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Abstract
The South American Transition Zone (SATZ) is a biogeographic area in which not only orog-

eny (Andes uplift) and climate events (aridification) since the mid-Miocene, but also Quater-

nary glaciation cycles had an important impact on the evolutionary history of the local flora.

To study this effect, we selectedMunroa argentina, an annual grass distributed in the bio-

geographic provinces of Puna, Prepuna and Monte. We collected 152 individuals from 20

localities throughout the species’ range, ran genetic and demographic analyses, and

applied ecological niche modeling. Phylogenetic and population genetic analyses based on

cpDNA and AFLP data identified three phylogroups that correspond to the previously identi-

fied subregions within the SATZ. Molecular dating suggests thatM. argentina has inhabited
the SATZ since approximately 3.4 (4.2–1.2) Ma and paleomodels predict suitable climate in

these areas during the Interglacial period and the Last Glacial Maximum. We conclude that

the current distribution ofM. argentina resulted from the fragmentation of its once continu-

ous range and that climate oscillations promoted ecological differences that favored isola-

tion by creating habitat discontinuity.

Introduction
The uplift of the Andes in the Neogene had a strong impact on the evolutionary history of
South American biota [1–3]. The rise occurred in discrete periods, progressing from south to
north and from west to east [1–5]; once formed, this mountain chain became the sole barrier to
atmospheric circulation in the Southern Hemisphere [3,5]. There were two major uplift events,
one during the middle Miocene (12 Ma) and the other at the beginning of the Pliocene (5 Ma;
[6]). Recent phylogeographic studies have shown that the Andean uplift both created a
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dispersal route for lineages of organisms and also acted as an evolutionary force favoring rapid
diversification via allopatric speciation, habitat fragmentation, and ecological displacement
into several habitats including highland and montane forests, and arid and semiarid vegetation
[7–18]. The rain shadows resulting from the uplift affected climate [19,20] and formed a nar-
row region with scant precipitation (<300 mm/year) known as the Arid Diagonal [21] or as
the South American Transition Zone (SATZ) [22–25]. Based on the distribution patterns of a
number of plant and animal groups, this zone has been subdivided into six biogeographic prov-
inces: North Andean Paramo, Puna, Coastal Peruvian Desert, Atacama, Prepuna, and Monte
[22,25].

Late Neogene and Quaternary climate oscillations that involved several ice age cycles influ-
enced species and community distribution patterns on Earth, and although aridification
occurred mainly during the Pliocene, fluctuations in climate during the Pleistocene also con-
tributed to the expansion of arid and semiarid regions in South America [7,8,26–33]. These
environmental changes also had an effect on microevolutionary processes in species by influ-
encing gene flow, causing demographic expansion/contraction, and by creating genetic bottle-
necks [34]. The role of climate oscillations in the evolutionary history of organisms, including
the survival of species in refugia, changes in population number, size and genetic variation, and
tempo and mode of recolonization, has been documented for North American taxa [15,35–40].
However, far less is known for plant species in the arid-temperate regions of the Southern
Hemisphere [41]. Only the southern areas of South America and New Zealand are in geo-
graphic positions comparable to the glaciated areas in the Northern Hemisphere. Glaciers in
the Southern Hemisphere were mostly restricted to mountain ranges, but at low and middle
latitudes, lower average temperatures and variable precipitation regimes probably influenced
all types of vegetation as well [42–47].

Recent studies on the evolutionary history of animal and plant taxa in the SATZ provinces
[7,32,33,42–49] suggest that their evolutionary processes are more strongly associated with the
aridification processes that gave rise to the SATZ, and to the final uplifting of the Southern
Andes (5 Ma) than with Quaternary glaciation (1 Ma–15 Ka). In fact, these geological events
produced remarkable climatic and landscape changes that promoted habitat fragmentation,
inter- and intraspecific differentiation, demographic reduction/expansion and genetic bottle-
necks in the different groups of organisms inhabiting the SATZ [33,44]. Of the few studies
focusing on understanding the effects of the Late Neogene and Quaternary climate oscillations
that occurred in plant species of the SATZ [7,15,41,42,44], three have concentrated on peren-
nial South American species ofHordeum [15,39,42], and identified a recent divergence in the
Late Pleistocene [15,42]. Therefore they focused solely on understanding responses to Quater-
nary climatic oscillations, their results however did not find a clear pattern either of expansion
or contraction of their distribution ranges [15,42].

