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a b s t r a c t

In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain
Ω , with Dirichlet boundary conditions. Our approach consists in considering sequences
of variable exponents converging uniformly to+∞ and analyzing how the corresponding
solutions of the problem converge and which equation is satisfied by the limit.
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1. Introduction

Our goal in this note is to look for the limit, as the exponent p(x)→∞, of solutions to{
−∆p(x)u(x) = 0, x ∈ Ω ⊂ RN ,
u(x) = f (x), x ∈ ∂Ω, (1.1)

where∆p(x)u(x) := div
(
|∇u(x)|p(x)−2∇u(x)

)
is the p(x)-Laplacian operator with a variable exponent p(x).

When p is constant in Ω , the limit of (1.1) as p → ∞ has been extensively studied in the literature (see [1] and the
survey [2]) and leads naturally to the infinity Laplacian

∆∞u :=
(
D2u∇u

)
· ∇u =

N∑
i,j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xixj

.

Infinity harmonic functions (solutions to−∆∞u = 0) solve the optimal Lipschitz extension problem (see [3] and the survey
paper [2]) and find applications in optimal transportation, image processing and tug-of-war games (see, e.g., [4–8] and the
references therein). On the other hand, problems related to PDEs involving variable exponents became popular a few years
ago due to applications in elasticity and the modeling of electrorheological fluids. Meanwhile, the underlying functional
analytical tools have been extensively developed (cf. [9,10]) and new applications to image processing have kept the subject
at the focus of an intensive research activity. Although a natural extension of the theory, the problem addressed here is a
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follow-up from a recent paper of the authors [11], where the case of a variable exponent that equals infinity in a subdomain
of Ω is treated. Closely related to this work is [12], where the authors prove existence and uniqueness (via a comparison
principle), as well as the validity of a Harnack inequality, for the solutions of our limit problem.
The approach in this paper is based on considering sequences pn(x) of variable exponents converging uniformly to+∞

and analyzing how the corresponding solutions of the problem converge and which equation is satisfied by the limit. Before
introducing our main result, let us state the assumptions on the data that will be assumed from now on.

• Ω ⊂ RN is a bounded smooth domain.
• f is a Lipschitz continuous function with Lipschitz constant less or equal than one.
• pn(x) is a sequence of C1 functions inΩ such that

pn(x)→+∞, uniformly inΩ; (1.2)
pn(x) ≥ α, for all x ∈ Ω; (1.3)
∇ ln pn(x) −→ ξ(x), uniformly inΩ, (1.4)

for a constant α > N and a function ξ ∈ C(Ω).

We now present some examples of possible sequences pn(x). In each case, some smoothness assumptions have to be
added, as well as conditions that guarantee that (1.3) holds. We are primarily interested in understanding (1.4) and hope
the examples shed some light on the meaning of this assumption.

(1) pn(x) = n; we have ξ = 0.
(2) pn(x) = p(x)+ n; we get again ξ = 0.
(3) pn(x) = np(x); we get a nontrivial vector field

ξ(x) = ∇(ln(p(x))).

This example is what motivates the study of the limit equation in [12].
(4) pn(x) = nap(x/n) [scaling in x]; in this case, we have

∇(ln pn(x)) =
∇p
p
(x/n)

1
n
−→ 0

and so ξ = 0. This also happens for pn(x) = n+ p(x/n).
(5) pn(x) = nap(nx); we get

∇(ln pn(x)) = n
∇p
p
(nx),

which does not have a limit as n→∞. The same happens with pn(x) = n+ p(nx), for which

∇(ln pn(x)) =
n∇p(nx)
n+ p(nx)

that does not have a uniform limit (although it is bounded).
(6) We can modify the previous example to get a nontrivial limit. Assume that q(x) is a function of the angular variable and
that 0 6∈ Ω; then consider pn(x) = n+ q(nx) to obtain

∇(ln pn(x)) = n
∇q(θ)
n+ q(nx)

−→ ∇q(θ).

(7) Finally, we can combine examples (3) and (6). Let pn(x) = np(x)+ q(nx), with q andΩ as in (6). We get

∇(ln pn(x)) =
n∇p(x)+ n∇q(θ)
np(x)+ q(nx)

−→
∇p(x)+∇q(θ)

p(x)
.

