associated to µ as in (2.10). We now show that∫

η(x)d[µ]nS(t) ≤
∫
η(0)dµ(η)

for all t ≥ 0, x ∈ Zd and n ∈ N. Let ct,n(x) =
∫
η(x)d[µ]nS(t). This is increasing in n

and therefore converges to a limit ct(x) ∈ [0,∞]. Since T y−x[µ]n ≤ [µ]n+‖y−x‖∞ , for all
x, y ∈ Zd, all n ∈ N and t ≥ 0 we have

ct,n(x) =

∫
η(x)d[µ]nS(t) =

∫
(T y−xη)(y)d[µ]nS(t)

=

∫
η(y)dT y−x[µ]nS(t) ≤

∫
η(y)d[µ]n+‖y−x‖S(t) = ct,n+‖y−x‖∞(y).

(3.1)

Taking limits as n goes to infinity we get ct(x) ≤ ct(y) and exchanging the roles of x
and y we get the opposite inequality. Hence ct(x) does not depend on x and we rename
it ct. Fix ε > 0. Then there exists n0 such that for all n ≥ n0∫

η(0)d[µ]nS(t) ≥M − ε, for any constant M < ct.

It then follows from (3.1) that:∑
y:‖y‖∞≤m

∫
η(y)d[µ]n0+mS(t) ≥ (2m+ 1)d(M − ε) . (3.2)

But the left hand side of (3.2) is bounded above by∑
y∈Zd

∫
η(y)d[µ]n0+mS(t) =

∑
y∈Zd

∫
η(y)d[µ]n0+m

= (2n0 + 2m+ 1)d
∫
η(0)dµ ,

(3.3)

where the first equality follows from the fact that the number of particles of a finite
initial configuration is conserved. It now follows from (3.2) and (3.3) that

M − ε ≤ (2n0 + 2m+ 1)d

(2m+ 1)d

∫
η(0)dµ,

and letting m go to infinity we get

M − ε ≤
∫
η(0)dµ .

Since ε is arbitrary we conclude that

M ≤
∫
η(0)dµ .

As M is any number strictly smaller than ct, this implies that ct ≤
∫
η(0)dµ <∞. Using

again the assumption that
∫
η(0)dµ <∞, we see that the sequence {[µ]nS(t)}n∈N is tight,
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Zero-range processes with rapidly growing rates

and from the fact that it is increasing it follows that it must converge to a measure µt
with

∫
η(0)dµt ≤

∫
η(0)dµ and ii) is proved.

Since [µ]n ≤ T x[µ]n+‖x‖∞ and the semigroup preserves the order of measures we
have:

[µ]nS(t) ≤ T x[µ]n+‖x‖∞S(t).

Taking limits as n goes to infinity we get µt ≤ T xµt. Since the opposite inequality can be
proved in the same way, i) follows.

Let now {µn}n∈N be an increasing sequence of probability measures on Xf converg-
ing weakly to µ. For all k ≥ 1 we have [µn]k ≤ µn, hence

[µn]kS(t) ≤ µnS(t),

and therefore

[µ]kS(t) ≤ lim
n
µnS(t).

Taking limits in k we get

µt ≤ lim
n
µnS(t).

Then, using the fact that as k goes to infinity, [µn]k increases to µn, write

µnS(t) = lim
k

[µn]kS(t) ≤ lim
k

[µ]kS(t) = µt,

thus proving iv).
In order to obtain iii), note that

µt+s = lim
n

[µ]nS(t+ s) = lim
n

([µ]nS(t))S(s).

Since [µ]nS(t) increases to µt, the result follows from iv).

We now turn to the proof of Theorem 2.2. Recall the definition (2.11) of the family
of translation invariant, product measures {µφ}φ>0. Given a measure µ on X we will

consider its projection on Xn := N
[−n,n]d

0 ,

Πn(µ)(ξ) = µ
(
η ∈ X, η(x) = ξ(x)∀x ∈ [−n, n]d

)
, ξ ∈ Xn. (3.4)

Note that while [µ]n as in (2.10) is a probability measure on X, Πn(µ) is a probability
measure on Xn. Clearly Πn(µ) = Πn([µ]m) for any m ≥ n.

Proof of Theorem 2.2. For n ∈ N we say that x, y ∈ Zd are equivalent (x ≡ y) if all the
coordinates of x− y are multiples of 2n+ 1. Define a transition matrix pn on [−n, n]d as
follows: for x, y ∈ [−n, n]d let

pn(x, y) =
∑
z: z≡y

p(x, z).

A standard computation shows that the measures Πn(µφ) are invariant for the periodic
zero-range process on Xn with transition probability matrix pn(·, ·). Call Ŝn(t) the
semigroup associated to this process. Now define a new process on Xn. In this new
process particles jump as in the original process following the transition matrix p(·, ·)
but when a particle jumps to a point off [−n, n]d it vanishes. Call S̄n(t) its semigroup. By
means of appropriate couplings we will now prove that

Πn(µφ)S̄n(t) ≤ Πn

(
[µφ]nS(t)

)
(3.5)
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and
Πn(µφ)S̄n(t) ≤ Πn(µφ)Ŝn(t) = Πn(µφ). (3.6)

Note that the measures involved in these expressions are supported on Xf . To prove
(3.5) first let

ηx(z) =

{
η(x)− 1, z = x and η(x) ≥ 1,

η(z) otherwise.
(3.7)

Then, consider the following generator of a Markov Process (ηt, ξt) on Xn ×Xf :

Gf(η, ξ)=
∑

x,y∈[−n,n]d, x 6=y

g(η(x) ∧ ξ(x)) p(x, y)
(
f(ηx,y, ξx,y)

)
− f(η, ξ)

)
+

∑
x,y∈[−n,n]d, x 6=y

[g(η(x))− g(η(x) ∧ ξ(x))] p(x, y)
(
f(ηx,y, ξ)

)
− f(η, ξ)

)
+

∑
x,y∈[−n,n]d, x 6=y

[g(ξ(x))− g(η(x) ∧ ξ(x))] p(x, y)
(
f(η, ξx,y)

)
− f(η, ξ)

)
+

∑
x∈[−n,n]d,y∈Zd\[−n,n]d

[g(η(x) ∧ ξ(x))] p(x, y)
(
f(ηx, ξx,y)

)
− f(η, ξ)

)
+

∑
x∈[−n,n]d,y∈Zd\[−n,n]d

[g(η(x))− g(η(x) ∧ ξ(x))] p(x, y)
(
f(ηx, ξ)

)
− f(η, ξ)

)
+

∑
x∈[−n,n]d, y∈Zd\[−n,n]d

[g(ξ(x))− g(η(x) ∧ ξ(x))] p(x, y)
(
f(η, ξx,y)

)
− f(η, ξ)

)
+

∑
x∈Zd\[−n,n]d,y∈Zd

g(ξ(x)) p(x, y)
(
f(η, ξx,y)

)
− f(η, ξ)

)
.

(3.8)

In the same fashion as basic coupling (2.7), this generator matches the evolution of
(ηt, t ≥ 0) and (ξt, t ≥ 0)as much as possible, and supplements the rates so that the
semigroups of the first and second marginals of the process with generator G are S̄n(t)

and S(t) respectively. Moreover, if this process starts from a configuration (η, ξ) such
that η(x) ≤ ξ(x) for all x ∈ [−n, n]d, then P (ηt(x) ≤ ξt(x)) = 1 for all x ∈ [−n, n]d and all
t ≥ 0. Hence, (3.5) follows.

To prove (3.6) we procede similarly: we consider the following generator of a Markov
Process on Xn ×Xn,

Hf(η, ξ)=
∑

x,y∈[−n,n]d, x 6=y

g(η(x) ∧ ξ(x)) p(x, y)
(
f(ηx,y, ξx,y)

)
− f(η, ξ)

)
+

∑
x,y∈[−n,n]d, x 6=y

[g(η(x))− g(η(x) ∧ ξ(x))] p(x, y)
(
f(ηx,y, ξ)

)
− f(η, ξ)

)
+

∑
x,y∈[−n,n]d, x 6=y

[g(ξ(x))− g(η(x) ∧ ξ(x))] p(x, y)
(
f(η, ξx,y)

)
− f(η, ξ)

)
+

∑
x,y∈[−n,n]d

( ∑
z 6=y,z≡y

p(x, z)
)
[g(η(x) ∧ ξ(x))]

(
f(ηx, ξx,y)

)
− f(η, ξ)

)
+

∑
x,y∈[−n,n]d

( ∑
z 6=y,z≡y

p(x, z)
)
[g(η(x))− g(η(x) ∧ ξ(x))]

(
f(ηx, ξ)

)
− f(η, ξ)

)
+

∑
x,y∈[−n,n]d

( ∑
z 6=y,z≡y

p(x, z)
)
[g(ξ(x))− g(η(x) ∧ ξ(x))]

(
f(η, ξx,y)

)
− f(η, ξ)

)
.

