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Abstract The solar wind is a structured and complex system, in which the fields vary
strongly over a wide range of spatial and temporal scales. As an example, the turbulent
activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or
correlation length [λ], usually associated with the breakpoint in the turbulent-energy spec-
trum that separates the inertial range from the injection range. This large variability of the
fields demands a statistical description of the solar wind. We study the probability distribu-
tion function (PDF) of the magnetic-autocorrelation lengths observed in the solar wind at
different distances from the Sun. We used observations from the Helios, ACE, and Ulysses
spacecraft. We distinguished between the usual solar wind and one of its transient compo-
nents (interplanetary coronal mass ejections, ICMEs), and also studied solar-wind samples
with low and high proton beta [βp]. We find that in the last three regimes the PDF of λ is
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a log-normal function, consistent with the multiplicative and nonlinear processes that take
place in the solar wind, the initial λ (before the Alfvénic point) being larger in ICMEs.

Keywords Magnetohydrodynamics · Turbulence · Magnetic fields, interplanetary ·
Solar wind, theory · Coronal mass ejections, interplanetary

1. Introduction

The solar wind (SW) is a very complex and structured system, where the fields are highly
variable over different temporal and spatial scales. However, despite its complexity, different
types of phenomena generally associated with different scales in the SW can be identified.

At the global scale, the SW steady expansion has direct consequences on the typical
length scales at which the bulk physical quantities that characterize the state of the system
vary (e.g. mass density, magnetic-field components, temperature). At a distance of between
0.3 astronomical unit (AU) and 5 AU from the Sun, these quantities typically decay as a
power law with a negative exponent of the order of one to three (Mariani and Neubauer,
1990). Then, at a distance D from the Sun, the steady expansion typical length scale can be
estimated as ≈D.

Furthermore, different transient phenomena with an origin at the solar surface disturb
the steady SW. An example of these SW transient structures is the phenomenon of fast
transient streams of plasma from coronal holes (Altschuler, Trotter, and Orrall, 1972) or
interplanetary coronal mass ejections (ICMEs), which have a magnetic topology radically
different from the steady SW (e.g. Dasso et al., 2005b). These composite structures (which
can contain several smaller sub-structures such as shock waves, plasma sheaths, etc.) are
meso-scale objects in the system, with a range of sizes that are some fraction of D.

In SW turbulence, the largest spatial scale of the inertial range can be approximated by
the turbulent integral scale [λ] (see Equation (3) for a proper definition), which is also a
proxy for the typical size of the “energy-containing eddies” (e.g. Matthaeus et al., 1994).
The inertial range extends from λ to much smaller scales, involving turbulent processes
along several orders of magnitude. It is very rich in non-linear processes (see for example
Coleman, 1968), combined with a high level of wave activity (see for example Belcher and
Davis, 1971). This complex turbulent activity affects the evolution of different aspects of
the SW fluctuations, such as the fluctuating intensity, the integral length [λ], the level of
Alfvénicity (Tu and Marsch, 1995), anisotropy (Matthaeus, Goldstein, and Roberts, 1990;
Dasso et al., 2005a; Ruiz et al., 2011). In particular, it is well known that λ increases with
heliocentric distance (Tu and Marsch, 1995). Near Earth, λ1 AU is ≈0.0079 AU (Matthaeus
et al., 2005), while λ10 AU is ≈0.046 AU in the SW near Saturn (Smith et al., 2001).

All of these physical phenomena, which are associated with significantly different spatial
scales, are coupled. For instance,

i) the decay of the total solar-wind pressure (determined by its steady-expansion scale)
plays the main role during the long-term interaction between magnetic clouds and their
environment (Démoulin and Dasso, 2009; Gulisano et al., 2010, 2012);

ii) the shear in the velocity profile (e.g. associated with CIRs or ICMEs) can produce insta-
bilities and introduce energy into the outer scales of the turbulent inertial range (Gold-
stein, Roberts, and Matthaeus, 1995); and

iii) turbulent properties control the drag on ICMEs and many other large-scale processes
(Matthaeus and Velli, 2011).
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An important entity for studying fluctuations of turbulent fields is the autocorrelation
function. For the magnetic field, the average trace of the two-point/two-time correlation
tensor is

R
([x, t], [r, τ ]) = 〈

b(x, t) · b(x + r, t + τ)
〉
, (1)

where b is the fluctuating component of B and [r, τ ] are the spatial and temporal lags,
respectively. We can drop the [x, t] dependence in Equation (1) if we assume stationarity and
homogeneity of the medium (Matthaeus and Goldstein, 1982; Bruno and Carbone, 2013).
Furthermore, we may assume the Taylor frozen-in-flow hypothesis (Taylor, 1938) to be
valid in the supersonic and super-Alfvénic SW; that is, the fluctuating fields are advected
past the spacecraft in a shorter time than their characteristic dynamical timescale. Then we
can ignore the intrinsic temporal dependence of the fluctuations in Equation (1), resulting in

R(r) = 〈
b(0) · b(r)

〉
. (2)

The spatial decorrelation of the turbulence can be characterized by the correlation length or
integral scale

λ =
∫ ∞

0 〈b(0) · b(r)〉dr

〈b2〉 . (3)

Conventionally, this typical length-scale is understood as being a measure of the size of the
turbulent energy-containing eddies in the flow (Batchelor, 1953). Moreover, λ can be linked
to the scale associated with the spectral break that separates the injection range (meso-scales)
from the inertial range: λ can be seen as a kind of spatial frontier between the two domains.