To better understand the effect of not only the Quaternary climate oscillations but also of
the Late Neogene climate oscillations and the uplift of the Andes in grassland taxa, we selected
Munroa argentina (Poaceae), an annual [50] grass which diverged before than the perennial
South American species ofHordeum and with a wide distribution in three SATZ provinces
(Puna, Prepuna, and Monte) [50,51]. We had previously identified that this species originated
in the Late Pliocene-early Pleistocene at 3.5 (4.3–2.4) Ma, closely related toM. andina, with a
common ancestor that inhabited the southern area of the SATZ [52]. ThusM. argentina is an
ideal subject for studying the effects of these climate oscillations and the Andean uplift because
it was settled in this biogeographic region before these events occurred. This species inhabits
the open areas of plains and mountains from mid- (1000 m a.s.l.) to high elevations (4200 m a.
s.l) on alluvial and sandy-stony soils, along seasonally dry creeks and rivers [50–52]. In the
present paper, we analyze whether post-glacial climate fluctuations in the SATZ had an effect
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on the extent ofM. argentina’s distribution and the structure of its genetic variation. Analyzing
these two aspects can help reconstructing the evolutionary history of a species and identify
putative Pleistocene refugia [15,37,39], recolonized areas [15,39,42,44], fragmented habitats or
migration corridors [15,37,39,41,42,44]. Based on the divergence time of this species we
hypothesized that its populations expanded in post-glacial times to occupy the marginal part of
its range, concurrent with increased aridity during the Holocene, thus leading to the prediction
that the greatest genetic diversity would occur in the ancestral populations from the southern-
most area of the SATZ.

Materials and Methods

Ethics Statement
Material was collected and deposited in CORD the Herbarium of the Universidad Nacional de
Cordoba, Argentina. The herbarium is recognized by the "Secretaría de Ambiente y Desarrollo
Sustentable de la Nación" for doing that. Dr. Ana M Anton is the curator of Poaceae and partic-
ipated in the collection of material. Collections were made under three scientific collecting per-
mits granted by the following government agencies in Argentina “Secretaría de Medio
Ambiente y Desarrollo Sustentable” in Salta (Res.091, Expte. 119–10233)”, by the “Secretaría
de Ambiente y Desarrollo Sustentable, Subsecretaría de Conservación y Áreas Protegidas,
Dirección de Conservación y Áreas Protegidas” in San Juan (Res. 056)” and by the “Adminis-
tración de Parques Nacionales” (Ley 22351, Autorización de Investigación Proyecto 1249).

Study species
M. argentina is a predominantly cross-pollinating annual grass with flowers with exserted
anthers [50,51]. Plants are small, up to 15 cm tall, trailing on the ground and stoloniferous,
with branches forming rosettes and both female and hermaphrodite flowers on the same plant
(gynomonoecy). Flowers are grouped in inflorescences included in the leafy fascicles, compris-
ing 1–4 subsessile spikelets, with the rachilla or secondary rachis disarticulating [50,51]. Single
florets or portions of inflorescences can be units of dispersion; its coriaceous and geniculate
glumes with awns can attach to animal fur or bird plumage. Thus caryopses or propagules can
be dispersed by wind (anemochory), water (hydrochory) or by birds and animals (epizooch-
ory) [52].M. argentina has been reported in Argentina, Bolivia and Peru [50,51].

Sampling, DNA extraction, amplification and sequencing
A total of 152 accessions ofM. argentina were sampled from 20 localities that cover its entire
distribution range and its elevation gradient from 1000 to 4200 m a.s.l. (Fig 1). Sampling
included four to eleven plants per locality, depending on population density. In 16 localities,
sampling was carried out in 200 m transects. Vouchers were deposited at CORD, the herbar-
ium of the Universidad Nacional de Córdoba and, when necessary, samples were taken from
herbarium specimens (Table 1).

Total genomic DNA was isolated from silica-gel-dried leaf tissue using the CTAB method
[53]. Primers used in this study were: rpS16-900F & 3914PR for rps16-trnK, and ndhAx4 &
ndhAx3 for the ndhA intron [54]. A single amplification protocol was used to amplify the chlo-
roplast and nuclear regions, following Peterson & al. [54]. Amplification products were visual-
ized under UV light after electrophoretic separation on a 1% agarose TBE gel stained with
SYBR Safe gel stain (Invitrogen, Carlsbad, California, U.S.A.). Amplified products were sent to
Macrogen Inc. (Seoul, South Korea) for purification and sequencing with the BigDyeTM termi-
nator kit and run on an ABI 3730XL. Sequences were assembled and edited using Sequencher
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Fig 1. Map of the sampling sites and phylogenetic relationships obtained by analysis of cpDNA haplotypes. A, Geographic distribution ofM.
argentina cpDNA haplotypes in the South American Transition Zone (SATZ).B, Statistical parsimony haplotype network. Three population groups were
defined: Puna, Prepuna, and Monte. Pie charts represent the haplotypes found in each sampling locality. Pie chart section size is proportional to the number
of individuals per haplotype. Haplotype designations in the network correspond to those given in Table 1 (H1–H41). The numbers in the haplotypes indicate
the number of individuals that share that haplotype. C, D and E, habitats whereMunroa grows: Tucumán (Argentina), San Juan (Argentina), and Potosí
(Bolivia), respectively. Photographs by Leonardo Amarilla.

doi:10.1371/journal.pone.0128559.g001
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v4.1 (Gene Codes Corporation, Ann Arbor, Michigan, U.S.A.). The sequences were pre-aligned
in Mega 5 [55] using Muscle [56] and alignments were subsequently optimized by eye. Gen-
Bank accessions are listed in S1 Table.