(3.9)

The semigroups of the first and second marginals of the process with generator H are
S̄n(t) and Ŝn(t) respectively. On the other hand, if η(x) ≤ ξ(x) for all x ∈ [−n, n]d, then
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P (ηt(x) ≤ ξt(x)) = 1 for all x ∈ [−n, n]d and all t ≥ 0. Hence, the inequality in (3.6)
follows. Finally, the equality in (3.6) is due to the invariance under Ŝn(t) of Πn(µφ).

Now, fix φ > 0 and let

ρ =

∫
η(x)dµφ(η),

which does not depend on x. For n ≥ ‖x‖∞ let

0 ≤ dt,n(x) = ρ−
∫
η(x)d

(
Πn(µφ)S̄n(t)

)
.

Note that this function is decreasing in n. Let

dt(x) = lim
n
dt,n(x). (3.10)

To prove that (3.10) does not depend on x we apply analogous arguments to those used
to derive (3.1). By coupling and the fact that n− ‖x‖∞ ≤ (n+ ‖x− y‖∞)− ‖y‖∞ we see
that ∫

η(y)d
(
Πn+‖x−y‖∞(µφ)S̄n+‖x−y‖∞(t)

)
≥
∫
η(x)d

(
Πn(µφ)S̄n(t)

)
and

dt,n+‖x−y‖∞(y) ≤ dt,n(x) .

Hence dt(y) ≤ dt(x) and role reversing x and y we conclude that dt(x) = dt(y) for all
x, y ∈ Zd.

To derive an upper bound for
∑
x∈[−n,n]d dt,n(x), write

∑
x∈[−n,n]d

dt,n(x) =
∑

x∈[−n,n]d

(∫
η(x)d

(
Πn(µφ)Ŝn(t)

)
−
∫
η(x)d

(
Πn(µφ)S̄n(t)

))
. (3.11)

Coupling the processes with semigroups Ŝn and S̄n and starting them from the same
random initial configuration distributed according to Πn(µφ), we see that the rate at
which (3.11) increases with t is, at all times, bounded above by

An =
∑

x∈[−n,n]d,

y /∈[−n,n]d

p(x, y)

∫
η(x)d

(
Πn(µφ)

)
= ρ

∑
x∈[−n,n]d,

y /∈[−n,n]d

p(x, y).

Hence ∑
x∈[−n,n]d

(∫
η(x)d(µφ)Ŝn(t)−

∫
η(x)d(µφ)S̄n(t)

)
≤ tAn

and

0 ≤ lim
n

1

nd

∑
x∈[−n,n]d

dt,n(x) ≤ tAn
nd

= 0.

But since dt,n(x) is decreasing in n and its limit does not depend on x, this can
only happen if dt(x) = 0. Together with (3.6) this implies that the finite-dimensional
distributions of Πn(µφ)S̄n(t) increase as n→∞ to the finite-dimensional distributions of
µφ. It now follows from (3.5) and part ii) of Proposition 2.1 that (µφ)t = limn[µφ]nS(t) =

µφ.

We finish this section with a lemma describing some simple properties of the invariant
measures µφ.
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Lemma 3.1. Assume limn g(n) =∞ and that η ∈ X is distributed according to µφ, then∑
k∈N

exp(γk)µφ(η(x) = k) <∞ ∀φ, γ > 0,

and for any α > 0

lim
φ→∞

lim sup
k→∞

1

k
logµφ

( k∑
x=1

η(−x) ≤ αk
)

= −∞. (3.12)

Proof of Lemma 3.1. The first statement follows immediately from the divergence of
g(k). For the second statement, first note that for any M > 0

lim
φ→∞

µφ(η(x) ≤M) = 0.

Hence,

lim
φ→∞

µφ

(
η(x)

α+ 1
≤ 1

)
= 0.

Therefore for any 0 < p < 1 there exists a φ(p) such that for any φ ≥ φ(p) we have

µφ

(
k∑
x=1

η(−x) ≤ αk

)
≤ P

(
k∑
i=1

Xi ≤
α

α+ 1
k

)
,

where {Xi}i≥1 are i.i.d. Bernoulli with parameter p. But the right hand side above is
equal to

P

(
k∑
i=1

Yi ≥
1

α+ 1
k

)
where Y1, Y2, . . . , Yk are i.i.d. Bernoulli with parameter 1− p. Using the expression for
the large deviation rate of Bernoulli random variables, see for instance [2], we see that
for any K > 0

lim sup
k→∞

1

k
logP

(
k∑
i=1

Yi ≥
1

α+ 1
k

)
≤ −K

if 1− p is small enough. Hence (3.12) holds.

4 Dimension 1, nearest neighbour transitions

Throughout this section we assume that d = 1 and that {p(x, y)}x,y∈Z corresponds to
a translation invariant, nearest neighbour random walk on Z,

p(x, y) =


p y = x+ 1,

q y = x− 1,

0 otherwise,

(4.1)

where 0 ≤ p, q ≤ 1, p+ q = 1.
Let Xf and Y be as in (2.1) and (2.16) respectively. Since we will be following

the evolution of individual particles, it will be convenient to consider elements of Y
as increasing limits of elements of Xf . Hence, for η ∈ Y and n ∈ N we define ηn =(
ηn(x)

)
x∈Z as in (2.13).

Lemma 4.1. Non-explosion
Let d = 1, {p(x, y)}x,y∈Z be as in (4.1) and consider rates {g(n)}n≥0 that satisfy (2.6).
Let η0 ∈ Y . Then (ηt, t ≥ 0) defined by (2.15) satisfies ηt(x) <∞ a.s. for all t ≥ 0 and all
x ∈ Z. Moreover, ηt ∈ Y a.s. for all t ≥ 0.
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Proof of Lemma 4.1. Let j : X2
f → R and r : X2

f → R be given by

j(ζ, ψ) =
[

sup
n≤0,m≥0

m∑
x=n

(ζ(x)− ψ(x))
]+

and

r(ζ, ψ) = [ζ(0)− ψ(0)]+.

Note that for all ζ, ψ ∈ Xf we have r(ζ, ψ) ≤ j(ζ, ψ).
Given initial configurations ζ0, ψ0 consider the coupled processes ζt, ψt on X2

f . We
claim that j(ζt, ψt) only increases when a ψ particle jumps off 0. To justify this last
statement, first note that if a ψ and a ζ particle jump together the value of j remains
unchanged. Then look at jumps of a ζ particle not accompanied by a ψ particle occurring
at some time s, and consider the following cases,

1. The ζ particle jumps from k < 0 to k − 1. In this case for any n ≤ 0 and any m ≥ 0

the expression
∑m
x=n(ζ(x)− ψ(x)) either remains unchanged or decreases by one

unit.

2. The ζ particle jumps from k < 0 to k + 1. Since no ψ particle jumped, it must be
the case that just before the jump we had ζs−(k) − ψs−(k) > 0. The expression∑m
x=n(ζ(x) − ψ(x)) only increases if n = k + 1. But

∑m
x=k+1(ζs(x) − ψs(x)) =∑m

x=k+1(ζs−(x) − ψs−(x)) + 1 ≤
∑m
x=k(ζs−(x) − ψs−(x)) and therefore j does not

increase.

3. The ζ particle jumps from k > 0 to k + 1. In this case for any n ≤ 0 and any m ≥ 0

the expression
∑m
x=n(ζ(x)− ψ(x)) either remains unchanged or decreases by one

unit.

4. The ζ particle jumps from k > 0 to k − 1. Since no ψ particle jumped, it must
be the case that just before the jump we had ζs−(k) − ψs−(k) > 0. The expres-
sion

∑m
x=n(ζ(x) − ψ(x)) only increases if m = k − 1. But

∑k−1
x=n(ζs(x) − ψs(x)) =∑k−1

x=n(ζs−(x) − ψs−(x)) + 1 ≤
∑k
x=n(ζs−(x) − ψs−(x)) and therefore j does not

increase.