Any description of the complex SW physical system should be complemented by a statis-
tical description of the fields, since important information about turbulent systems resides at
a statistical level and, to this day, it is not possible to measure initial or boundary conditions
(Burlaga and Lazarus, 2000).

Log-normal distributions are frequent in nature across the different branches of science
(Limpert, Stahel, and Abbt, 2001), and are believed to be a consequence of multiplicative
processes (e.g. Montroll and Shlesinger, 1982). In particular, in the field of space and solar
physics, many authors have considered log-normal distributions when modeling quantities
of interest such as the Dst index (Campbell, 1996), the magnitude of the magnetic-field
fluctuations (Burlaga and Ness, 1998; Padhye, Smith, and Matthaeus, 2001), SW speed,
proton density and temperature (Burlaga and Lazarus, 2000), proton plasma β , and Alfvén
speed (Mullan and Smith, 2006).

As far as we know, the probability distribution functions (PDFs) of autocorrelation
lengths [λ] of the solar-wind fluctuating magnetic field have not been studied. Wicks,
Owens, and Horbury (2010) reported an asymmetric shape for the observed PDF of the cor-
relation lengths of the magnetic-field magnitude at 1 AU. Matthaeus and Goldstein (1986)
had theoretically postulated that λ is log-normally distributed. The authors explained that the
structures that initiate the cascade in the inertial range amplify their initial size [λ0] during
their transport into the SW from the solar surface, employing a mechanism of successive
magnetic-reconnection events to increase the size of magnetic structures. This occurs M

times each one by a factor (1 + ε), yielding a final size given by λ = λ0(1 + ε)M with λ the
correlation length of the fluctuations. If M is sufficiently large, the random variable ln(λ)

will be normally distributed and therefore λ log-normally distributed.
Thus, the discussion presented in this section motivates us to study λ in the SW and its

evolution. One of the main aims of this article is to provide an observational characterization
of the PDF of λ.
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2. Data and Procedure

We used the magnetic field and plasma observations collected by different spacecraft that
repeatedly explored the inner and outer heliosphere at different heliocentric distances [D].
In particular, we analysed in-situ solar-wind observations from the following four probes:
Helios 1 (H1), Helios 2 (H2), the Advanced Composition Explorer (ACE), and Ulysses. Our
H1 and H2 time series cover the period from December 1974 to June 1981, the temporal
cadence is 40 seconds and observations were made essentially on the ecliptic plane. Near-
Earth observations coming from the ACE spacecraft cover the period from February 1998
to March 2008, with a temporal cadence of one minute. Ulysses series range from Novem-
ber 1990 to May 2009, and the temporal cadence is one minute. We restricted our Ulysses
observations to the ecliptic plane by choosing heliocentric latitudes [θ ] such that |θ | < 30◦.

For each spacecraft (labeled s) we grouped the data into 24-hour-length intervals [I], thus
obtaining Ns

1 subseries (intervals). Because of the many gaps in the Helios data, we repeated
the procedure for H1 and H2 by shifting the data by 12 hours to obtain N

s=H1,H2
2 additional

intervals, thus maximizing Helios data usage.
We avoided samples with very low statistical significance by retaining only intervals that

encompassed at least the 30 % of the observations expected for the cadence mentioned for
each spacecraft.

We computed the magnetic correlation functions and respective correlation lengths as
follows: in each interval [I] and for each spacecraft [s], from the observed magnetic-field
time series [BI,s ] we constructed the magnetic fluctuations as bI,s = BI,s − BI,s

0 , with BI,s
0

a linear fit to BI,s data. Here we identified the fitted field [BI,s
0 ] with the local (within the

interval) estimate of the average magnetic field in an ensemble.
Next, we computed each correlation function [RI,s ] using the Blackman–Tukey tech-

nique in the same way as was done in Milano et al. (2004). Inside the Alfvénic point, the
different initial conditions will yield different initial values for R(0) = 〈b2〉 and for λ. Ac-
cordingly, to be able to compare intervals with different fluctuating amplitude, we normal-
ized the correlation functions as RI,s

norm = RI,s/R(0)I,s . For simplicity of notation, we drop
the labels norm and s hereafter.

Figure 1 in Ruiz et al. (2011) shows a typical correlation function in the inner heliosphere
that can be obtained with the Blackman–Tukey technique. Correlation functions in the outer
heliosphere have a similar shape.