Amplified fragment length polymorphisms (AFLP) were assayed following the protocol of
Lachmuth & al. [57]. After the initial screening of 12 primer combinations, we selected six
primer combinations for the final analysis: AAT (FAM)-AAA, ACT (FAM)-AAA, AAT
(FAM)-AAC, AAA (FAM)-AAA, AAA (FAM)-AAC and ACT (FAM)-AAC. Fragment analy-
sis was performed in the INTA S.A. (Unidad de Genómica, Instituto de Biotecnología, Castelar,
Argentina) on a 3130xl Genetic Analyzer (Applied Biosystems) with Genescan500(-250)ROX
as the internal size standard. AFLP bands between 50 and 500 bp were manually scored with
GeneMapper 3.7 (Applied Biosystems). Care was taken to exclude ambiguous loci by checking
the peak height frequency distribution for each putative locus and setting an individual peak
height cutoff threshold. Markers with a multimodal peak height distribution across samples,
potentially indicative of ambiguity, were omitted. Preliminary analyses had revealed that in
several populations all individuals had the same multilocus AFLP phenotype across six primer
combinations suggesting very high reproducibility and a low error rate.

Haplotype network and phylogenetic analyses
A statistical parsimony network of haplotypes was constructed using TCS ver. 1.2.1 [58] with
the algorithm of Templeton & al. [59]. Network ambiguities were resolved according to the rules
based on coalescent theory provided by Pfenninger & Posada [60]. The phylogenetic relation-
ships among cpDNA haplotypes were reconstructed using MrBayes 3.1.2 [61]. ModelTest 0.1.1
[62] was used to identify the model of molecular evolution (GTR+I) that best fit the data matrix
under the Akaike information criterion (AIC). Four Monte Carlo Markov chains starting with a
random tree were run simultaneously in two independent runs for 10 000 000 generations and
trees were sampled every 2000 generations. Sample points collected prior to stationarity (conver-
gence of likelihood scores) were eliminated as burn-in (25%). Posterior probabilities for sup-
ported clades were determined by a 50% majority-rule consensus of the retained trees.

Divergence time
To estimate genetic differentiation amongM. argentina haplotypes during Pliocene, Pleistocene,
and Holocene events, we performed molecular dating under a Bayesian approach as imple-
mented in BEAST ver. 2.1.3 [63]. The divergence time ofM. argentina’s haplotypes was esti-
mated using the age obtained from the previous dating for Scleropogoninae and Swallenia
alexandrae [52–64]. Sohnsia filifolia (Muhlenbergiinae, sister clade of Scleropogoninae), Sclero-
pogon brevifolius, Swallenia alexandrae, Erioneuron avenaceum,Munroa pulchella, andMunroa
andina were outgroups. The node of the Scleropogoninae clade was constrained using a lognor-
mal prior distribution (offset: 18.0, Log (mean): 0; Log (Stdev): 0.5, range: 19.5–17.5). The node
of the Swallenia alexandrae was constrained using a lognormal prior distribution (offset: 16.3,
Log (mean): 0; Log (Stdev): 0.5, range: 17.0–15.5). Analyses were run using a molecular clock
model with uncorrelated rates, assuming a lognormal distribution of rates. Models of sequence
evolution were the same as for the MrBayes analyses (GTR+I) and a coalescent model assuming
logistic population growth was selected. TwoMCMC analyses were run each with 100 million
generations, and sampling every 10 000th generation. The time series plots of all parameters
were analyzed in Tracer v.1.5 [65] (http://tree.bio.ed.ac.uk/software/tracer/) to check for ade-
quate effective sample sizes (ESS> 200) and convergence of the model’s likelihood and parame-
ters between each run. Trees were combined in Log Combiner v.1.6.1 [66], setting the burn-in at
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25% of the initial samples of each MCMC run. Post-burn-in samples were summarized using
the maximum clade credibility tree option in Tree Annotator v.1.6.1 [66].