5. The ζ particle jumps from 0 to either 1 or −1. In this case j either remains
unchanged or decreases by one unit.

Next look at jumps of a ψ particle not accompanied by a ζ particle occurring at some
time s, and consider the following cases,

1. The ψ particle jumps from k < 0 to k + 1. In this case for any n ≤ 0 and any m ≥ 0

the expression
∑m
x=n(ζ(x)− ψ(x)) either remains unchanged or decreases by one

unit.

2. The ψ particle jumps from k < 0 to k − 1. Since no ζ particle jumped, it must
be the case that just before the jump we had ζs−(k) − ψs−(k) < 0. The ex-
pression

∑m
x=n(ζ(x) − ψ(x)) only increases if n = k. But

∑m
x=k(ζs(x) − ψs(x)) =∑m

x=k(ζs−(x) − ψs−(x)) + 1 ≤
∑m
x=k+1(ζs−(x) − ψs−(x)) and therefore j does not

increase.

3. The ψ particle jumps from k > 0 to k − 1. In this case for any n ≤ 0 and any m ≥ 0

the expression
∑m
x=n(ζ(x)− ψ(x)) either remains unchanged or decreases by one

unit.

4. The ψ particle jumps from k > 0 to k + 1. Since no ζ particle jumped, it must
be the case that just before the jump we had ζs−(k) − ψs−(k) < 0. The expres-
sion

∑m
x=n(ζ(x) − ψ(x)) only increases if m = k. But,

∑k
x=n(ζs(x) − ψs(x)) =∑k

x=n(ζs−(x) − ψs−(x)) + 1 ≤
∑k−1
x=n(ζs−(x) − ψs−(x)) and therefore j does not

increase.
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The only remaining case is when a ψ particle jumps off 0. In this case j either remains
unchanged or increases by one unit.

Therefore, if we denote by Nt(ψ) the number of ψ particles that jumped off 0 on [0, t],
we get

r(ζt, ψt) ≤ j(ζt, ψt) ≤ j(ζ0, ψ0) +Nt(ψ) (4.2)

and
ζt(0) ≤ ψt(0) + r(ζt, ψt) ≤ ψt(0) + j(ζ0, ψ0) +Nt(ψ). (4.3)

Fix now η ∈ Y and let

γ = γ(η) := max
{

lim sup
1

n

n∑
x=1

η(x), lim sup
1

n

n∑
x=1

η(−x)
}
.

Let φ be large enough so that lim 1
n

∑n
x=1 ξ(x) > γ for µφ-almost all ξ. Consider zero-

range processes ηn· and ξn· having initial configurations ηn0 = ηn and ξn0 = ξn, with ξ

distributed according to µφ. By (4.3) we get

ηnt (0) ≤ ξnt (0) + j(ηn0 , ξ
n
0 ) +Nt(ξ

n) .

Taking limits as n goes to infinity, we see that ηt(0) <∞ a.s. will follow from

i) j(η, ξ) <∞ a.s.,

ii) limn ξ
n
t (0) <∞ a.s., and

iii) limnNt(ξ
n) <∞ a.s..

To prove iii) note that E
[
Nt(ξ

n)
]

=
∫ t

0
Eξ
[
g(ξns (0)

]
ds. Then∫

E
[
Nt(ξ

n)
]
dµφ(ξ) =

∫ (∫ t

0

Eξ
n[
g(ξns (0)

]
ds
)
dµφ(ξ),

=

∫ t

0

(∫
Eξ

n[
g(ξns (0)

]
dµφ(ξ)

)
ds

(4.4)

by Tonelli’s Theorem. Since the process is monotone in n and g is increasing, the RHS in
(4.4) is bounded above by∫ t

0

(∫
Eξ
[
g(ξs(0)

]
dµφ(ξ)

)
ds = t

∫
g(ξ(0))dµφ(ξ) <∞

from the invariance of µφ and the fact that Eµφ
[
g(ξ(0))

]
<∞ (2.12). With our choice of

φ we get j(η, ξ) <∞ for µφ–almost all ξ. This proves i). Using the invariance of µφ, write∫
lim
n
ξnt (0)dµφ(ξ) =

∫
ξt(0)dµφ =

∫
ξ(0)dµφ <∞

from where ii) follows.
To prove that ηt ∈ Y , t > 0, we apply the second inequality in (4.2) to ηn0 and ξn0 and

take limits in n to obtain
j(ηt, ξt) ≤ j(η0, ξ0) +Nt(ξ),

which implies the desired result.

We now prove the Markov property. The proof relies on the graphical representation
described in § 2. Let us denote by w = {Γx∗}x∈Z the collection of independent, marked

Poisson processes labelled by sites in Z, see (2.14). For x ∈ Z and s < t, let Γ
x,(s,t]
∗ be

the Poisson atoms falling in R≥0 × (s, t] × Zd and ws,t =
{

Γ
x,(s,t]
∗

}
x∈Z. Then, given an
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initial configuration η0 ∈ Xf , we can describe the state of the process ηt at time t as a
function of its state ηs at time s, and the updates ws,t occurring on (s, t],

ηt = Φs,t(ηs, ws,t) a.s.. (4.5)

The Markov property follows immediately from the independence of the distribution of
the Poisson atoms in disjoint regions of [0,∞)× [0,∞)×Zd. Also, note that the mappings
Φs,t(·, ·) are monotone in the first coordinate, a consequence of the fact that the rates
{g(n)}n≥0 are non-decreasing.

We now show that it is possible to take limits in (4.5) to extend it to initial configura-
tions in Y .

Proof of Theorem 2.3. Given η ∈ Y , consider ηn ↗ η, the sequence of processes (ηnt , t ≥
0) and the process (ηt, t ≥ 0) constructed in (2.13), so that in particular ηnt ≤ ηn+1

t ≤ ηt,
for all n ∈ N and t ≥ 0.

In order to prove the theorem, it will be enough to show that the process (ηt, t ≥ 0)

satisfies, for any s < t,

ηt = lim
k→∞

Φs,t
(
(ηs)

k, ws,t
)

a.s..

From limn→∞ ηns ≥ (ηs)
k, k ∈ N, we have

ηt = lim
n→∞

ηnt = lim
n→∞

Φs,t(η
n
s , ws,t) ≥ Φs,t

(
(ηs)

k, ws,t
)

a.s..

On the other hand, for each fixed n ∈ N,

Φs,t
(
ηns , ws,t

)
= lim
k→∞

Φs,t
(
(ηns )k, ws,t

)
≤ lim
k→∞

Φs,t
(
(ηs)

k, ws,t
)

and taking limits in n this yields the opposite inequality,

ηt = lim
n→∞

Φs,t
(
ηns , ws,t

)
≤ lim
k→∞

Φs,t
(
(ηs)

k, ws,t
)

a.s..

The result follows.

4.1 Mass conservation

The next lemma states that when the initial configuration is distributed according to
a translation invariant measure, mass is preserved.

Lemma 4.2. Let d = 1, {p(x, y)}x,y∈Z as in (4.1) and consider rates {g(n)}n≥0 that
satisfy (2.6). Let µ be a translation invariant measure such that ρ := µ

[
η(0)

]
<∞. Then

ρ = Eµ[ηt(0)] for all t ≥ 0.

Proof of Lemma 4.2. By part ii) of Proposition 2.1 Eµ[ηt(0)] ≤ ρ. Hence, it suffices to
show the opposite inequality. Let φ ≥ 0 be such that Eµ

[
η(0)

]
≤ Eµφ

[
η(0)

]
. Consider

coupled families of processes (ηnt , t ≥ 0), (ηt, t ≥ 0), (ξnt , t ≥ 0), (ξt, t ≥ 0), such that

1. η0 ∼ µ, and ηn0 is obtained from η as in (2.13),

2. ξ0 ∼ µφ, and ξn0 is obtained from ξ as in (2.13),

3. (ηnt , t ≥ 0) and (ξnt , t ≥ 0) follow the dynamics
(
S̄n(t)

)
t≥0

defined in the proof of
Theorem 2.2,

4. (ηt, t ≥ 0) and (ξt, t ≥ 0) follow the zero-range dynamics
(
St
)
t≥0

determined by
(2.2),

5. ηnt ≤ ηt for all t ≥ 0 a.s., and ξnt ≤ ξt for all t ≥ 0 a.s..
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Zero-range processes with rapidly growing rates

Processes with properties 1 − 5 above can be constructed by means of the graphical
representation, using the same family of marked Poison processes

{
Γx∗
}
x∈Z. For the

construction of (ηnt , t ≥ 0) and (ξnt , t ≥ 0), particles that jump out of [−n, n] are removed.
Let us denote by Pµ×µφ the joint law of these four processes, such that Pµ is the marginal
law of (ηt, t ≥ 0).