A simple approximation that is often used to the shape of RI at large scales and in
the long-wavelength part of the inertial range is exponential decay R ≈ exp(−r/λ). This
approximation provides us with two methods to estimate the magnetic autocorrelation length
[λI ] in each interval. Method i) determines an estimate of λI

i as the value of the spatial lag
such that the decreasing function RI reaches exp(−1) for the first time, i.e. RI (λI

i ) = 1/e.
Method ii) consists of parametrizing the correlation function as ln(R) ≈ −r/λ. We estimated
λI

ii as minus the inverse of the slope obtained from a linear fit to ln(R) vs. r .
It is accepted that for steady turbulence, magnetic autocorrelation functions behave as

shown in Figure 1 in Ruiz et al. (2011). Departures from this shape can imply transient
events (e.g. large-scale current-sheet crossings).

Under the approximation R ≈ exp(−r/λ) for the autocorrelation functions, we find that
steady turbulent intervals are characterized by λI

i ≈ λI
ii, while intervals far away from steady

turbulence show values of λI
ii very different from λI

i . This allowed us to define a quality
factor [F ] of the correlation function, based on the two estimates of the correlation length.
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Figure 1 Histograms of the quality factor index [F ]. Dashed vertical lines indicate the position of the 20th
(left) and 80th (right) percentile. Panels (a), (b), and (c) correspond to H1 + H2, ACE, and Ulysses data,
respectively.

We defined this factor as

F s,I = λ
s,I
ii − λ

s,I
i

λ
s,I
ii + λ

s,I
i

.

Note that a small positive offset in F is expected because of the systematic differences in
method i) and ii) (see Ruiz et al., 2011).

Figure 1 shows the distribution of the quality factor index [F ] for the three missions
analysed in this article. We selected the best intervals based on the value of F in each
case by retaining only those that fulfilled the following two conditions: F values within the
interval higher than the value of the 20th percentile and those with F values lower than the
value of the 80th percentile. These are the intervals between the two dashed vertical lines in
Figure 1. Different ranges for F were explored, arriving at qualitatively similar results. The
main effect of modifying the F ranges is to vary the intervals considered for each spacecraft.

Finally, after the different selection criteria, our collection of usable data includes
Ns=U

1 =1976 for Ulysses, Ns=A
1 =1919 for ACE, and Ns=H1+H2

1 + Ns=H1+H2
2 = 846 for He-

lios, where s = H1 + H2 indicates that we have gathered H1 and H2 intervals into only one
data set representative of the inner heliosphere.

3. Evolution of λ with Heliocentric Distance and Nominal Ageing

Turbulent structures evolve and are advected by the solar wind throughout the heliosphere
with the SW velocity [VSW]. A key quantity for closing MHD turbulence models is the sim-
ilarity scale, usually identified with the correlation scale for the fluctuations. Observational
insight into the evolution of correlation lengths is useful when comparing with numerical
solutions or choosing proper boundary conditions.

The left panel of Figure 2 shows how the λ observed by Helios (triangles), ACE (squares),
and Ulysses (diamonds) evolves with heliocentric distance. The observations have been
grouped into bins of different width (�D = 0.14 AU for H1 + H2 data and �D = 0.4 AU
for Ulysses data), and each value of the vertical axis is the median of λ within the bin.

λ increases with heliocentric distance both in the inner and outer heliosphere, as has been
shown in previous observational works (e.g. Matthaeus, Smith, and Bieber, 1999; Bruno
et al., 2005, 2009; D’Amicis et al., 2010) and model calculations (e.g. Smith et al., 2001).
A least-squares fit to the data (dashed line) illustrates this behavior, yielding a power law
λ(D) = 0.89(D/1 AU)0.43 × 106 km. Other exponents for the power laws have been re-
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Figure 2 Observed λ versus heliocentric distance [D] (left panel) and versus the solar-wind age (right panel).
Bars show the error of the mean.

ported (e.g. Klein et al., 1992). Moreover, between 1 AU and 5 AU, the growth rate of λ

with heliocentric distance is �λ/�D ≈ 0.0015, which is very close to the predictions of the
model of Smith et al. (2001) with the strongest shear as the driver of the turbulence. In con-
trast, observations reported by D’Amicis et al. (2010) show a higher growth rate between
1 AU and 1.4 AU, �λ/�D ≈ 0.063, than observations reported here (�λ/�D ≈ 0.0023).
Nevertheless, while these authors observed fast (Alfvénic) solar wind, we observed mixed
fast and slow wind. Shear intensity is typically higher in the slow than in the fast solar
wind (McComas et al., 2003), and the more intense the shear is, the more slowly correla-
tion lengths increase. On the ecliptic plane, the slow wind is more frequently encountered
than the fast wind, so that slow SW properties are favored when computing averages. Other
authors have studied the evolution of turbulent fluctuations in fast polar wind (e.g. Bavas-
sano et al., 1982; Horbury et al., 1995, 1996). These authors showed that the breakpoint
wavenumber in high-latitude flows is smaller than that in low-latitude flows at similar helio-
centric distances, revealing that polar fluctuations are less evolved than ecliptic fluctuations.
Finally, this growth of λ is consistent with the shift towards low frequencies of the spectral
break (this concept was first introduced by Tu, Pu, and Wei, 1984), which separates the iner-
tial range from the large-scale injection range, revealing that non-linear interactions at large
heliocentric distances are still taking place.

