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Abstract
In pea breeding is important to shorten the generation cycles to obtain homozygosity quickly. Doubled haploid technology 
is important to attain this purpose and androgenesis is the most promising tool for induction of haploids in legumes. Com-
mercial pea varieties have been described as recalcitrant to this approach but very little is known regarding the androgenic 
competence of pea relatives. In this work, a comparative study of the androgenic response among different taxa of the genus 
Pisum was undertaken. We cultured anthers of 11 pea materials from the primary and secondary genepools under the same 
experimental conditions, and studied their competence to produce calli and plants in vitro. Significant differences were found 
in the percentage of callus and plant production between the different species and subspecies. The two wild forms Pisum 
fulvum Sibth. & Sm. and Pisum sativum subsp. elatius (Bieb.) Aschers. & Graebn. regenerated shoots from anther culture 
with the highest efficiency (67% and 38%, respectively), becoming potential sources of androgenic competence. Among the 
cultivated genotypes of P. sativum, the botanical variety arvense regenerated shoots with the highest percentage (40%) also 
being a good candidate to study androgenesis. The commercial varieties tested showed significant differences in the callus 
and plant production, with Primogénita (FCA-INTA) and B101 giving the best results although with low plant regeneration 
percentages (17% and 11%, respectively). P. fulvum, P. sativum subsp. elatius and P. sativum subsp sativum var arvense 
were identified as highly responsive to anther culture, useful to transfer androgenesis competence to recalcitrant commercial 
varieties.

Key message 
Within genus Pisum, the wild forms P. fulvum, P. sativum subspecies elatius and the cultivated variety arvense were identi-
fied as potential sources to introduce androgenesis competence into recalcitrant commercial varieties.

Keywords Pisum · Anther culture · Wild relatives · Androgenic response · Plant regeneration

Introduction

The Pisum genus includes wild species as P. fulvum found 
in the middle east (Smýkal et al. 2017), the cultivated spe-
cies P. abyssinicum from Yemen and Ethiopia, which was 
likely domesticated independently of P. sativum, and a large 
and loose aggregate of both wild (P. sativum subsp. elatius) 
and cultivated forms that comprise the species P. sativum 
in a broad sense (Trněný et al. 2018) which is native to the 
Europe–Mediterranean region and middle and northwest 
Asia (Smýkal et al. 2017). Two gene pools were found in 
this genus. The primary gene pool includes P. sativum with 
its different subspecies, botanical and commercial varie-
ties meanwhile the secondary gene pool is composed of P. 
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fulvum and P. abyssinicum (Coyne et al. 2020). Here we 
adopt the taxonomic system of Pisum outlined by Maxted 
and Ambrose (2001) and Bogdanova et al. (2020). Accord-
ing to this generalized system, the genus embraces three 
species namely, P. sativum L., subsp. sativum (includes var. 
sativum and var. arvense); subsp. elatius (Bieb.) Aschers. & 
Graebn (includes var. elatius, var. brevipedunculatum and 
var. pumilio), P. fulvum Sibth. & Sm.; P. abyssinicum A. Br.