Denote by Ψn(t) and Φn(t) the number of ηn and ξn particles that jump from n to
n+ 1 (and are thereby lost) over the time interval [0, t]. Let

Jn(η, ξ) = [ sup
x∈[−n,n]

∑
y∈[x,n]

(η(y)− ξ(y))]+ .

Now note that Jn(ηns , ξ
n
s )− Φn(s) + Ψn(s) can only decrease in time. Hence

Ψn(t) ≤ Φn(t)− Jn(ηnt , ξ
n
t ) + Jn(ηn0 , ξ

n
0 ) ≤ Φn(t) + Jn(ηn0 , ξ

n
0 ), Pµ×µφ − a.s..

Let
Gn(η, ξ) = [ sup

x∈(−∞,n]

∑
y∈[x,n]

(η(y)− ξ(y))]+.

Then clearly
Ψn(t) ≤ Φn(t) +Gn(ηn0 , ξ

n
0 ) Pµ×µφ − a.s..

Now note that

Φn(t) +Gn(η0, ξ0)

n
−→ 0 in Pµ×µφ - probability as n→∞,

hence the same holds for Ψn(t)/n in Pµ×µφ -probability. Similarly, if we denote by Ψ−n(t)

the number of η-particles jumping from −n to −(n+ 1) over [0, t], it follows that Ψ−n(t)/n

converges to 0 in Pµ×µφ -probability. We thus get

lim
n

1

n

n∑
−n

[η0(x)− ηnt (x)] = 0 in Pµ×µφ - probability,

and in particular limn(1/n)
∑n
−n η

n
t (x) = ρ in Pµ×µφ -probability. Since ηt(x) ≥ ηnt (x)

Pµ×µφ a.s., we get limn(1/n)
∑n
−n ηt(x) ≥ ρ in Pµ-probability. But Eµ

[
ηt(x)

]
does

not depend on x by part i) of Proposition 2.1, hence the last inequality implies that
Eµ
[
ηt(0)

]
≥ ρ.

4.2 Proof of Theorem 2.4

To prove the theorem we will need two lemmas and a proposition which we state
here and prove later:

Lemma 4.3. Asymmetric transitions
Let d = 1, {g(n)}n≥0 as in (2.6), and consider {p(x, y)}x,y∈Z as in (4.1) with p 6= q. Then,
for η ∈ Y , the distribution P η of the process

(
ηt, t ≥ 0 : η0 = η

)
, satisfies

Eη
[ ∫ t

0

g
(
ηs(x)

)
ds
]
<∞ (4.6)

for all x ∈ Z and t > 0.

Lemma 4.4. Exponentially bounded rates
Let d = 1, {g(n)}n≥0 as in (2.6), and consider {p(x, y)}x,y∈Z as in (4.1). Assume further
that the rate function is exponentially bounded: there exists λ > 0 such that

g(n) ≤ eλn, n ∈ N0.
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Then for η ∈ Y , Y the set in (2.16), the distribution P η of the process
(
ηt, t ≥ 0 : η0 = η

)
,

satisfies
sup
s∈[0,t]

Eη
[
g(ηs(x))r

]
<∞ (4.7)

for any r ∈ [1,∞), x ∈ Z, and t > 0.

Proposition 4.5. Let (ηt, t ≥ 0), η0 ∈ Y be the process given by (2.15). If, for some
r > 1, for all t > 0, and any initial configuration η0 ∈ Y,

sup
s≤t

Eη0
[
g(ηs(x))r

]
<∞, ∀x ∈ Zd, (4.8)

then the process satisfies the forward equation:

d

dt
Eη0 [f(ηt)] = Eη0

[
Lf(ηt)

]
,

for any local bounded function f : X → R.

Proof of Theorem 2.4. We start showing that {ηt, t ≥ 0} is a solution of the martingale
problem under the hypothesis of either item of the theorem. For each fixed n ∈ N and
initial configuration η0 ∈ Y , the process {ηnt ; t ≥ 0} is supported on the countable state
space {

η ∈ X;
∑
x

η(x) =
∑
|x|≤n

η0(x)
}
,

and the transition rates are bounded above by g
(∑

|x|≤n η0(x)
)
<∞, so this is a Markov

chain without explosions. Therefore, for any local, bounded function f : X → R the
process

Mn
t (f) := f(ηnt )− f(ηn0 )−

∫ t

0

Lf(ηns ) ds (4.9)

is a martingale with quadratic variation

〈Mn
t (f)〉 =

∫ t

0

∑
x,y∈Zd

g(ηns (x))p(x, y)
(
∇x,yf(ηns )

)2
ds,

where ∇x,yf(η) := f(ηx,y)− f(η) and ηx,y is as in (2.3). Let A be the support of f and let
Ā =

{
y ∈ Z, infx∈A ‖y − x‖ ≤ 1

}
. Then

E
[
Mn
t (f)2

]
= E

[
〈Mn

t (f)〉
]
≤ 8‖f‖2∞

∫ t

0

∑
x∈Ā

E[g(ηns (x)]ds. (4.10)

Due to (4.6) and (4.7), in either item of the statements of the theorem, we can take
the limit as n→∞ in (4.9) and conclude that the sequence Mn

t (f) converges a.s. and in
L1 to

Mt(f) = f(ηt)− f(η0)−
∫ t

0

Lf(ηs) ds.

Now, using Fatou’s Lemma and (4.10), we can control the second moment of the incre-
ment Mt(f)−Ms(f):

E
[
(Mt(f)−Ms(f))2

]
= E

[
lim inf
n→∞

(
Mn
t (f)−Mn

s (f)
)2]

≤ lim inf
n→∞

E
[(
Mn
t (f)−Mn

s (f)
)2]

≤ 8‖f‖2∞
∫ t

s

∑
x∈Ā

E[g(ηs(x)]ds.
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It then follows from the main result of [9] that Mt(f) is a martingale. Now, for item i) of
the theorem, (2.4) follows from Fubini’s Theorem and Lemma 4.3, and for item ii) of the
theorem, (2.5) follows from Lemma 4.4 and Proposition 4.5.

4.3 Proof of Lemmas 4.3 and 4.4 and of Proposition 4.5

We will now compare two zero-range processes starting from elements η, ξ ∈ Xf . The
particles of η will be classified as γ and ρ particles. This means that at any time t and
any site x, we will have ηt(x) = γt(x) + ρt(x). This comparison will be made thanks to an
auxiliary process

(
(γt, ρt, ξt), t ≥ 0

)
on X3

f .
Rather than writing down a long generator we state the rates of this process for

an arbitrary configuration (γ, ρ, ξ). To do so we introduce some further notation: for
γ, ρ ∈ Xf , define

ρ0(x) =

{
ρ(0) + 1 x = 0,

ρ(x) x 6= 0,

γ−1(x) =

{
γ(−1)− 1 x = −1

γ(x) x 6= −1,

and

γ1(x) =

{
γ(1)− 1 x = 1

γ(x) x 6= 1,

We now state the rates of the auxiliary process,

1. For x ∈ Z, at rate pg
(
γ(x) ∧ ξ(x)

)
the process jumps to (γx,x+1, ρ, ξx,x+1).

2. For x ∈ Z, at rate qg
(
γ(x) ∧ ξ(x)

)
the process jumps to (γx,x−1, ρ, ξx,x−1).

3. For x ∈ Z, at rate p
[
g
(
ξ(x)

)
− g
(
γ(x) ∧ ξ(x)

)]
the process jumps to (γ, ρ, ξx,x+1).

4. For x ∈ Z, at rate q
[
g
(
ξ(x)

)
− g
(
γ(x) ∧ ξ(x)

)]
the process jumps to (γ, ρ, ξx,x−1).