While traveling throughout the heliosphere, turbulent structures will reach a spacecraft
located at D after a time ≈D/VSW. For each analysed interval [I], we computed what we
call the “age” of the interval I: T I = DI/V I

SW. Then T I corresponds to the nominal time it
takes a solar-wind parcel [I] moving at speed V I

SW to travel a given distance from the Sun to
the spacecraft located at DI .

The right panel of Figure 2 shows the evolution of λ with T . The observations have been
grouped into T -bins of different width (�T = 25 hours for H1 + H2 data, �T = 18 hours
for ACE and �T = 58 hours for Ulysses data), and each value of the vertical axis is the
median of λ within the bin.

Correlation lengths steadily grow with age until around ≈500 hours, but then they
seem to decrease. A least-squares fit to the data (dashed line) yields a power law λ(T ) =
0.10(T /1 hour)0.47 × 106 km. This globally increasing trend is consistent with numerical
simulations derived from models for MHD turbulence based on the Kármán and Howarth
HD approach (Oughton, Dmitruk, and Matthaeus, 2006).
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Figure 3 Observed histograms of λ. Panels (a), (b), and (c) correspond to H1 + H2, ACE, and Ulysses data,
respectively.

4. Characterization of the PDF of λ

In this section we characterize the distribution of correlation lengths of the solar-wind mag-
netic fluctuations on the ecliptic plane at three different distances from the Sun (i.e. three
different stations). To allow a clear distinction between the three data sets (i.e. between sta-
tions), we limited Helios observations to heliocentric distances between 0.3 AU and 0.7 AU,
and Ulysses observations to heliocentric distances between 3 AU and 5.3 AU.

Figure 3 presents the observed histograms of λ at each station. Heliocentric distance in-
creases from left to right: panels a, b, and c corresponding to H1 + H2, ACE, and Ulysses
data, respectively. As the heliocentric distance increases, the bins at the right become pro-
gressively occupied. In each case, the distribution is clearly asymmetric with a long tail on
the right side. This long tail is evidence of non-linear interactions and multiplicative pro-
cesses, and motivated us to explore the hypothesis of a log-normal PDF for λ.

Since normal and log-normal distributions are related (see Appendix A), we performed a
statistical analysis on ln(λ) by computing the different moments of the histogram of ln(λ),
and then used Equations (7) (Appendix A) for the statistics of λ.

Moments of higher order than the variance will become of interest since we wish to study
how the distribution of ln(λ) deviates from Gaussianity. The third, fourth, and sixth central
moments of a probability distribution function are defined as follows:

γ = E[(x − μ)3]
σ 3

, K = E[(x − μ)4]
σ 4

, M6 = E[(x − μ)6]
σ 6

, (4)

where E means expectation value, x a random variable, μ its expectation value, and σ its
standard deviation. All odd central moments for a symmetric distribution are zero. Then
any non-vanishing odd central moment can be taken as a measure of asymmetry of the
distribution. Positive values of the skewness [γ ] indicate that the distribution has a longer
tail to the right of the mean value, while negative values indicate a longer tail to the left. The
moments K and M6 are useful to compare with the Gaussian distribution, for which K = 3
and M6 = 15. Any distribution with a K larger (smaller) than 3 will be higher (lower) than
a Gaussian distribution with the same mean and variance. The information on how the tails
of the distribution fall is contained in M6. Values of M6 higher than 15 indicate more slowly
decreasing tails and lower values more rapidly decreasing tails than a Gaussian distribution.

Figure 4 presents the histograms of ln(λ), together with a non-linear least-squares fit
to the data of a Gaussian trial function. There are empty bins at the left of the histogram
in panel a. This is due to the interval selection procedure followed in the present work.
The definition of the quality factor [F ] depends explicitly on λii calculated through a linear
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Figure 4 Histograms of ln(λ) and non-linear least-square fit. Panels a, b, and c correspond to H1 + H2,
ACE, and Ulysses data, respectively.

Table 1 Statistical parameters of
ln(λ[km]) distributions shown in
Figure 4. First panel: values from
the observed PDF. Second panel:
values from the non-linear
least-squares fit. The third panel
is a comparison between the first
two. We also show in panel 4 the
Pv from the KS goodness-of-fit
test. The number of intervals
analysed in each case is reported
in the last row.

H1 + H2 ACE Ulysses

Panel 1: From observations

μ 13.42 13.78 14.43

σ 2 0.47 0.30 0.19

γ 0.21 0.35 0.04

K 2.49 2.79 2.94

M6 9.75 12.40 12.71

m (×106 km) 0.85 1.12 2.03

m∗(×106 km) 0.67 0.97 1.85

Panel 2: From non-linear fit to data

μ 13.39 13.78 14.43

σ 2 0.56 0.32 0.20

m (×106 km) 0.86 1.13 2.04

m∗(×106 km) 0.65 0.96 1.84

dof 18 15 19

χ2 17.70 60.19 23.5

Panel 3: Comparing panel 1 with panel 2

μP1/μP2 1.002 1 1

σ 2
P1/σ 2

P2 0.84 0.94 0.95

mP1/mP2 0.99 0.99 0.995

m∗
P1/m∗

P2 1.03 1.01 1.01

Panel 4: JB goodness-of-fit test

Pv 0.06 <0.01 0.71

# of intervals 291 1919 1731

fit to ln(R) ≈ −r/λ. Because of the available temporal cadence, it is not possible to fit a
straight line for very rapidly decreasing correlation functions since there is only one point
available in the region of interest. These cases, which fill the bins to the left, were flagged
and excluded from the analysis.