Pea is a self-pollinated diploid (2n = 14, x = 7) annual 
crop. Modern breeding programs typically use bulk popula-
tions, pedigree selection or SSD methodology to obtain new 
cultivars through hybridizations between commercial varie-
ties. However, the genetic variation for improvement of sev-
eral economically important traits is inadequate at best and, 
in many cases, absent from available germplasm (Smýkal 
et al. 2018a; Coyne et al. 2020). Therefore, natural resist-
ance must be introduced by hybridization with wild related 
species. These traits identified in P. fulvum include insect 
resistance (Esen et al. 2019), improved seed composition 
and resistance to several soil-borne fungal pathogens (Barilli 
et al. 2018), drought tolerance (Naim-Feil et al. 2017; Kos-
terin et al. 2020), besides seed yield related traits (Mikíc 
et al. 2013). Several authors capitalized on P. fulvum cross-
compatibility with P. sativum to produce weevil-resistant 
interspecific progeny (Byrne et al. 2008; Clemente et al. 
2015) and hybrids with improved tolerance to Aphanomy-
ces euteiches root rot using P. sativum as the female and P. 
fulvum as the male parent (Ochatt et al. 2004). Bobkov and 
Selikhova (2017) created P. sativum introgression lines with 
inclusions of new genes and alleles of economically valuable 
traits from the P. fulvum genome. As P. fulvum, wild peas (P. 
sativum subsp. elatius) are practically important as a source 
of genetic diversity potentially valuable for pea breeding, 
first of all genes for resistance to various pests, diseases and 
draught (Kosterin, 2016). Porter (2010) identified tolerance 
to Fusarium root rot in P. sativum subsp. elatius germplasm 
with high levels of partial resistance. Further, Mikíc et al. 
(2013) and Clemente et al. (2015) identified wild pea acces-
sions (P. sativum subsp. elatius) with pronounced reduced 
protease inhibitor activity in seeds.

The use of wide crosses to source key traits results in 
breeding difficulties as wild-type traits are introduced and 
crop productivity requires many years to be restored by 
backcrosses.

In pea, shortening the breeding cycle is important to 
obtain homozygosity quickly, and doubled haploidy is 
an important technology to attain this purpose. Differ-
ent methodologies can be used to obtain haploid plants 
such as wide hybridization with chromosome elimination, 
gynogenesis and androgenesis (anther and microspore cul-
ture) depending on the species (Khush and Virmani 1996). 
Among these techniques, androgenesis seems to be most 
promising for induction of haploids in legumes (Gatti et al. 

2016). Nevertheless, there have been very few reports of 
haploid plant production in pea, which has been described 
as recalcitrant to this approach (Gupta 1975; Croser and 
Lülsdorf 2004; Sidhu and Davies 2005; Ochatt et al. 2009; 
Bobkov 2010, 2014; Lulsdorf et al. 2011; Ribalta et al. 
2012) because the regeneration frequencies of complete 
haploid plants were low (Ochatt et al. 2009; Bobkov 2014). 
All these reports used only commercial pea varieties, or 
mutants from them, and nearly nothing is known regard-
ing the androgenic competence of pea relatives. Doubled 
haploids also represent a useful tool for genetic analyses 
of traits of interest for plant breeding or related to domes-
tication (Salas et al. 2011). However, to our knowledge, a 
comparative study of the androgenic response of different 
taxa of the genus Pisum, is still lacking. The objective of 
this work was to compare and analyze in vitro responses 
to the anther culture among different taxa of the genus 
Pisum in order to identify androgenesis-responsive mate-
rials potentially useful as model systems or as potential 
sources of androgenic competence.

Materials and methods

Plant material

Eleven pea genotypes belonging to different species, sub-
species, botanical varieties and commercial varieties of the 
genus Pisum were used. These accessions have been addi-
tionally characterized at the morphological and molecular 
levels (Espósito et al. 2007; Gatti et al. 2011, 2017). With the 
collected morphological data, Euclidean distances between 
genotypes were calculated and a cluster analysis was carried 
out. A dendrogram was generated using the average linkage 
method through the InfoStat software (Di Rienzo et al. 2012) 
(Fig. 1). In this Figure the different used genotypes and their 
phylogenetic relationships are shown.

Donor plant growth conditions

In 2018, seeds of the different pea genotypes were sown 
(June 15) and grown in the experimental field "J. F. Villa-
rino" at the research station of the faculty of Agriculture of 
Rosario University, Argentina (331′ S and 6053′ W), under 
natural light conditions, following a randomized complete 
design with rows of 50 plants per genotype. Spacing between 
plants and rows was 0.10 and 0.70 m, respectively. Climate 
data were collected from the Pegasus meteorological station 
(Tecmes) located in the premises of the College of Agri-
culture, National University of Rosario, Villarino, Zavalla, 
Santa Fe.