5. For x ∈ Z, at rate p
[
g
(
γ(x) + ρ(x)

)
− g
(
γ(x)

]
the process jumps to (γ, ρx,x+1, ξ).

6. For x ∈ Z, at rate q
[
g
(
γ(x) + ρ(x)

)
− g
(
γ(x)

)]
the process jumps to (γ, ρx,x−1, ξ).

7. For x ∈ Z\{−1}, at rate p
[
g
(
γ(x)

)
−g
(
γ(x)∧ξ(x)

)]
the process jumps to (γx,x+1, ρ, ξ).

8. For x ∈ Z\{1}, at rate q
[
g
(
γ(x)

)
−g
(
γ(x)∧ξ(x)

)]
the process jumps to (γx,x−1, ρ, ξ).

9. At rate p
[
g
(
γ(−1)

)
−g
(
γ(−1)∧ξ(−1)

)]
the process jumps to (γ−1, ρ0, ξ) if γ(0) ≥ ξ(0),

and to (γ−1,0, ρ, ξ) if γ(0) < ξ(0).

10. At rate q
[
g
(
γ(1)

)
− g
(
γ(1)∧ ξ(1)

)]
the process jumps to (γ1, ρ0, ξ) if γ(0) ≥ ξ(0), and

to (γ1,0, ρ, ξ) if γ(0) < ξ(0).

The processes (ξt, t ≥ 0) and (γt, t ≥ 0) follow basic coupling (2.7) except at config-
urations γ, ξ such that γ(−1) > ξ(−1) or γ(1) > ξ(1), and γ(0) ≥ ξ(0). Then at rate
p
[
g(γ(−1)) − g(ξ(−1))

]
(q
[
g(γ(1)) − g(ξ(1))

]
, resp.) a γ-particle is removed from −1 (1,

resp.), and added to the ρ-process, at 0.
To derive some of the properties of this process it is convenient to distinguish ρ-

particles from each other. To do so, we label them with positive integers and adopt the
convention that whenever a ρ-particle has to jump from a site x the jump is performed by
the particle having the lowest label among those present at x. If there are k ρ-particles
in total at time 0 we label them as 1, . . . , k in an arbitrary manner and then each time a
ρ-particle is created we attribute to it the lowest available label in N. We now let Ψ(t) be
the number of ρ-particles in the system at time t, and denote by Zi the total number of
returns (that is, up to time∞) to the origin of the i-th ρ-particle. We can now state some
properties of the process

(
(γt, ρt, ξt), t ≥ 0

)
.
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i) If ηt := γt + ρt (coordinatewise) then (ηt)t≥0 is a zero-range process with rate
function g.

ii) The process (ξt)t≥0 is a zero-range process with rate function g.

iii) If γ0(0) ≤ ξ0(0) then γt(0) ≤ ξt(0) for all t ≥ 0.

iv) Assume p 6= q. If the initial configuration is such that ρ(x) = 0 for all x 6= 0

then the conditional distribution of Z1, . . . , Zk given {Ψ(t) = k} corresponds to
i.i.d. geometrically distributed random variables.

The first two properties are immediate consequences of the jump rates. Note that they
imply that the total number of particles is conserved. Hence, for any initial configuration
in X3

f the jump rates are bounded. The third property follows from items 9 and 10 and
the fact that the rates are non-decreasing. The fourth property is a consequence of the
following facts, which are derived from the jump rates.

1. The trajectories of the ρ-particles have initial position at the origin.

2. The creation of ρ-particles only depends on the evolution of γ and ξ-particles.

3. Due to the convention adopted for the jumps of the ρ-particles, the discrete-time
skeletons of the continuous-time trajectories perform i.i.d. (p, q)-random walks,
which are independent of the evolution of the γ, ξ particles.

Our next lemma follows from these considerations.

Lemma 4.6. Let d = 1, {g(n)}n≥0 be as in (2.6), and let {p(x, y)}x,y∈Z be as in (4.1) with
p 6= q. Assume that at time 0 there are no ρ-particles off the origin and let H(t) be the
number of jumps off 0 performed by ρ-particles over the interval [0, t]. Then there exists
0 < C <∞ independent of t such that

E
[
H(t)

]
≤ CE

[∑
x

ρt(x)
]
.

Proof of Lemma 4.6. Let Xi be the number of jumps off 0 performed by the i-th ρ-
particle and let N(t) be the number of ρ-particles created in the time interval [0, t].
Then Xi ≤ Zi + 1 for all i ≥ 1, and since we assume no ρ-particles are present at time
0, N(t) =

∑
x ρt(x) = ψ(t). By property iv) above ψ(t) is independent of the random

variables Zi. Hence,

E
[
H(t)

]
≤ E

[N(t)∑
i=1

(Zi + 1)
]

= E
[
N(t)

](
E[Z1] + 1

)
and the lemma follows.

We recall the mapping j : X2
f → R

j(γ, ξ) =
[

sup
n≤0,m≥0

m∑
x=n

(γ(x)− ξ(x))
]+
.

Lemma 4.7. Let
(
(γt, ρt, ξt), t ≥ 0

)
be the Markov Process on X3

f with dynamics deter-
mined by the rates 1− 10 above. Denote by N(t) the number of ξ-particles jumping off 0

in the time interval [0, t]. Then for all t ≥ 0∑
x

ρt(x) ≤
∑
x

ρ0(x) +N(t) + j(γ0, ξ0).
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Proof of Lemma 4.7. First note that j(γs, ξs) can increase by at most one unit at any
given time, and that this can only occur when a ξ-particle jumps off 0. We omit the proof
of this assertion since it follows the same arguments as the proof of Lemma 4.1. Then,
note that j(γs, ξs) decreases by one unit when a ρ-particle is created. Therefore,∑

x

ρt(x)−
∑
x

ρ0(x) ≤ N(t) + j(γ0, ξ0)− j(γt, ξt)

and the lemma follows from the fact that j(γt, ξt) is non-negative.

Proof of Lemma 4.3. In this proof we adopt the following notation: Eη and Eγ,ρ,ξ will be
the expectations associated with the zero-range process starting from η, and with the
auxiliary process starting from (γ, ρ, ξ), respectively. Since the construction is translation
invariant, it suffices to show that (4.6) holds when x = 0.
We wish to compare Eη

[ ∫ t
0
g(ηs(0))ds

]
and Eξ

[ ∫ t
0
g(ηs(0))ds

]
where η and ξ are arbitrary

elements of Xf . To do so we will apply Lemma 4.7 to an initial configuration (γ, ρ, ξ) such
that for all x 6= 0, γ(x) = η(x) and ρ(x) = 0, γ(0) = η(0) ∧ ξ(0) and ρ(0) = [η(0)− γ(0)]+.
As noted before γt + ρt is a zero-range process with initial configuration η. Hence

Eη
[
#{η-particles that have jumped off 0 over [0, t]}

]
= Eγ,ρ,ξ

[
#{γ-particles that have jumped off 0 over [0, t]}

]
+ Eγ,ρ,ξ

[
#{ρ-particles that have jumped off 0 over [0, t]}

]
.

(4.11)

Due to property iii) of the construction, and recalling that N(t) stands for the number of
ξ-particles jumping off 0 in the time interval [0, t], we have

Eγ,ρ,ξ
[
#{γ-particles that have jumped off 0 over [0, t]}

]
≤ Eγ,ρ,ξ

[
N(t)

]
.

From (4.11), the previous inequality, and Lemma 4.6, we get

Eη
[
#{η-particles that have jumped off 0 over [0, t]}

]
≤ Eγ,ρ,ξ

[
N(t)

]
+ CEγ,ρ,ξ

[∑
x

ρt(x)],

and using that in the auxiliary process the ξ-particles evolve as in a zero-range process,
we conclude

Eη
[
#{η-particles that have jumped off 0 over [0, t]}

]
≤ Eξ

[
N(t)

]
+ CEγ,ρ,ξ

[∑
x

ρt(x)]. (4.12)

Let us now fix η ∈ Y and pick α > 0 and β > 0 such that∫
ξ(0)dµα(ξ) > β > max

{
lim sup

n

1

n

n∑
x=1

η(−x), lim sup
n

1

n

n∑
x=1

η(x)
}
.