Table 1 shows the relevant statistical parameters of the distributions of λ (see Figure 3)
and ln(λ) (see Figure 4).
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The first panel presents the moments of the observed ln(λ) distribution, obtained directly
from the data: mean [μ] and variance [σ 2], skewness [γ ], kurtosis [K], and sixth central
moment [M6]. We included the mean value [m] and median [m∗] of the λ distribution (Fig-
ure 3) obtained from Equations (7).

The second panel presents the values of the parameters returned by the non-linear least-
square fits to the data: mean [μ] and variance [σ 2], number of degrees of freedom [dof],
minimum [χ2], and mean [m], and median [m∗] of the λ distribution. A comparison be-
tween the moments obtained from data and those obtained through the fits is shown in the
third panel, where we report the ratios between panel 1 (P1) and panel 2 (P2) quantities.
As expected, values obtained directly from the data and values obtained from the fitting
procedure are remarkably similar.

The number of intervals [I ] considered in each case is shown in the last row of Table 1.
As D increases, moments (from observations and from fits) evolve to have the same

values (panel 3 of Table 1), the fourth and sixth central moments show a trend to reach
the values expected for a Gaussian distribution, and the variance decreases. The skewness
does not show a definite trend, but nevertheless, it does not depart too much from the zero
expected for a symmetric distribution.

5. Hypothesis Testing

Histograms and the different moments of the observed ln(λ) distribution are useful for char-
acterizing the asymptotic PDF and, although they may quantify deviations from Gaussianity,
they are not enough to give conclusive evidence whether the model, log-normal PDF of λ,
is appropriate or not. We therefore employed a more formal method, the Jarque–Bera (JB)
goodness-of-fit hypothesis test (Jarque and Bera, 1980; Thadewald and Büning, 2007), to
support and complement the graphical methods presented in Section 4.

The JB test is useful to check the normality assumption, that is, to test the hypothesis H0

that the random variable ln(λ) is drawn from a normal distribution function with unknown
mean and unknown variance, against an alternative hypothesis that ln(λ) does not come
from a normal distribution. This test is suitable when the hypothesized distribution is not
known and its parameters (mean and variance) have to be estimated.

The test statistic [ξJB] is defined as

ξJB = n

6

(
γ 2 + (K − 3)2

4

)
, (5)

where n is the number of data points, γ is the sample skewness, and K is the sample kurtosis;
ξJB is asymptotically χ2 distributed with two degrees of freedom (Jarque and Bera, 1980).
We emphasize that for the normal distribution the skewness and kurtosis are quantities with
defined values.

At each spatial station, we independently implemented the JB test on ln(λ), assuming
that its PDF is Gaussian. We used the built-in MatLab function and tested the hypothesis at
a (conventional) 0.05 significance level [α] (e.g. Frodesen, Skjeggestad, and Tofte, 1979).
Results are presented in the fourth panel of Table 1 in terms of the P -value [Pv] (the largest
α that can be tolerated without rejecting H0): values of Pv higher than α indicate that we
accept the H0, otherwise H0 should be rejected (see Appendix B).

The values of Pv obtained for H1 + H2 and Ulysses data sets, Pv = 0.06 and Pv = 0.71
respectively, are strong evidence supporting the hypothesis, thus we may accept that mag-
netic autocorrelation lengths have a log-normal distribution at a 0.06 and 0.71 significance
level for H1 + H2 and Ulysses, respectively.
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Figure 5 Plot of observed λ versus heliocentric distance for low-βp and high-βp regimes.

To understand this better, suppose we again measure correlation lengths in the inner he-
liosphere and present the data in a histogram. With this hypothesis being true, the probability
of obtaining a histogram of ln(λ) like, or worse than, the one presented here (Figure 4a) is
given by Pv, that is, a probability of 6 %. For the outer heliosphere, the result is even better,
since the probability of obtaining a histogram like, or worse than, the one in Figure 4c is
higher, meaning that the one reported here is one of the best.

Although the results for the ACE data are qualitatively good, quantitative evidence, stated
through Pv, is not sufficient to conclude that the λ-distribution is log-normal. We revisit this
issue in the next section.

6. Low and High Proton βp

In the previous section, the data employed in the analysis were selected for latitude and
data quality, but not according to values of plasma parameters. Here we include an analysis
based on a familiar parameter, the proton βp. In the SW dynamics, high or low values of
βp (proton kinetic pressure/magnetic pressure) indicate the dominant role of the gas or the
magnetic field, respectively.

In low- and high-βp regimes different wave modes can be triggered. There are also rela-
tions between βp and, for example, temperature anisotropy, which introduce constraints to
the system and determine the properties of the instabilities in space-plasma conditions (e.g.
Bale et al., 2009). Thus, βp is a parameter that plays a key role in the regulation of wave
propagation and the triggering of instabilities in the SW.