Genetic and spatial analyses
For chloroplast data, parameters of population diversity—i.e. number of haplotypes (K), haplo-
type diversity (h; [67]) and nucleotide diversity (π; [67])—were calculated for each phylogroup
derived from the haplotype network and phylogenetic analyses using Arlequin 3.1 [68].
Genetic variability within and among phylogroups was determined with an analysis of molecu-
lar variance (AMOVA) using Arlequin. The number of permutations to determine significance
level was set at 10000 replicates. A genetic landscape shape analysis was run using Alleles in
Space [69]. This analysis identifies genetic discontinuities among populations in a landscape
shape and produces a three-dimensional surface plot where the x and y axes correspond to the
geographic coordinates of populations, and the z axis corresponds to the interpolated genetic
distances. We also conducted a Mantel test [70] and investigated the genetic barriers associated
with each geographic location and each population using Monmonier’s maximum-difference
algorithm implemented in Alleles in Space [69].

Demographic history
Neutrality and mismatch distribution analyses were performed for the phylogroups—identified
by TCS, phylogenetic and AMOVA analyses—using Arlequin. Tajima’s D [71], Fu’s Fs [72]
and R2 [73] were calculated to detect past demographic range expansions using DnaSP v. 5.0
[74]. The significance level of the three values was calculated from 1000 simulated samples
using a coalescent algorithm [75]. Mismatch distribution analysis was run to detect either past
exponential growth or historical population stasis. The goodness of fit of the observed distribu-
tion was evaluated using parametric bootstrapping with the sum of squares deviations. The
sum of squares deviations (P� 0.05) analysis indicates a departure from the null model of pop-
ulation expansion. Bayesian skyline plots [76] were obtained using BEAST ver. 2.1.3 [63,77] to
describe demographic history by assessing the time variation in effective population size. Two
independent runs of 10 million generations were performed using the substitution model GTR
with empirical base frequencies, an uncorrelated lognormal relaxed clock model, and a piece-
wise-constant coalescent Bayesian skyline tree prior with five starting groups. Trees and
parameters were sampled every 1000 iterations, with a burn-in of 10%. The time axis was scaled
using 1.0–3.0 x 10−9 substitutions per site per year (s/s/y) for chloroplast-wide, synonymous
substitution rates described for most angiosperms [78], and the rate of 4.5 x 10−9 s/s/y calcu-
lated for the cpDNA loci inMunroa (S1 File). The results of each run were visualized using
Tracer to ensure that stationarity and convergence had been reached (ESS> 200).

AFLP analyses
For nuclear data (AFLP), SplitsTree v. 4.10 [79] was utilized with uncorrected “p” genetic dis-
tances and the NeighborNet algorithm to generate a network. The similarity/genetic distance
were calculated using the Jaccard similarity measure. A bootstrap analysis was performed with
1 000 replicates. The Bayesian approach implemented in STRUCTURE version 2.3.1 [80,81]
was used to analyze the geographic structure ofM. argentina populations. This program uses a
coalescent genetic approach to cluster similar multilocus genotypes into K clusters, regardless
of an individual’s geographic origin. We conducted five independent runs for each value of K
ranging from 1–5 using the no admixture model and correlated allele frequencies [81]. The
optimal value of K was calculated following the method by Evanno & al. [82]. Genetic variabil-
ity at several hierarchical levels was determined by an analysis of molecular variance
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(AMOVA) in Arlequin. The population groups were those recognized by the SplitsTree and
Structure analyses. The population parameters such as proportion of polymorphic loci (P) and
expected heterozygosity (HE) were calculated for each population groups using Arlequin and
TFPGA v. 1.3 (Tools for Population Genetics Analyses) [83] respectively.

Ecological Niche Modeling
The ecological niche was estimated based on the available distribution records ofM. argentina.
A total of 200 occurrence points were compiled both during the fieldwork of this project and
also using specimen records from the following herbaria: CORD, CASTELAR, BAA, BAB,
IBODA, LIL, and LPB (Abbreviations for herbaria follow "Index Herbariorum" http://
sweetgum.nybg.org/ih/). Environmental scenarios in the present and in the past were repre-
sented by a series of 19 variables summarizing aspects of climate [84]; we included all 19 biocli-
matic variables because this results in more conservative conclusions about distributional
stability that are thus more reliable [42]. Data were obtained fromWorldClim 1.4 [84] with a
resolution of 1 km2. Four estimates of ecological niche models were made to identify: 1) the
potential current distribution, 2) the potential past distribution during the Last Interglacial,
and 3) the potential past distribution during the extreme conditions during the Last Glacial
Maximum (LGM). For the first analysis, we used the current layer, followed by the last intergla-
cial period layer (140,000–120,000 BP), and the LGM (21,000–18,000 BP) layer. For the LGM
analysis we used general circulation model simulations from two models: the Community Cli-
mate System Model (CCSM; [85]) and the Model for Interdisciplinary Research on Climate
(MIROC; [86]). All models were run in MaxEnt and were repeated to obtain 10 replicates. To
evaluate the quality of the model, we partitioned the locality data into training and testing data
sets (75% and 25%, respectively). To measure the degree to which the models differed from
that expected by chance, and to obtain a confidence measure for the ENMs, we used AUC (the
area under the receiving operating characteristic curve) [87,88].