The following is the main result of this paper. We prove, under the above assumptions, that the limit of solutions of (1.1)
with p(x) = pn(x) exists and can be characterized as the unique viscosity solution of a PDE that involves the∞-Laplacian
and an extra term in which the vector field ξ(x) = limn ∇ ln pn(x) appears.

Theorem 1.1. Let un be the solution of (1.1) with p(x) = pn(x). Then

un −→ u, uniformly inΩ, (1.5)

where u is the unique viscosity solution of the problem{
−∆∞u− |∇u|2 ln |∇u|〈ξ,∇u〉 = 0, inΩ,
u = f , on ∂Ω. (1.6)



J.J. Manfredi et al. / Nonlinear Analysis 72 (2010) 309–315 311

Remark 1.2. Uniqueness of solutions to the limit problem (1.6) is a consequence of the results of [12]. See also [13].

Remark 1.3. Notice that we are taking F(0) = 0 for F(s) = s2 ln(s), hence (1.6) makes sense when evaluated at a test
function with vanishing gradient.

Remark 1.4. In dimension one, we get as the limit problem{
u′′(x)+ ln |u′(x)|〈ξ(x), u′(x)〉 = 0, x ∈ (0, 1),
u(0) = f (0), u(1) = f (1), (1.7)

which is uniquely and explicitly solvable. We just have to observe that we can assume, without loss of generality, that
f (0) = 0 (just consider v = u− f (0)) and f (1) > 0. Then we solve the equation as follows:

u′′(x)+ ln |u′(x)|〈ξ(x), u′(x)〉 = 0, x ∈ (0, 1)

is equivalent to∫ t

0

u′′(x)
ln |u′(x)|u′(x)

dx = −
∫ t

0
ξ(x)dx,

that is,∫ u′(t)

C

1
ln(z)z

dz = −
∫ t

0
ξ(x)dx = −H(t).

This gives

ln(ln(u′(t))) = (C − H(t))

and thus

u(x) =
∫ x

0
exp(exp(C − H(t)))dt.

Finally, we only have to choose C such that

f (1) =
∫ 1

0
exp(exp(C − H(t)))dt.

The rest of the paper is organized as follows: in Section 2 we collect some properties of the approximate problems and
in Section 3 we prove our main result, Theorem 1.1.

2. The approximate problem

We first consider the problem corresponding to (1.1) when p(x) is replaced by pn(x). For convenience, we refer to this
problem as (1.1)n.

Lemma 2.1. There exists a unique weak solution un to (1.1)n, which is the unique minimizer of the functional

Fn(u) =
∫
Ω

|∇u|pn(x)

pn(x)
dx (2.1)

in the set

Sn =
{
u ∈ W 1,pn(·)(Ω) : u|∂Ω = f

}
. (2.2)

Proof. Functions in the variable exponent Sobolev spaceW 1,pn(·)(Ω) are necessarily continuous thanks to the assumption
pn(x) ≥ α > N . Indeed, the continuous embedding in

W 1,pn(·)(Ω) ↪→ W 1,α(Ω) ⊂ C
(
Ω
)

(2.3)

follows from [9, Theorem 2.8 and (3.2)].
We can then take the boundary condition u|∂Ω = f in the classical sense (recall that f is assumed to be Lipschitz) and

the unique solvability is standard in view of the regularity of the variable exponent.
It is also standard that the minimizer of Fn in Sn is the unique weak solution of (1.1)n, i.e., un = f on ∂Ω and∫

Ω

|∇un|pn(x)−2∇un · ∇ϕdx = 0, ∀ϕ ∈ C∞0 (Ω). � (2.4)
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Let us now recall the definition of viscosity solution (cf. [14]) for a problem like (1.1) or (1.6). Assume we are given a
continuous functions

F : Ω × RN × SN×N → R.

Definition 2.2. Consider the problem

F(x,∇u,D2u) = 0 inΩ (2.5)

with a boundary condition

u = f on ∂Ω. (2.6)

A lower semi-continuous function u is a viscosity supersolution of (2.5) and (2.6) if u ≥ f on ∂Ω and for every φ ∈ C2(Ω)
such that u− φ has a strict minimum at the point x0 ∈ Ω , with u(x0) = φ(x0), we have

F(x0,∇φ(x0),D2φ(x0)) ≥ 0.