In this section we investigate in more detail the statistics of correlation lengths when
subdividing the sample into two groups with high and low values of βp.

As limiting βp values we chose βp = 0.4 to define a low-βp regime, and βp = 0.7 for
the high-βp regime, to allow a clear division between the sets while keeping a statistically
significant amount of data.

Figures 5 and 6 show how correlation lengths grow with heliocentric distance and age
in both regimes: βp < 0.4 and βp > 0.7. We grouped the observations into bins of helio-
centric distance of different widths: �D = 0.17 AU for H1 + H2 data and �D = 0.85 AU
for Ulysses data; and into bins according to turbulence age of widths �T = 28 hours, 16
hours, and 125 hours for H1 + H2, ACE, and Ulysses, respectively. A least-squares fit to
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Figure 6 Plot of observed λ versus solar-wind age for low-βp and high-βp regimes.

Figure 7 Non-linear least-square fit for high-β (solid line) and low-β (dashed line) samples. Panels a, b,
and c correspond to H1 + H2, ACE, and Ulysses data. The dash–dotted line in panel b corresponds to the
non-linear least-square fit for ICMEs (see Section 7).

the data yields a power-law increase in each case; see inset in Figures 5 and 6. It seems that
observations of λ are better ordered for βp > 0.7 and with T .

In Figure 7 we present the non-linear least-square fit to the distributions of ln(λ) for the
low-βp and high-βp groups together. Here, each of the Gaussian fits is normalized by the
total area, and therefore the value of the ordinate represents a probability density. Again,
heliocentric distance increases from left to right, each panel corresponding to H1 + H2,
ACE, and Ulysses observations. The ln(λ) distribution for the low-βp plasma is wider and
is displaced to the right when compared with the high-βp plasma samples. Table 2 shows
the relevant statistical parameters of the distributions shown in Figure 7. It has the same
structure as Table 1: the first panel presents the moments obtained directly from the data
while the fitting parameters are listed in the second panel. The third panel compares results
reported in panels 1 and 2.

For both regimes, we again find that correlation lengths grow with increasing heliocentric
distance. Moreover, we find that both populations grow approximately at the same rate, with
the mean correlation length in the low-βp plasma being 1.5 times higher than the mean λ

in high-βp plasma at Helios heliocentric distances, and diminishing to a ratio of 1.2 in the
outer heliosphere.

We also performed a JB test on the three low-βp and three high-βp groups of correlation
lengths to test whether the distributions of λ are consistent with a log-normal distribution
when we separate the observations into these two regimes. The test was performed on the
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Table 2 Characterization of λ distribution for low- and high-βp regimes and ICMEs observed only by ACE.

βp <0.4 βp >0.7 ICMEs

H1 + H2 ACE Ulysses H1 + H2 ACE Ulysses ACE

Panel 1: From observations

μ 13.57 13.98 14.55 13.35 13.68 14.42 14.52

σ 2 0.61 0.35 0.24 0.32 0.20 0.17 0.53

γ 0.13 0.07 −0.17 0.41 0.18 0.10 −0.16

K 1.96 2.58 2.65 2.61 2.62 3.11 3.08

M6 4.88 10.10 11.57 8.88 10.33 15.27 14.00

m (×106 km) 1.06 1.40 2.35 0.74 0.97 1.99 2.33

m∗ (×106 km) 0.78 1.18 2.08 0.63 0.87 1.83 2.03

Panel 2: From non-linear fit to data

μ 13.54 13.97 14.55 13.32 13.65 14.43 14.50

σ 2 0.83 0.38 0.26 0.42 0.22 0.18 0.59

m (×106 km) 1.15 1.41 2.37 0.75 0.95 2.02 2.36

m∗ (×106 km) 0.78 1.17 2.08 0.61 0.85 1.85 1.98

dof 19 19 19 19 19 19 17

χ2 18 24 17.6 19 19 20.6 21

Panel 3: Comparison between panels 1 (P1) and 2 (P2)

μP1/μP2 1.002 1.001 1 1.002 1.002 0.999 1.00

σ 2
P1/σ 2

P2 0.73 0.92 0.92 0.76 0.91 0.94 0.90

mP1/mP2 0.923 0.99 0.99 0.99 1.02 0.99 0.99

m∗
P1/m∗

P2 1 1.01 1 1.03 1.02 0.99 1.03

Panel 4: JB goodness-of-fit test

Pv 0.06 0.06 0.10 0.14 0.08 0.36 0.29

# of intervals 101 675 409 85 405 872 119

ln(λ) distributions, and the Pv values obtained are listed in the fourth panel of Table 2.
The values of Pv, 0.06, 0.06, and 0.10 in the low-β regime, and 0.14, 0.08, and 0.36 in the
high-βp regime for H1 + H2, ACE, and Ulysses (all of them greater than α) indicate that the
hypothesis “correlation lengths are log-normally distributed in low-βp SW and in high-βp

SW” can be accepted in all six cases at the respective Pv significance. Note that the results
for ACE are greatly improved compared with those of the last section, which did not sort the
data by βp. Here we see that low-βp and high-βp populations observed by ACE spacecraft
are slightly separated, more than for Helios and Ulysses data, being the JB test sensitive to
this separation.