Author's personal copy
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Anther culture

Flower buds were extracted from the donor plants when they 
reached an approximate length of 6–7 mm corresponding 
to the uninucleated state (Croser et al. 2006; Ochatt et al. 
2009). The flower buds underwent two treatments, the con-
trol treatment without cold pretreatment and a cold pretreat-
ment at 4 °C for 3 days (Ochatt et al. 2009). They were then 
sterilized in 70% alcohol for 1 min, 25% sodium hypochlo-
rite for 10 min and 3 rinses with sterile distilled water. The 
anthers were excised and cultured in vitro onto callus induc-
tion media containing MS (Murashige and Skoog 1962) for-
mula, 6% sucrose and 0.6% agar–agar with different concen-
trations of 2,4-Dichlorophenoxyacetic acid (2,4-D) (0, 0.5 
and 1 mg/L, Medium 1, 2 and 3, respectively) and pH 5.5. A 
total of 150 anthers per genotype and medium were kept for 
1 month in a culture room at a 16:8 h light:dark regime with 
a photosynthetic photon flux density of 30 μmol m−2 s−1 
from cool white fluorescent lamps, and at 25 ± 1 °C. Calli 
that exhibited embryo formation were transferred to a 
solid embryo maturation medium containing MS formula, 
3% sucrose, 0.6% agar, 1 mg/L α-naphthaleneacetic acid 
(NAA) and 0.5 mg/L gibberellic acid (GA3). Finally, mature 
embryos (cotyledonary phase) were transferred to plant 
regeneration medium containing ½ salt strength MS, with 
4% sucrose, 0.6% agar, 5 mg/L 6-benzylaminopurine (BAP), 
0.25 mg/L IAA (indole-3yl-acetic acid) and 0.25 mg/L NAA 
and 1 mg/L  GA3. For all media, the pH was adjusted to 5.5 
prior to autoclaving. Cultures were maintained in a growth 
chamber in the same conditions as indicated above.

Acclimatization

After rooting, plantlets were removed from culture tubes and 
glass vials, washed thoroughly with distilled water to remove 
the remaining medium and planted in plastic pots containing 
sterile In Vitro Soil-less (IVS) medium for acclimatization. 
IVS medium comprised of sphagnum peat, coarse river sand 

(1–3 mm diameter), and perlite (Horticulture grade P500) 
at a ratio of 0.5:2:2 was sterilized for 40 min at 121 °C prior 
to use (Bermejo et al. 2012). For the first month, plantlets 
were covered with transparent polyethylene bags to main-
tain high humidity. They were watered once a week using 
half-strength MS salt solution. When the bags were removed 
plantlets were watered twice a week with distilled water. The 
plants were kept in a growth room at 23 ± 2 °C and a 16:8 h 
light regime (30 μmol m−2 s−1 from cool white fluorescent 
lamps).

Data analysis

The experiment was repeated twice. The effects of culture 
media and pretreatment on callus induction were evaluated 
and since the variables did not follow a normal distribution, 
a Kruskal–Wallis test was performed using the Infogen pro-
gram (Balzarini and Di Rienzo 2003). The effect of genotype 
on the percentage of callus production and plant regenera-
tion was also evaluated and subjected to analysis of variance 
(ANOVA) using a randomized complete design. The means 
were separated at P = 0.05 level of significance according 
to Tukey’s test using Infogen software (Balzarini and Di 
Rienzo 2003). Data that did not have a normal distribution 
in residual plot analysis were transformed, prior to ANOVA, 
through square root (x + 0.5).

Results

Abiotic stresses of donor plants

The field-grown donor plants were subjected to multiple 
environmental stresses during the period of seedling devel-
opment until the harvest of flower buds (June 15–September 
23). During this period, rainfall amounts, and average tem-
peratures were variable. Rainfall amounted to 11.5 mm in 
this period reaching 5 mm in the months of June and July, 

Fig. 1  Dendrogram compiled 
by Average linkage method 
showing the grouping of 11 pea 
genotypes used in this work 
belonging to different taxa 
within genus Pisum based on 
morphological traits (Euclidean 
distances)
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and only 1.25 mm in September with no rains in August 
thus being considered a period of drought. The average tem-
peratures were 14 ºC in June, 10 ºC in July with periods of 
freezing temperatures (0 ºC), 17 ºC in August and 25 ºC in 
September. Strong winds with gusts of 30 km/h were also 
observed sporadically during this period.