RESULTS

Phylogenetic analyses and haplotype network
The length of the two combined plastid markers (rps16-trnK, ndhA intron) was 1704 bp with
43 variable sites. Forty-one haplotypes were identified for the 152 individuals sampled from 20
localities (Fig 1; Table 1 includes the list of the localities). Three phylogroups were identified
and are distributed in three different biogeographic provinces: i–Puna (Argentina and Bolivia),
ii–Prepuna (Argentina), and iii–Monte (Argentina).

In the Puna phylogroup, the most frequent haplotype, H7, is shared by six localities in both
Argentinean and Bolivian Puna (JT, JH, JS, SSC, BY, and BU). Haplotype H5 is shared by three
localities BY, BP, BT (Bolivian Puna), and haplotype H13 is common in JT, JH, and JS (Argen-
tinean Puna). Thirteen haplotypes were private to seven localities in both Argentinean and
Bolivian Puna (Fig 1 and Table 1). Haplotype H17 is unique to JT and connected the Puna phy-
logroup with the Prepuna and Monte phylogroups. The Prepuna phylogroup occurs in Argen-
tina and haplotypes H20 and H23 were the most frequent; H20 is shared by two localities, SJJ
and SJB, while H23 is unique to MLH. Nine haplotypes were private to four localities (Fig 1
and Table 1). The Prepuna and Monte phylogroups are connected by haplotypes H18 and
H29; the latter are private to LRF. In the Monte phylogroup that occurs in Argentina, haplo-
type H30 is the most frequent and is shared by three localities: CCQ, CB, and TAV. Finally,
eleven haplotypes were private to five localities in Argentinean Monte (Fig 1 and Table 1).

The 50% majority consensus tree (results not shown) grouped allM. argentina haplotypes
in a single and well supported clade (PP = 1.00), corroborating the monophyly ofM. argentina.
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The topology of the recovered phylogram (not shown) is congruent with the result of the statis-
tical parsimony network and identical to the chronogram obtained with BEAST (see below,
Fig 2). Three major clades were identified; the first formed by the Puna phylogroup and the
other two by the Prepuna and Monte phylogroups.

Divergence time
According to our molecular dating, the diversification of phylogroups ofM. argentina began in
the Middle Pliocene–Late Pleistocene, approximately 3.4 (4.2–1.2) Ma separating the Puna

Fig 2. Maximum clade credibility tree of the cpDNA haplotypes generated from BEAST.Chronogram ofM. argentina haplotypes and other
Chloridoideae based on the consensus tree from the Bayesian dating analysis using a coalescent model with a constant size. All nodes are provided with the
95% Highest Posterior Density intervals (purple bars), the time of divergence (above branch) and the posterior probabilities (below branch). The individual
haplotype and haplotype group designations correspond to those in Fig 1. Inset photo isM. argentina in San Antonio de los Cobres, Salta, Argentina.
Photograph by Vanesa Pilatti.

doi:10.1371/journal.pone.0128559.g002

Evolutionary History of the GrassMunroa argentina

PLOSONE | DOI:10.1371/journal.pone.0128559 June 25, 2015 9 / 21



phylogroup from the ancestor of the Prepuna–Monte phylogroups (Fig 2). The Prepuna phy-
logroup diverged from the Monte phylogroup approximately 2.2 (3.0–1.1) Ma during the Pleis-
tocene. The diversification of the majority of the haplotypes began 1.6 (1.9–0.6) Ma in the
Mid-Pleistocene (Fig 2).

Genetic and spatial analyses
The phylogroup haplotype diversity (h) ranged 0.78–0.85, while nucleotide diversity (π) ranged
0.0008–0.0012 (Table 2). AMOVA revealed strong population structure, with the highest FST
value obtained when samples were grouped in three groups: Prepuna, Puna and Monte (FST =
0.77; Table 3). The Mantel test (r = 0.51; P = 0.001) revealed a significant relationship between
geographical and genetic distances and supported the hypothesis of isolation by distance. Mon-
monier’s algorithm also revealed strong differentiation among the northern phylogroups. Two
major genetic barriers were identified: one, separating Puna and Prepuna from Monte phy-
logroups, and the other separating Puna from Prepuna and Monte phylogroups (Fig 3). The
results of the genetic landscape analysis were congruent with these results, with three clearly
differentiated zones: the first, at the extreme north of this species distribution, included the
Puna region localities, the second was smaller and included the Monte region localities at the
eastern margin of the range, and the third included the Prepuna region localities at the south-
ern margin of the range (Fig 3).