An upper semi-continuous function u is a viscosity subsolution of (2.5) and (2.6) if u ≤ f on ∂Ω and for every ψ ∈ C2(Ω)
such that u− ψ has a strict maximum at the point x0 ∈ Ω , with u(x0) = ψ(x0), we have

F(x0,∇ψ(x0),D2ψ(x0)) ≤ 0.

Finally, u is a viscosity solution if it is both a viscosity supersolution and a viscosity subsolution.

In the sequel, we will use the notation as in the definition: φ will always stand for a test function touching the graph of
u from below and ψ for a test function touching the graph of u from above.

Proposition 2.3. Let un be a continuous weak solution of (1.1)n. Then un is a viscosity solution of (1.1)n in the sense of
Definition 2.2.

Proof. The proof is contained in the proof of Proposition 2.4 in [11]. We reproduce it here for the sake of completeness and
readability.
We omit the subscript n in this proof. Let x0 ∈ Ω and a let φ be a test function such that u(x0) = φ(x0) and u− φ has a

strict minimum at x0. We want to show that

−∆p(x0)φ(x0) = −|∇φ(x0)|
p(x0)−2∆φ(x0)− (p(x0)− 2)|∇φ(x0)|p(x0)−4∆∞φ(x0)

− |∇φ(x0)|p(x0)−2 ln(|∇φ|)(x0) 〈∇φ(x0),∇p(x0)〉
≥ 0.

Assume, ad contrarium, that this is not the case; then there exists a radius r > 0 such that B(x0, r) ⊂ Ω and

−∆p(x)φ(x) = −|∇φ(x)|p(x)−2∆φ(x)− (p(x)− 2)|∇φ(x)|p(x)−4∆∞φ(x)

− |∇φ(x)|p(x)−2 ln(|∇φ|)(x)〈∇φ(x),∇p(x)〉
< 0,

for every x ∈ B(x0, r). Set

m = inf
|x−x0|=r

(u− φ)(x)

and letΦ(x) = φ(x)+m/2. This functionΦ verifiesΦ(x0) > u(x0) and

−∆p(x)Φ = −div(|∇Φ|p(x)−2∇Φ) < 0 in B(x0, r). (2.7)

Multiplying (2.7) by (Φ − u)+, which vanishes on the boundary of B(x0, r), we get∫
B(x0,r)∩{Φ>u}

|∇Φ|p(x)−2∇Φ · ∇(Φ − u)dx < 0.

On the other hand, taking (Φ − u)+, extended by zero outside B(x0, r), as test function in the weak formulation of (1.1)n,
we obtain∫

B(x0,r)∩{Φ>u}
|∇u|p(x)−2∇u · ∇(Φ − u)dx = 0.
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Upon subtraction and using a well known inequality, we conclude

0 >
∫
B(x0,r)∩{Φ>u}

(
|∇Φ|p(x)−2∇Φ − |∇u|p(x)−2∇u

)
· ∇(Φ − u)dx

≥ c
∫
B(x0,r)∩{Φ>u}

|∇Φ −∇u|p(x)dx,

a contradiction.
This proves that u is a viscosity supersolution. The proof that u is a viscosity subsolution runs as above and we omit the

details. �

We next obtain uniform estimates (independent of n) for the sequence (un)n.

Proposition 2.4. The minimizer of Fn in Sn, un, satisfies

Fn(un) =
∫
Ω

|∇un|pn(x)

pn(x)
dx ≤ |Ω|.

Hence, the sequence (Fn(un))n is uniformly bounded and the sequence (un)n is uniformly bounded inW 1,α(Ω) and equicontinuous.

Proof. Note that, since f has a Lipschitz constant less or equal than one, the set

S =
{
u ∈ W 1,∞(Ω) : ‖∇u‖L∞(Ω) ≤ 1 and u|∂Ω = f

}
(2.8)

is nonempty. Recalling (2.2), the definition of Sn, observe that S ⊂ Sn, for every n. Since un is a minimizer, we have

Fn(un) ≤ Fn(v), ∀v ∈ S.