Anther culture

Extracted flower buds were around 7 mm long, with 1-mm-
long anthers, and which were translucent and light yellow 
(Fig. 2a). Differences in optimum flower bud size within the 
genus existed, but were minimal.

The percentage of callus formation was significantly 
higher for flower buds without cold pretreatment compared 
with pretreatment at 4 °C (H = 11.25, p < 0.001, Table 1). 
As it is shown in Table 1, all the genotypes showed superior 
behavior when flower buds did not receive a cold pretreat-
ment. With regard to the effect of different 2,4-D concen-
trations on the callus percentage, MS medium without hor-
mones (Medium 1) was not efficient for callus formation; 
only one cultivar from P. sativum subsp sativum (Aurelia) 
gave a low callus percentage (3%) on this medium (Table 1). 
Green embriogenic calli were produced from anthers of 
the different genotypes on culture media containing 2,4-D 

(Fig. 2b), with Medium 3 significantly superior (H = 5.96; 
p < 0.05, Table 1). Although there were genotypes such as 
Pisum sativum subsp. elatius Vir2521 and the commercial 
variety Aurelia of Pisum sativum subsp. sativum that showed 
higher callus percentages without cold pretreatment in the 
Medium 2 (containing an intermediate concentration of 2,4-
D), there were also genotypes that could not induce callus 
in this medium (JI203, JI804, B37, Table 1). In contrast, 
in Medium 3 containing the highest 2,4-D concentration, 
all genotypes were able to induce callus formation with-
out cold pretreatment. When comparing all the genotypes, 
Pisum abyssinicum and the commercial variety B101 gave 
the greatest number of calli on the Medium 3 and without 
a flower buds pretreatment (Table 1). Thus, the different 
Pisum taxa were tested using the best conditions for anther 
culture ie. without cold pretreatment and on Medium 3 for 
callus induction.

Embryogenesis proceeded through the typical successive 
stages (i.e. globular, heart, torpedo and cotyledonary) of 
somatic embryo induction, expression, growth and ultimate 
conversion to plants (Fig. 2c, d, e, f, g).

Comparing the different species, variance analysis 
showed significant effects on the percentage of callus 
induction (F = 24.5; p < 0.001) and plant regeneration 
(F = 27.9; p < 0.001). Although anthers of the cultivated 

Fig. 2  The in vitro anther culture protocol. a Flower buds of P. ful-
vum in the uninucleated state b Formation of green embryogenic cal-
lus in Medium 3. c Callus showing different stages of somatic embry-

ogenesis on embryo maturation medium d globular, e heart shaped f 
cotyledonary phase, indicated by arrows g Pea plantlet development 
in plant regeneration medium
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species P. abyssinicum gave a greater number of calli, the 
wild species (P. fulvum) regenerated plants with a higher 
efficiency (67%) (Fig. 3a).

Significant differences were also found in the percent-
age of callus and plant production between the different 
subspecies analyzed (F = 65.2; p < 0.001 and F = 15.4; 
p < 0.001, respectively). Thus, P sativum subsp. sativum 
yielded the greatest percentage of callus induction and 
coupled with plant regeneration, while P. sativum subsp. 
elatius gave a lower callus induction but coupled with the 
highest plant regeneration percentage (38%) (Fig. 3b).

With regard to the botanical varieties, no significant 
differences were found in terms of the callus induction 
but the percentage of plant regeneration was significantly 
higher for P sativum subsp. sativum var. arvense (40%) 
(F = 14.9; p < 0.01) (Fig. 3c).