We then apply (4.12) to ηn and a random configuration ξ distributed according to Πn(µα),
where Πn was defined in (3.4). We obtain

Eη
n[

#{η-particles that have jumped off 0 over [0, t]}
]

≤
∫
Eξ
[
N(t)

]
d
(
Πn(µα)

)
(ξ) +

∫
CEγ

n,ρn,ξ
[∑

x

ρt(x)
]
d
(
Πn(µα)

)
(ξ), (4.13)

where for all x 6= 0, γn(x) = ηn(x) and ρn(x) = 0, γn(0) = ηn(0) ∧ ξ(0) and ρn(0) =

[ηn(0)− γn(0)].
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The first term of the right hand side above is equal to∫
Eξ
[ ∫ t

0

g(ξs(0))ds
]
d
(
Πn(µα)

)
(ξ) ≤

∫
Eξ
[ ∫ t

0

g(ξs(0))ds
]
d(µα)(ξ)

Since µα is invariant, this is equal to

t

∫
g(ξ(0)) d(µα)(ξ) = tα <∞.

To obtain an upper bound for the second term in (4.13) we use Lemma 4.7 as follows:∫
Eγ

n,ρn,ξ
[∑

x

ρt(x)
]
d
(
Πn(µα)

)
(ξ)

≤
∫
Eγ

n,ρn,ξ
[∑

x

ρ0(x) +N(t) + j(γn, ξ)
]
d
(
Πn(µα)

)
(ξ)

≤
∫
Eγ

n,ρn,ξ
[
η(0) +N(t) + j(γn, ξ)

]
d
(
Πn(µα)

)
(ξ)

≤ η(0) +

∫
Eξ
[
N(t))

]
d
(
Πn(µα)

)
(ξ) +

∫
j(ηn, ξ) d

(
Πn(µα)

)
(ξ)

≤ η(0) + tα+

∫
j(ηn, ξ)d

(
Πn(µα)

)
(ξ).

(4.14)

To complete the proof we show that
∫
j(ηn, ξ)d(Πn(µα))(ξ) is bounded uniformly in n. To

do so, note that ∫
j(ηn, ξ)d

(
Πn(µα)

)
(ξ) ≤

∫
j(η, ξ)d(µα)(ξ).

It now suffices to prove that
∫
j(η, ξ)d(µα(ξ)) is finite. This is done as follows: let k be

such that

max
{

sup
m≥k

1

m

m∑
x=1

η(−x), sup
m≥k

1

m

m∑
x=1

η(x)
}
< β.

Then, define

L(ξ) = inf
{
` : inf

m≥`

1

m

m∑
x=1

ξ(−x) ≥ β, inf
m≥`

1

m

m∑
x=1

ξ(x) ≥ β
}
.

If ξ is distributed according to µα the random variables ξ(x), x ∈ Z are i.i.d. and by
Lemma 3.1 have finite exponential moments. Hence, we can apply standard large
deviation results to conclude that µα(L(ξ) ≥ `) decays exponentially with `. Now define

M(ξ) = max{L(ξ), k}. Then j(η, ξ) ≤
∑M(ξ)
x=−M(ξ) η(x). Hence∫

j(η, ξ)dµα(ξ) ≤ β
(

1 + 2

∫
M(ξ)dµα(ξ)

)
<∞

and the proof is completed.

The proof of Lemma 4.3 relied on the fact that the number of visits to the origin of a
random walk with non-vanishing drift has finite expectation. This fails in the symmetric
case, and to prove that the conclusion of the lemma still holds in this case, we will
restrict the family of rate functions to those having at most exponential growth.

Proof of Lemma 4.4 . It is enough to prove the lemma for x = 0. Recall the graphical
representation from § 4. We will use it to simultaneously construct the zero-range
process for all nearest neighbour dynamics determined by jump probabilities (p, q).
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Fix n ∈ N and let ηn be the truncated configuration in (2.13). Under the graphical
representation and not counting multiple visits, the number of particles initially to the
left of the origin that at any point during [0, t] have reached 0 is maximal for the totally
asymmetric dynamics (p, q) = (1, 0), whereas the number of particles initially to the right
of the origin that ever reach it during [0, t] is maximal for the opposite totally asymmetric
dynamics (0, 1). Indeed, enumerate particles in the initial ηn configuration according
to their distance to the origin and any arbitrary order for particles occupying the same
site. Let then Xi,n be the position of the i-th particle in ηn at time 0, and let us denote by

X
(p,q)
i,n (t) its position at time t under the (p, q) dynamics. Furthermore, let us stipulate

that on the event that there is a jump out of a site in the graphical representation, the
particle with the highest (lowest) index at the site is removed if the direction of the jump
is to the right (left). Then it is easy to check that the graphical representation ensures
that

X
(p,q)
i,n (t) ≤ X(1,0)

i,n (t) and X
(p,q)
i,n (t) ≥ X(0,1)

i,n (t) for all t ≥ 0.

In particular, if a particle initially to the left of the origin ever reached it during [0, t]

for the (p, q) dynamics, the same must hold for the (1, 0) dynamics, with an analogous
statement holding for the particles initially to the right of the origin and the (0, 1)

dynamics. For the rest of the proof, we continue using the superscript (p, q) to specify
which particular dynamics is being referred to.

Fix t > 0. For the (p, q) dynamics, we have

]
{

particles that reach 0 over [0, t]
}
≤ ]
{
i ∈ Z, Xi,n = 0

}
+ ]
{
i ∈ Z, Xi,n < 0, X

(p,q)
i,n (s) ≥ 0 for some s ∈ [0, t]

}
+ ]
{
i ∈ Z, Xi,n > 0, X

(p,q)
i,n (s) ≤ 0 for some s ∈ [0, t]

}
.

Let r ≥ 1. Due to the bound g(k) ≤ eλk, k ∈ Z, and the previous observations,

g
(
ηn,(p,q)s (0)

)r ≤ eλrηn(0) eλr ]
{
i∈Z, Xi,n<0, X

(1,0)
i,n (t)≥0

}
× eλr ]

{
i∈Z, Xi,n>0, X

(0,1)
i,n (t)≤0

}
,

uniformly for s ∈ [0, t]. Taking expectations and applying the Cauchy-Schwarz inequality,
we get

sup
s∈[0,t]

Eη
n
[
g
(
ηn,(p,q)s (0)

)r] ≤ eλrηn(0)
[
Eη

n
(
e2λr ]

{
i∈Z, Xi,n<0, X

(1,0)
i,n (t)≥0

})] 1
2

×
[
Eη

n
(
e2λr ]

{
i∈Z, Xi,n>0, X

(0,1)
i,n (t)≤0

})] 1
2

.

We need to show that the last two factors on the right above are uniformly bounded in n.
We treat the first, the proof for the second one is completely analogous.

To do so, given (ξ, ξ′) ∈ Y 2 such that

j′(ξ, ξ′) = sup
n≥1

[ −1∑
x=−n

(ξ(x)− ξ′(x))
]+

<∞,

we consider the coupled versions of two zero-range processes (ξs, ξ
′
s) following the

(1, 0) dynamics, with initial states (ξ, ξ′) obtained by means of the graphical representa-
tion. Let N(t, ξ) and N(t, ξ′) be the number of particles jumping from −1 to 0 over the
time interval [0, t] for the configurations ξ and ξ′ respectively. It is now easy to verify that

j′(ξs, ξ
′
s) +N(s, ξ)−N(s, ξ′) ≤ j′(ξ, ξ′). (4.15)
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Indeed, j′ only increases when N(s, ξ′) increases and N(s, ξ) remains constant, and j′

decreases whenever N(s, ξ) increases and N(s, ξ′) remains constant. But since j′ is
nonnegative, (4.15) implies that

N(t, ξ) ≤ N(t, ξ′) + j′(ξ, ξ′). (4.16)

For η ∈ Y the configuration in the statement of the lemma, define

α = max
{

lim sup
n∈N

1

n

n∑
x=1

η(−x), lim sup
n∈N

1

n

n∑
x=1

η(x)
}
,

N0 = inf
{
n ∈ N, ∀l ≥ n :

1

l

l∑
x=1

η(−x) ≤ α+ 1 and
1

l

l∑
x=1

η(x) ≤ α+ 1
}
, (4.17)

and consider φ0 > 0 such that Eµφ0 [η(0)] = ρ > α+ 1. For σ ∼ µφ0 , let

K(σ) = inf
{
n ∈ N, for all l ≥ n :

l∑
x=1

η(−x) ≤
l∑

x=1

σ(−x)
}
<∞ a.s..