Hence, picking an element v ∈ S 6= ∅,

Fn(un) =
∫
Ω

|∇un|pn(x)

pn(x)
dx ≤

∫
Ω

|∇v|pn(x)

pn(x)
dx ≤ |Ω|.

In order to estimate the Sobolev norm, we first use Poincaré inequality and the boundary data, to obtain

‖un‖W1,α(Ω) ≤ ‖un − f ‖W1,α0 (Ω)
+ ‖f ‖W1,α(Ω)

≤ C ‖∇(un − f )‖Lα(Ω) + ‖f ‖W1,∞(Ω)
≤ C ‖∇un‖Lα(Ω) + (C + 1)‖f ‖W1,∞(Ω).

Let us denote by p−n and p
+
n the minimum and the maximum of pn(x),

p−n = min
x∈Ω
pn(x), p+n = max

x∈Ω
pn(x).

Now, we proceed, using the Hölder inequality and elementary computations, to obtain

‖∇un‖Lα(Ω) =
(∫

Ω

|∇un|αdx
)1/α

≤ |Ω|
1
α−

1
p−n

(∫
Ω

|∇un|p
−
n dx

)1/p−n
≤ (1+ |Ω|)

|Ω| +
(
p+n

∫
Ω

|∇un|pn(x)

pn(x)
dx
)1/p−n 

≤ (1+ |Ω|)
{
|Ω| +

(
p+n Fn(un)

)1/p−n }
≤ (1+ |Ω|) |Ω|

{
1+

(
p+n
)1/p−n }

≤ C,

since we have the bound(
p+n
)1/p−n

≤ C (2.9)

due to assumption (1.4).
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Indeed, one can prove a Harnack inequality for a nonnegative function θ such that ∇ ln θ is bounded. For completeness,
we include here the argument. Suppose θ ≥ 0 and |∇ ln θ | ≤ K inΩ , and take arbitrary points x, y ∈ Ω . By the mean value
theorem,

ln
θ(x)
θ(y)
≤ |ln θ(x)− ln θ(y)| ≤ K |x− y|

and thus

θ(x)
θ(y)
≤ eK |x−y|.

SinceΩ is bounded,

θ(x) ≤ eK |x−y|θ(y) = Cθ(y).

Applying this reasoning to each pn, (2.9) follows from the uniform boundedness of |∇ ln pn|.
We conclude that (un)n is uniformly bounded in W 1,α(Ω) and, recalling the embedding in (2.3), that it is

equicontinuous. �

Remark 2.5. If f has Lipschitz constant greater than one then Fn(un) is unbounded, see [11].

3. Passing to the limit: Proof of Theorem 1.1

Owing to Proposition 2.4, it follows from Ascoli’s theorem, extracting a subsequence if necessary, that

un −→ u, uniformly inΩ,

for a certain continuous function u. Since un = f on ∂Ω we have that u = f on ∂Ω .
To prove that u is a viscosity supersolution of (1.6), let φ be such that u − φ has a strict local minimum at x0 ∈ Ω , with

φ(x0) = u(x0). We want to prove that

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉 ≥ 0. (3.1)

Since un → u uniformly, there is a sequence (xn)n such that xn → x0 and un − φ has a local minimum at xn. As un is a
viscosity solution of (1.1)n (cf. Proposition 2.3), we have

−
|∇φ(xn)|2∆φ(xn)
pn(xn)− 2

−∆∞φ(xn)− |∇φ(xn)|2 ln |∇φ(xn)|
〈
∇φ(xn),

∇pn(x)
pn(xn)− 2

〉
≥ 0.

Using the fact that xn → x0 and the assumptions (1.2) and (1.4), we obtain

|∇φ(xn)|2∆φ(xn)
pn(xn)− 2

−→ 0,

∆∞φ(xn) −→ ∆∞φ(x0),
|∇φ(xn)|2 ln(|∇φ(xn)|) −→ |∇φ(x0)|2 ln(|∇φ(x0)|),〈
∇φ(xn),

∇pn(x)
pn(xn)− 2

〉
−→ 〈∇φ(x0), ξ(x0)〉

and (3.1) follows.
This proves that u is a viscosity supersolution; the fact that it is also a viscosity subsolution follows analogously. �
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