7. Interplanetary Coronal Mass Ejections

A typical example in the SW of low βp are magnetic clouds (MCs), transient regions ob-
served to have a smooth rotation of the magnetic-field direction, a magnetic-field strength
higher than average SW, low proton temperature and thus low βp compared with the ambi-
ent SW. Typical values for βp at 1 AU for ambient SW are ≈0.6 (Mullan and Smith, 2006),
while in clouds βp is typically around 0.1 (Lepping et al., 2003). Moreover, they have lower
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turbulence levels and different turbulent properties (e.g. Dasso, Gratton, and Farrugia, 2003;
Matthaeus et al., 2008).

MCs are a subset of ICMEs that are also characterized by abnormally low proton tem-
peratures, bidirectional streaming of suprathermal electrons and energetic ions, enhanced
helium abundance, strong magnetic fields with smooth field rotations, etc. (e.g. Neugebauer
and Goldstein, 1997, and references therein).

To study the distribution of correlation lengths in this transient component of the SW, we
employed the defining criterion by Richardson and Cane (1995) and retained the intervals
that showed an observed temperature lower than one-half of the expected temperature for
usual SW (Lopez and Freeman, 1986; Démoulin, 2009). Since the analysis of this transient
component reduces the amount of available data significantly, we used only ACE data and
broadened the range of F to 5th – 95th percentiles to increase the number of intervals to be
analysed.

The non-linear least-square fit to the distribution of ln(λ) in this transient regime is shown
in Figure 7b as a dash–dotted line. The Gaussian fit was also normalized by the total area to
facilitate comparison. The ln(λ) distribution for the transient regime is also wider than the
high-βp plasma samples and is even more displaced to the right when compared with the
low-βp. The JB test return a P-value equal to 0.29 giving good evidence that supports the
hypothesis that “correlation lengths in ICMEs follow a log-normal PDF”. The last column
in Table 2 shows the statistical parameters for this distribution.

Correlation lengths in ICMEs at 1 AU have a distribution similar to that of low-βp plasma,
but with a greater mean (see Table 2).

8. Summary, Discussion, and Conclusions

The spatial scales associated with the correlation length [λ] are related to the breakpoint in
the spectrum, which separates the inertial range from the injection (low-frequency) range
associated with large-scale structures in the SW (e.g. presence of velocity shear). During the
expansion of the wind, this breakpoint moves to the lower-frequency part of the spectrum
(Tu, Pu, and Wei, 1984; Bruno et al., 2005).

We have analysed Helios 1 and 2, ACE, and Ulysses magnetic observations, restricted
to the ecliptic plane for different heliocentric distances [D]. From these observations, we
characterized the distributions of λ in the solar wind, in low and high proton β SW regimes,
and in ICMEs at 1 AU. We quantitatively investigated the hypothesis that the PDF of λ is
log-normal.

In particular, we fitted the two free parameters of a normal distribution to the observed
PDF of ln(λ). Qualitatively and with respect to the fitted parameters, all of the samples
appear to be reasonably well described by a log-normal distribution. Then we applied the
Jarque–Bera goodness-of-fit test to quantify departures from log-normality of the PDFs.
We find clear evidence (i.e., Pv > α = 0.05) in favor of concluding that λ is log-normally
distributed for H1 + H2 and Ulysses data. On the other hand, evidence is not so conclusive
for ACE data: such a low Pv indicates that we should reject the hypothesis.

We also studied the distribution of correlation lengths in low-βp and high-βp SW regimes
and estimated moments of the distribution. In each case, moments of ln(λ) evolve towards
what is expected for a Gaussian PDF. Evaluation of the hypothesis of a normal distribution
for ln(λ) by means of the JB test yielded Pv > α = 0.05 in all cases. We conclude that the
distribution of magnetic-correlation lengths can be regarded as log-normal when considering
individually the low-βp and high-βp solar-wind regimes. Evidently, the conclusion is now
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equally strong for all three spacecraft; the identification of a log-normal distribution in the
ACE analysis is much more conclusive when the data were sorted by proton β.

Furthermore, the λ-distribution for the high-βp plasma is narrower and displaced to the
left with respect to the low-βp case. While in the former regime the fluctuating amplitude
is larger than in the latter, correlation lengths take lower values in the former (high-βp sam-
ple), contrary to what is expected from MHD turbulence theories such as the Kármán and
Howarth HD approach (von Kármán and Howarth, 1938). We interpret this behavior of λ

as a consequence of the different initial conditions of the magnetic-field fluctuations at the
solar corona for the two types of solar wind, with the initial λ in high-βp being lower than
in the low-βp SW.

In addition to its stationary component, the SW has several transient components, of
which ICMEs are an example. We separated this transient component (only at 1 AU) from
the usual SW, retaining intervals with an observed temperature lower than one-half of the
expected temperature for usual SW (Richardson and Cane, 1995). The distribution of λ is
similar to but displaced to the right with respect to the low-βp case. The JB test yields a large
Pv in this case, so the hypothesis of a log-normal PDF for λ can be again accepted.