With this definition we have j′(η, σ) ≤
∑K(σ)
x=−1 η(−x). Note moreover that for ξ ∈ Y ,

#{i ∈ Z, Xi,n < 0, X
(1,0)
i,n (t) ≥ 0} = N(t, ξn). Then, by (4.16) applied to η and σ, we get

Eη
n
[
e2λr ]

{
i∈Z, Xi,n<0, X

(1,0)
i,n (t)≥0

}]
≤ Eµφ0

[
e2λr

∑K(σ)
x=1 η(−x) e2λrN(t,σ)

]
.

By Cauchy-Schwarz again,

Eη
n
[
e2λr ]

{
i∈Z, Xi,n<0, X

(1,0)
i,n (t)≥0

}]
≤ Eµφ0

[
e4λr

∑K(σ)
x=1 η(−x)

] 1
2Eµφ0

[
e4λrN(t,σ)

] 1
2 .

By the fact that the invariant distribution µφ0
is a product measure, the occupation

number at the origin {σ(1,0)
s (0), s ≥ 0}, σ(1,0)

0 ∼ µφ0
, is a birth and death process at

equilibrium with constant birth rate φ0 = Eµφ0 [g(σ(−1))] (and death rate g(σ
(1,0)
s (0))).

Therefore
(
Nt := N(t, σ), t ≥ 0

)
is a Poisson process with intensity φ0, and finite

exponential moment
Eµφ0

[
e4rλNt

]
= eφ0(e4λr−1) t .

It remains to prove that Eµφ0
[
e4λr

∑K(σ)
x=1 η(−x)

]
<∞. We can bound K(σ) ≤ N0 + K̃(σ), if

N0 is as in (4.17) and we define

K̃(σ) = sup
{
k ∈ N,

k∑
x=1

σ(−x) ≤ (α+ 1)k
}
.

Then

Eµφ0
[
e4λr

∑K(σ)
x=1 η(−x)

]
≤ Eµφ0

[
e4λr

∑N0+K̃(σ)
x=1 η(−x)

]
≤ Eµφ0

[
eγ(N0+K̃(σ))

]
= eγN0Eµφ0

[
eγK̃(σ)

]
with γ := 4λr(α+ 1). By the inclusion of events

{K̃(σ) = k} ⊆

{
k∑
x=1

σ(−x) ≤ (α+ 1)k

}
,
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it remains to show that

∑
k

eγk µφ0

( k∑
x=1

σ(−x) ≤ (α+ 1)k
)
<∞,

but this follows from (3.12) if φ0 is large enough. Hence

sup
s∈[0,t]

Eη
n
[
g
(
ηn,(p,q)s (0)

)r]
is bounded uniformly in n, and the lemma follows by taking the limit n→∞.

Proof of Proposition 4.5. Let f : X → R be a bounded, local function with support A, de-
fine Ā :=

{
y ∈ Z, infx∈A ‖y − x‖ ≤ 1

}
. Hypothesis (4.8) and the graphical representation

described in §4 imply that for any x ∈ Z and t > 0 the process (ηs(x); s ≥ 0) has finitely
many jumps over [0, t+ 1], and

P η0
(
{ηt(x) 6= ηt−(x) or ηt(x) 6= ηt+(x) for some x ∈ Ā}

)
= 0.

Therefore P (lims→t Lf(ηs) = Lf(ηt)) = 1 ∀t ≥ 0. Since by (4.8) the random variables
g(ηs(x)), s ∈ [0, t+1] are uniformly integrable for any finite t, Eη0 [Lf(ηs)] is continuous in
s ∈ [0, t+ 1], and from (2.4) we conclude that Eη0 [f(ηt)] is differentiable with derivative

d

dt
Eη0 [f(ηt)] = Eη0

[
Lf(ηt)

]
,

which is the forward equation.

5 Alternative construction of the zero-range process

In this section we provide an alternative construction of the zero-range process again
under the assumption that the rate function g is non-decreasing. This construction is less
general than the construction of §3 and §4 in the sense that it places more restrictive
assumptions on the rate function g(n), for instance for dimension d and mean-zero,
finite-range jump dynamics it requires that sup1≤k≤n(g(k)− g(k − 1)) ≤ Cna with a < 2

d ,
see Corollary 2.6. On the other hand, it also works on dimensions greater than 1 and
does not require nearest neighbour jump probabilities.

We start with some definitions. Let {p(x, y)}x,y∈Zd be a family of translation invari-
ant transition probabilities and consider the continuous-time random walk (Xt; t ≥ 0)

generated by {p(x, y)}(x,y)∈Zd . Let Pz the law of (Xt; t ≥ 0) with initial condition X0 = z.
Let

τ0 := inf{t ≥ 0;Xt = 0}

be the hitting time of the origin by the random walk and let

Fz(t) := P z(τ0 ≤ t).

Notice that it may happen that τ0 = +∞ with positive probability. We recall some
notation from §2. Given η ∈ X and {xi}i∈N an enumeration of the particles of η, let

ηN (z) :=

N∑
i=1

1(xi = z), z ∈ Zd (5.1)

and
h(n) := sup

1≤j≤n
(g(j)− g(j − 1)).
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Finally, for η ∈ X, t ≥ 0 and z ∈ Zd we let

mz(t, η) =
∑
i∈N

Fxi−z(h(i)t).

Lemma 5.1. Let η0 ∈ X be an initial configuration of particles and let {xi0}i∈N be an
enumeration of the particles of η0. Let t ≥ 0 and z ∈ Zd. If mz(t, η0) is finite for any
z ∈ Zd, then ηs(x) <∞ for all s ∈ [0, t] and x ∈ Zd, and it satisfies

logE[eθηs(z)] ≤ (eθ − 1)mz(t, η0)

for any s ≤ t, any θ > 0 and any z ∈ Zd.

Proof. Note that the sequence of initial configurations {ηN0 }N∈N is increasing, and
therefore one can use the graphical representation to construct a sequence (ηNt ; t ≥ 0)

of zero-range processes with initial conditions ηN0 , such that ηNt (x) is increasing in N for
any t ≥ 0. Therefore, the limit

ηt(x) := lim
N→∞

ηNt (x)

exists in [0,∞]. By monotonicity this limit is the same as in (2.15). Our aim is to prove
that it is finite. For any N ∈ N and any t ≥ 0, ηNt and ηN+1

t differ in only one site
xN+1
t and by only one unit. Conditioned on the trajectory of (ηNt ; t ≥ 0), the process

(xN+1
t ; t ≥ 0) is a time-inhomogeneous random walk with transition rates

rN+1
t (x, y) = p(y − x)

[
g(ηNt (x) + 1)− g(ηNt (x))

]
and initial position xN+1

0 . Since the zero-range process ηNt has exactly N particles,

rN+1
t (x, y) ≤ p(y − x)h(N + 1).

In particular, (xNt ; t ≥ 0) can be coupled with a random walk (XN
t ; t ≥ 0) with transition

probabilities {p(z)}z∈Zd starting at xN0 in such a way that both walks visit exactly the
same sites in exactly the same order, and such that the walk (xNt ; t ≥ 0) always visits
sites after the walk (XN

h(N)t; t ≥ 0). Moreover, we can define these couplings in such a

way that the walks (XN
t ; t ≥ 0)N∈N are independent. Define

τNz := inf{t ≥ 0;XN
t = z}, τ̃Nz := inf{t ≥ 0;xNt = z}

and notice that

τ̃Nz ≥
τNz
h(N)

.

Now we observe that the number of particles at site z at time t is bounded by the number
of particles that passed by z up to time t. Therefore, for any z ∈ Zd and any N ∈ N,

ηNt (z) ≤
N∑
i=1

1(τ̃ iz ≤ t) ≤
N∑
i=1

1(τ iz ≤ h(i)t).

Taking expectations, we see that

Eη
N
0 [ηNs (z)] ≤

N∑
i=1

Fxi0−z(h(i)s) ≤ mz(s, η0) ≤ mz(t, η0).

Therefore, (ηs; 0 ≤ s ≤ t) is well defined. Notice that ηt satisfies

ηt(z) ≤
∑
i∈N

1(τ iz ≤ h(i)t).
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The RHS of this estimate is a sum of independent random variables with Bernoulli laws
of parameter pi = Fxi0−z(t). Therefore,

logEη0 [eθηt(z)] ≤
∑
i∈N

log(1 + pi(e
θ − 1)) ≤ (eθ − 1)mz(t, η0),

which finishes the proof of the lemma.