Demographic history
Under a model of sudden population expansion (P>0.05), the Puna and Monte phylogroups
have a strongly unimodal mismatch distribution indicating a historical population expansion
event, while the Prepuna phylogroup have a bimodal mismatch distribution, indicating a his-
torical population contraction/expansion (S1 Fig). The same unimodal mismatch distribution
pattern is found when all of the haplotypes were included. Fu’s Fs, Tajima’s D, R2 test, and the
SSD values suggest a historical population expansion by three phylogroups defined by TCS and
phylogenetic analyses (Table 2). The Bayesian skyline plots reveal similar demographic histo-
ries among the three phylogroups analyzed (S1 Fig). The Puna phylogroup may have increased
over the past 90,000 years, the Prepuna phylogroup had a stable population size over the last
60,000 years, and the Monte phylogroup may have increased over the past 85,000 years. Esti-
mates for the latter two phylogroups had larger variances as a consequence of smaller sample
sizes. The Prepuna+Monte phylogroups would have begun to expand 80,000 years ago.

Table 2. Results of genetic and demographic analyses including probability of capturing the deepest coalescent event (Prob.), number of haplo-
types (K), haplotype diversity (h), nucleotide diversity (π), Fu’s Fs (Fs), Tajima’s D (DT), Probability of DT 6¼ 0 [Prob. (|DT|) > 0], probability of DT 6¼ 0
based on coalescent simulations (P), Ramos-Onsins & Rozas’ (R2), probability ofR2 based on coalescent simulations (P), maximum pairwise dif-
ferences between any two sequences (k).

Population n Prob. K h (± SD) π (± SD) Fs/DT Prob.(|DT|)>0/P R2/P/k SSD

Puna 59 0.96 17 0.80 (± 0.04) 0.0012 (± 0.0008) -8.19/-1.59 |-1.6|/0.03 0.049/0.018/2.1 0.00277

Prepuna 47 0.95 12 0.85 (± 0.03) 0.0010 (± 0.0007) -1.75/-0.40 |-0.4|/0.41 0.095/0.361/1.8 0.02329

Monte 46 0.95 12 0.78 (± 0.06) 0.0008 (± 0.0006) -7.51/-1.59 |-1.6|/0.03 0.052/0.012/1.5 0.00132

Total 152 0.98 41 0.92 (± 0.01) 0.0021 (± 0.0001) -8.31/-1.55 |-1.5|/0.02 0.041/0.021/3.7 0.00235

The sum of squared deviations (SSD) is also given.

doi:10.1371/journal.pone.0128559.t002
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AFLP analyses
In total 152 individuals from 20 localities were genotyped using six primer combinations, 1104
loci were scored, 1075 of which (97%) were polymorphic. The neighbor-net diagram showed a
genetic split between three groups with a high degree of support (Bootstrap support = 87–100).
The three groups were identical to groups recognized by the haplotype network and the phylo-
genetic analyses (Puna, Prepuna, and Monte) (Fig 4A). Bayesian clustering analyses imple-
mented in Structure corroborated cluster (phylogroup) structure and the results of ΔK
indicated that the most likely number of population clusters was three (K = 3) and four (K = 4)
(Fig 4B and 4C, respectively). With K = 3, the classification of individuals into groups fully cor-
responded to the haplotype network, phylogenetic and SplitsTree analyses. With K = 4, the
structure of the three population clusters was constant, but a subgroup (Prepuna) appeared for
the Prepuna population clusters. The AMOVA—with the three population clusters recognized
by the Splits Tree and the Structure (K = 3) analysis for AFLP data, and Bayesian inference for

Table 3. Structure of variation inM. argentina analyzed using an AMOVAwith alternative groupings.

Source of variation d.f. Percentage
of variation

F-statistic

cpDNA data.

a) three groups according to haplotype network and Bayesian inference, Puna vs. Prepuna vs. Monte

among groups 2 45.1

among populations within groups 1 31.8 FCT = 0.45***

within populations 148 23.1 FSC = 0.57***

Total 151 FST = 0.77***

b) two groups, Puna/Prepuna vs. Monte

among groups 1 7.4

among populations within groups 1 66.9 FCT = 0.07***

within populations 149 25.6 FSC = 0.72***

Total 151 FST = 0.74***

c) two groups, Puna/Monte vs. Prepuna

among groups 1 2.5

among populations within groups 1 68.6 FCT = 0.02***

within populations 149 28.9 FSC = 0.76***

Total 151 FST = 0.70***

d) two groups, Puna vs. Monte/Prepuna

among groups 1 18.8

among populations within groups 1 FCT = 0.18***

within populations 149 FSC = 0.69***

Total 151 56.1 FST = 0.74***

AFLP data 24.9

a) three groups according to Split Tree and Structure, Puna vs. Monte vs. Prepuna

among groups 2 25.1

among populations within groups 1 1.5 FCT = 0.25***

within populations 148 73.4 FSC = 0.02***

Total 151 FST = 0.27***

d.f., degrees of freedom; FCT, differentiation among groups within the species; FSC, differentiation among populations within groups; FST, differentiation

among populations within the species.