The PDF of λ evolves with the distance to the Sun. For larger heliocentric distances
we found a narrower distribution (a decreasing σ 2 with D), and nearer to a log-normal
distribution of λ. Table 1 showed that for increasing heliocentric distance, the moments
of the PDF of ln(λ) [γ , K , and M6] tend progressively to values expected for a normal
distribution. This result is consistent with multiplicative processes involving λ occurring
in the solar wind, and a consequent relaxation to a log-normal PDF. We confirmed that λ

increases with the heliocentric distance [D] and with the nominal SW ageing [T = D/VSW],
and found that λ(D) = 0.89(D/1 AU)0.43 × 106 km and λ(T ) = 0.11(T /1 hour)0.47 × 106

km, for the ranges [0.3 – 5.3] AU and [30 – 670] hours, respectively. We find this overall
behavior also in the low-βp and high-βp regimes: λ grows with D and T in both cases.

In the near-ecliptic structured solar wind, fluctuations of the magnetic field are present
over a wide range of spatial and temporal scales. These multi-scale structures partially orig-
inate at the Sun and evolve because of the local turbulent dynamics in the solar wind. In this
context we infer that near the Sun, before the Alfvénic critical point, λ follows a log-normal
probability distribution function in both high-βp and low-βp solar wind, whose parameters
continue to evolve because of the solar-wind turbulent dynamics. The distribution remains
approximately log-normal, and evolves more precisely towards this form via multiplicative
processes in the turbulent solar wind.
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Appendix A: Log-Normal PDFs

A probability distribution function (PDF) of variable x is said to be log-normal if

y = fL(x | μ,σ) = 1

xσ
√

2π
exp

[
− (ln(x) − μ)2

2σ 2

]
. (6)

The Gaussian (or normal) distribution and the log-normal distribution are related. Let Y be
a random variable log-normally distributed with parameters μ and σ , then x = ln(Y ) will
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be a random variable normally distributed with mean μ and standard deviation σ . The mean
[m], median [m∗], and variance [var] of Y are functions of the parameters μ and σ (Mood,
Graybill, and Boes, 1974) given by

m = exp

(
μ + σ 2

2

)
, m∗ = exp (μ), var = [

exp
(
σ 2

) − 1
]

exp
(
2μ + σ 2

)
, (7)

and μ and σ are the mean and standard deviation of x = ln(Y ) (normally distributed).
Log-normal forms are a possible fit when the distribution of a positive-definite random

variable has a low mean, large variance, and is asymmetric with a long tail to high values,
higher than the mean value (Limpert, Stahel, and Abbt, 2001). Log-normal PDFs are usu-
ally encountered when the observable variable results from a large number of independent
processes operating simultaneously. The long tail exhibits non-linear interactions and mul-
tiplicative processes, thus making the log-normal PDF suitable for the description of highly
variable observations.

Appendix B: Goodness-of-Fit Hypothesis Test and P -Value

When fitting a statistical model to observed data, one may wish to know how well the model
actually reflects the observations. That is, how close are the observed values to those ex-
pected from the fitted model? There are statistical hypothesis tests that address this question.

Any hypothesis test uses a statistic ξ , namely a certain quantity calculated from the data
whose probability distribution function [f ] is known, assuming that the hypothesis to be
tested is true. In the particular case of the Jarque–Bera (Jarque and Bera, 1980) test, ξJB was

already introduced in Equation (5): ξJB = n
6 (γ 2 + (K−3)2

4 ). To accept or reject the hypothesis,
we need a decision rule. If the computed ξobs is higher than a critical value ξcritical (chosen a
priori), then the observed and expected values are not close enough and the model is a poor
fit to the data.

One can state the decision rule in probabilistic terms. The probability of rejecting a true
hypothesis is the significance [α]

α =
∫ ∞

ξcritical

f (ξ)dξ. (8)

Stated in this way, α determines the critical value [ξcritical] of the statistic in use (Frodesen,
Skjeggestad, and Tofte, 1979). Then, if after conducting the test, our ξ yields an observed
value ξobs higher than ξcritical (i.e. ξobs > ξcritical), we should reject our hypothesis. Increasing
α will increase the probability of incorrectly rejecting the hypothesis when it is true.

However, it is even more convenient to calculate the P -value Pv, defined, assuming the
hypothesis to be true, as

Pv =
∫ ∞

ξobs

f (ξ)dξ. (9)

The P -value is the highest value of α that we can obtain from the test such that we do not
reject the null hypothesis (Frodesen, Skjeggestad, and Tofte, 1979). Statistically speaking,
the P -value is the probability of obtaining a result as extreme as, or more extreme than, the
result actually obtained when the null hypothesis is true. The P -value (obtained for ξobs) can
be understood as follows: if we perform another experiment, which yields another observed
value of the statistic ξ ′

obs, then Pv is the probability that ξ ′
obs is higher than ξobs assuming that

the null hypothesis is true. The P -value measures the strength of the evidence in support of
a null hypothesis.
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