5.1 The martingale problem and the forward equation

In this section we show that under the conditions stated in Theorem 2.5, the process
constructed in Lemma 5.1 satisfies the martingale problem.

Proof of Theorem 2.5. Recall that according to Lemma 5.1, the process (ηt; 0 ≤ t ≤ T ) is
well defined as the increasing limit of the processes (ηNt ; 0 ≤ t ≤ T )N∈N, which are the
zero-range processes with initial configuration ηN0 given by (5.1). Since the process ηNt
has a finite number of particles, for any local, bounded function f : X → R,

MN
t (f) := f(ηNt )− f(ηN0 )−

∫ t

0

Lf(ηNs )ds

is a martingale. Since f is bounded, f(ηNt ) − f(ηN0 ) converges a.s. to f(ηt) − f(η0)

and also in Lp, for any p > 0. Let A ⊆ Zd be the support of f , that is, A is the
smallest subset of Zd such that f(η) = f(ξ) whenever η and ξ agree on A, and define
Ā = {y ∈ Zd, p(x−y) > 0 for some x ∈ A}. Since f is local and p(·, ·) is finite range, both
A and Ā are finite. We have that

Lf(η) =
∑
x,y∈A

p(y − x)g(η(x))
(
f(ηx,y)− f(η)

)
+

∑
x∈A,y/∈A

p(y − x)g(η(x))
(
f(η − δx)− f(η)

)
+
∑
x∈A

∑
y/∈A

p(x− y)g(η(y))
(
f(η + δx)− f(η)

)
,

where δx is the configuration with exactly one particle at site x and no particles at other
sites. From Lemma 5.1,

logEη
N
0 [g(ηNt (z))p] ≤ cp(epθ − 1)mz(t, η0)

for any 0 ≤ t ≤ T , any N ∈ N and any z ∈ Zd. From (2.18), this implies that there exists
a constant C = C(f, c, θ, p) such that

Eη
N
0 [|Lf(ηNt )|p] ≤ exp

{
C(eθp − 1) sup

z∈Ā
mz(T, η0)

}
for any 0 ≤ t ≤ T and any N ∈ N. This shows that

lim
N→∞

∫ t

0

Lf(ηNs )ds =

∫ t

0

Lf(ηs)ds

in Lp for all p > 1. Therefore the process

Mt(f) := lim
N→∞

MN
t (f)

is well defined and it is a martingale, as we wanted to show. Now (2.5) follows from an
argument analogous to the one applied to prove Proposition 4.5.
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5.2 Finite range random walks

Proof of Corollary 2.6. Since under condition a) or b) the rate function is bounded by
an exponential, we only need to show that (2.18) is satisfied. First note that under the
assumption

lim sup
m→∞

1

(2m+ 1)d

∑
‖x‖≤m

η0(x) ≤ ρ,

for any z ∈ Zd there exists an enumeration of the particles {xi0}i∈N and a positive
constant c = c(z) such that

‖xk0 − z‖ ≥ ck1/d (5.2)

for any k > η0(z). Let us obtain a generic bound for the probability Px(τ0 ≤ t). By
translation invariance,

Px(τ0 ≤ t) = P0(τ−x ≤ t),

where
τ−x := inf{t ≥ 0;Xt = −x},

so we can assume wlog that X0 = 0. We now proceed to show that (2.18) holds under
condition a). Since ∑

z∈Zd
zp(z) = 0,

the random walk (Xt; t ≥ 0) is a martingale. Therefore, by Doob’s inequality, for any
p > 1,

E0[ sup
0≤s≤t

‖Xs‖p] ≤ CpE0[‖Xt‖p].

Notice that

P0(τ−x ≤ t) ≤ P0
(

sup
0≤s≤t

‖Xs‖ ≥ ‖x‖) ≤
CpE

0[‖Xt‖p]
‖x‖p

.

On the other hand, a simple induction in p argument shows that if p ∈ N there exists a
constant C depending only on the transition probabilities {p(z)}z∈Zd and the exponent p
such that

E0[‖Xt‖p] ≤ Ctp/2.

This can then be extended to all p ∈ R, p ≥ 1 because by Jensen’s inequality for any real
valued random variable Y , [E(|Y |p)]1/p is increasing in p. We conclude that

P0(τ−x ≤ t) ≤
C ′pt

p/2

‖x‖p
. (5.3)

Therefore, by (5.2) and (5.3),

∑
k∈N

Fxk0−z(h(k)t) ≤ η0(z) +
∑

k>η0(z)

Ctp/2h(k)p/2

kp/d
.

Noting that condition a) implies that supn h(n)n−a <∞ and then taking p large enough
to satisfy a < 2

d −
2
p , we see that the above sum converges and (2.18) is satisfied.

To prove that condition b) implies (2.18) too, first note that from (5.2) and the finite
range condition on p(x, y), there exists a constant D such that for k large enough, the k-th
particle of our enumeration must jump at least Dk1/d times before reaching z. Therefore
Fxk0−z(h(k)t) is bounded above by

P
(
Z1 + · · ·+ ZbDk1/dc ≤ h(k)t

)
, (5.4)
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where the Zi’s are i.i.d. exponential random variables of parameter 1, and bDk1/dc
denotes the integer part of Dk1/d. Since condition b) implies that

lim
k→∞

h(k)

k1/d
= 0,

by exponential large deviation bounds the probability in (5.4) tends to 0 faster than
exp(−αk1/d) for some α > 0. Therefore

∑
k Fxk0−z(h(k)t) < ∞ and the proof of the

corollary is complete.

Remark 5.2. One could try to use a large deviations bound in order to improve the
estimate on the hitting time of the origin. This gives only a marginal improvement on
the class of rate functions for which our method applies. The idea is the following. If
h(n)� n2/d, then the event {τ0 ≤ h(n)t} is a large deviation under Px

n
0 , since the walk

does not have time to reach the origin in such a short time. By large deviations, we know
how to realize this rare event efficiently: we need to put a constant drift towards the
origin, in such a way that the walk arrives to the origin exactly at time t. A reasoning
along these lines will eventually lead to a sharp estimate, but this sharper estimate
does not allow to go beyond h(n) � n2/d. For h(n) � n2/d, this is no longer a large
deviations estimate, but an estimate on Green’s functions, since in that case, up to
time h(n)t the walk has time to explore a region of space that has the origin near its
center. Therefore, large deviations estimates may help to prove Corollary 2.6 for a rate

g(n) = n2/d

a(n) with a(n) ↑ +∞ slower than nδ for any δ > 0, but not to cross the threshold

n2/d, and fundamentally different techniques are needed to study faster growing rates.

Remark 5.3. For finite-range, asymmetric random walks, one can apply large deviation
bounds to improve condition b ) in Corollary 2.6. The particles that have a reasonable
chance to ever hit the origin belong to a curved cone of radius o(t1/2+ε), with vertex
at the origin and central ray in the direction opposed to the mean of the walk. The
number of points in this cone up to distance n from the origin is of order o(n

d+1
2 +(d−1)ε).

If {xn0 ;n ∈ N} is a labeling of the particles in the cone in increasing distance from the

origin, we have that ‖xn0‖ = O(n
2
d+1−ε

′
) for some ε′ > 0 that goes to 0 when ε → 0.

Therefore, part b) of Corollary 2.6 should hold under the condition supn g(n)n−a <∞ for
some a < 2

d+1 . Since the computations are very demanding and the result is not optimal,
we decided to exclude them from the article.

6 Open problems

We finish this paper stating some open problems.

1. Does equality hold in item ii) of Proposition 2.1?

2. By Proposition 2.1 we see there is a large class of initial configurations for which
the process does not explode. Are all configurations with a finite asymptotic density
in that class? Theorem 2.3 states that this is the case when p(x, y) corresponds
to a nearest neighbour one-dimensional random walk, but its proof cannot be
generalized and new ideas are required.

3. In the context of Theorem 2.4, does the integrated forward equation hold in the
symmetric case for any increasing function g(k)? Does the backward equation
hold if g(k) is bounded by an exponential? Regarding this last question, in [3] the
backward equation is proved up to some finite time t which depends on the initial
configuration when d = 1 and p(0, 1) = 1.
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