***P < 0.0001.

doi:10.1371/journal.pone.0128559.t003
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cpDNA data—revealed that most of the genetic variation was within populations (73.4%),
while variation among clusters and among populations within clusters was 25.1% and 1.5%,
respectively. The Prepuna phylogroup expected heterozygosity (He) and polymorphism (P)
were the highest among the three phylogroups (0.31 and 88.5% vs. 0.28 and 63.1%, Puna; 0.19
and 77.4%, Monte).

Niche-based distribution modeling
The value of AUC was> 0.95 for all analyses. Niche distribution modeling for current climate
conditions over-predicts the geographic distribution in the extreme north and southeast ofM.
argentina where it has never been recorded (Fig 5A and 5B). The potential distribution during
the Last Interglacial Period was continuous and covered a more extensive area of suitable habi-
tats from northern Prepuna province to the Patagonia Subregion (Andean Region) (Fig 5B).
The Last Glacial Maximum model indicates that suitable habitats were more extensive than
they currently are (and less extensive than they were during the Interglacial), and over-predicts
the geographic distribution further to the southeast (Fig 5C–5C’).

DISCUSSION

Phylogeography
Geological, climate, and genetic studies suggest that the SATZ arose from the Middle Miocene
to the Upper Pliocene [7,19,20,29,33], and indicate the persistence of a semiarid climate
between 8 and 3 Ma that reached its highest aridity level about 6 Ma [29]. The split betweenM.
argentina and the ancestor shared withM. andina occurred 4.8 (5.2–2.9) Ma from the Late
Miocene to the Late Pliocene when climate conditions were suitable, which agrees with our

Fig 3. Multidimensional graph produced by the genetic landscape shape interpolation analysis that represents the genetic distances of
haplotypes across the distribution range ofM. argentina.White bars identify phylogeographic barriers in the unglaciated part of the SATZ that separate
three groups of populations: Puna, Prepuna and Monte.

doi:10.1371/journal.pone.0128559.g003
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previous results [52]. Analyses of cpDNA sequences and AFLP data revealed three highly
divergent lineages withinM. argentina. The split among these phylogroups occurred in the
Late Pliocene (4.2–1.2 Ma) and mainly in the Pleistocene. These results suggest that although
the early stages of the evolutionary history ofM. argentina (i.e. its divergence) are linked to the
(semi)aridification processes that gave rise to the SATZ, and to the final uplift of the Southern
Andes (5 Ma), the following stages and conformation of its range are rather linked to

Fig 4. Inferred clustering from NeighborNet (A) (numbers are the bootstrap values), and from a Bayesian assignment with STRUCTURE assuming
K = 3 (B), and K = 4 (C). Each individual is represented by a single vertical line, partitioned into K colored segments that denote the individual’s estimated
membership fractions in K clusters. Scale bar shows a distance of 0.1 substitutions per site.

doi:10.1371/journal.pone.0128559.g004
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Quaternary glaciations (1 Ma– 15 Ka) [7,20,29,44,89,90]. Climate oscillations in the Pleistocene
are probably among the causes of strong differentiation among phylogroups ofM. argentina,
through the fragmentation of an ancient, more widespread distribution. The three phylogroups
(Puna, Prepuna and Monte) do not share any haplotypes; moreover, the phylogroups identified
by cpDNA and AFLP data were congruent. These results are consistent with a hypothesis of
ancient habitat fragmentation, as previously posited by Templeton [91] and reported for spe-
cies endemic to desert areas and the central area of Patagonia [33,42,44].

It is commonly inferred that areas exhibiting high levels of genetic variation were glacial
refugia for relatively large populations [92], while areas with low genetic variation are inter-
preted as recently colonized or harboring small relict populations [37,42,93]. InM. argentina,
although the highest within-population genetic variation was found in the southern area of the
Prepuna, genetic variation was also high in Prepuna and Monte. Prepuna is the southern limit
of this species’ distribution, suggesting that it was probably the habitat occupied by the ances-
tors ofM. argentina. Demographic parameters, the negative value of Fu’s Fs and Tajima’s D,
and the results of the mismatch distribution analysis all suggest a growing population size in
M. argentina. Based on this evidence, we suggest that populations extended their range north-
ward and westward into the Puna and Monte provinces, respectively. From there, the once
continuous distribution underwent fragmentation due to the climatic oscillations in the Plio-
cene-Pleistocene.

Fig 5. Climate-based predicted distribution ofM. argentina for three geological time periods. Predicted distribution during the Last Glacial Maximum
was obtained using MIROC and CCSMmodels.

doi:10.1371/journal.pone.0128559.g005
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Our results show significant phylogeographic structure within the three areas in the SATZ;
this structure is evident in the haplotype network, phylogenetic tree and high Fst values.
Although the range of distribution ofM. argentina appears to be continuous, its populations
are actually isolated. From our field observations, we noticed that while the populations are
often found within short distances of each other, they inhabit areas with different ecological
conditions and their flowering periods differ considerably (Table 1). The Puna phylogroup
from eastern Bolivia, northern Argentina, and southern Peru reach the highest elevations—
from 2800 to 4200 m a.s.l.—and the plants bloom from mid-February to April. The Prepuna
phylogroup from central and northwestern Argentina grow at mid-elevations from 1500 to
2900 m a.s.l. and the plants bloom from mid-December to February. The Monte phylogroup
from central Argentina grows at the lowest elevations, from 1000 to 2500 m a.s.l. and the plants
bloom from February to March. Similar differentiation has been reported for several species of
Hordeum in the SATZ [39,42], and differences in ecological conditions have been suggested as
a mechanism responsible for the isolation of phylogroups [39]. Prezygotic isolation caused by
differences in flowering time might further limit interpopulation gene flow, and increase the
isolation of lineages caused by initial habitat discontinuity.

Pleistocene and present distribution areas
Ecological niche modeling has been applied to a variety of research topics, including speciation
mechanisms [94], species extinction [94], niche shifts [15,39,42], and paleomodels, with the
goal of improving phylogeographic inference [95]. Both the AFLP and cpDNA data suggest
thatM. argentina not only retained its distribution from the Pliocene until the present time,
but that it also extended northward to warmer areas during the last of the Pleistocene cold
cycles, and this was confirmed by the niche modeling. Current modeling and paleomodeling
were applied to analyze the suitability of present climate and conditions during glacial maxima
and interglacial periods forM. argentina. For the current climate, the predicted area of suitable
habitats includes not only the southeast where this species grows now but also east of the
Monte province, whereM. argentina has not yet been found. This region has more humid con-
ditions than the northern areas of the Monte and Prepuna provinces, and its vegetation con-
sists of taller grasses, which might prevent colonization byM. argentina. This may explain why
the species is not distributed in these areas even though climate conditions are suitable forM.
argentina.

The predicted suitable range ofM. argentina during the LGM and interglacial much
exceeded its present range and also included areas north, south, and east of the currently occu-
pied areas. The predicted suitable range ofM. argentina during the interglacial period includes
zones in the south reaching the Central Patagonia province. These results suggest that climate
conditions during the Interglacial periods and the LGM did not limit the expansion ofM.
argentina on the eastern side of the SATZ. They also support our hypothesis about the effects
of habitat fragmentation on populations (Prepuna, Puna, Monte), given that large suitable
areas are necessary for population subdivisions to occur without any marked reduction in
genetic diversity; similar results were found for Hordeum [42].

Our study utilized two independent approaches to reconstruct the present and past popula-
tion distribution. The phylogeographic approach detected survival ofM. argentina within its
extant distribution for at least the last ice age cycle. The ecological niche modeling, revealed
that the climate conditions were suitable forM. argentina in the SATZ, and that the niche for
this species has not changed since at least the LGM.

Recent studies are finding complex phylogeographic patterns in the biota of South America
[7,15,41–42,95–99] and although the Andean uplift was one of the major events with a clear
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effect on the diversification of South American biota [1–3,7,9,41,96–100], climate change in
the Late Neogene and associated glaciations significantly contributed to the regional plant evo-
lution and diversity[1–3,7,9,41,96–100].

Conclusions
Our study has revealed that, since approximately 4 Ma, the grass speciesMunroa argentina has
been able to persist in the SATZ despite orogenic changes, climate changes and ice age cycles,
and that its apparently once continuous range has undergone fragmentation. Our analyses
detected a deep intraspecific phylogeographic structure with multiple lineages for this species.
We identified three phylogroups (Puna, Prepuna, Monte) with low historical gene flow among
them and a strong genetic structure that matches geographic distributions in known biogeo-
graphic provinces with distinct histories.
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S1 Fig. Mismatch distributions and Bayesian skyline plots of cpDNA haplotypes. A-D, Mis-
match distributions of pairwise nucleotide differences for population clusters ofM. argentina.
Dashed lines show the observed frequency distributions and solid lines show the distribution
expected under the sudden-expansion model. E-I, Bayesian skyline semilog plots showing
medians for the historical demographic trends for total populations ofM. argentina.
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