The different commercial varieties also showed sig-
nificant differences in the percentage of callus induc-
tion (F = 69.1; p < 0.05) and plant regeneration (F = 23.7; 

p < 0.05), with the varieties Primogénita (FCA-INTA) and 
B101 exhibiting the best values (Fig. 3d).

Unfortunately, all regenerated plants were extremely 
enfeebled and did not survive green-house transfer so the 
ploidy level could not be determined.

Discussion

Androgenesis is the most widely used in vitro method of 
haploid induction (Kasha 2005). The in vitro culture of the 
whole immature anthers, containing microspores, is the sim-
plest method of haploid induction through the androgenetic 
pathway (Niazian and Shariatpanahi 2020) and is affected 
by many factors: genotype, donor plant growth conditions, 
microspore stage, pre-treatment of flower buds, culture 
media, type and concentration of growth regulators, among 
others (Sidhu and Davies 2005; Wang et al. 2018).

Table 1  Effect of flower buds cold pretreatment at 4  °C for 3  days, culture media containing different concentrations of 2,4-D (0, 0.5 and 
1 mg/L, Medium 1, 2 and 3, respectively) and 11 Pisum L. genotypes on the percentage of anthers producing calli (Callus percentage)

a Mean values 
b Ranks of 2 replicates with the same letter within a column are not significantly different at p ≤ 0.05 according to Kruskal–Wallis non-parametric 
variance analysis test
JI1006 Pisum fulvum Sibth. & Sm., JI1897 Pisum abyssinicum A. Br., JI203 Pisum sativum subsp. asiaticum Gov., Vir2521 Pisum sativum 
subsp. elatius (Bieb.) Aschers. & Graebn., JI804 Pisum sativum subsp. tibetanicum, JI205 Pisum sativum subsp. sativum var arvense (L.) Poir., 
B37, B101, Primogénita FCA, Aurelia and Reusitte Pisum sativum L. subsp. sativum var sativum

Genotypes Callus percentage (%)

Medium 1 Medium 2 Medium 3

without  colda 4 ºC for 3days without cold 4 ºC for 3days without cold 4 ºC for 3days

JI1006 0.00 b 0.00 a 14.29 b 6.00 a 18.75 b 0.00 c
JI1897 0.00 b 0.00 a 10.64 c 0.00 c 38.90 a 4.40 b
JI203 0.00 b 0.00 a 0.00 f 0.00 c 2.13 e 0.00 c
Vir2521 0.00 b 0.00 a 33.33 a 2.38 b 2.22 e 0.00 c
JI804 0.00 b 0.00 a 0.00 f 0.00 c 3.77 de 0.00 c
JI205 0.00 b 0.00 a 8.00 cd 2.78 b 20.00 b 0.00 c
B37 0.00 b 0.00 a 0.00 f 0.00 c 6.56 cd 0.00 c
B101 0.00 b 0.00 a 10.20 c 0.00 c 39.00 a 3.40 b
Primogénita FCA 0.00 b 0.00 a 14.89 b 7.30 a 16.00 b 14.80 a
Aurelia 3.00 a 0.00 a 6.25 d 0.00 c 3.70 de 0.00 c
Reusitte 0.00 b 0.00 a 2.22 e 2.13 b 10.00 c 5.00 b

Pretreatment N Median Ranksb H p

without cold 66 2.22 74.92 a 11.25 0.00057
4 ºC for 3 days 66 0.00 58.08 b
Medium
 1 44 0.00 38.73 c 5.96 0.01
 2 44 2.30 73.95 b
 3 44 4.68 86.82 a
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Stress actions are used for reprogramming microspores to 
the sporophytic path of development. In anther and micro-
spore culture the stress treatments influence the efficiency of 
androgenesis in plant species (Abdollahi and Rashidi 2018). 
Ochatt et al. (2009) obtained the best proliferation responses 
in pea with microspores isolated from anthers excised from 
flower buds that were stored at 4 ºC for at least 2 d in the 
dark before being sterilized. Bobkov (2010, 2014) also noted 
that treatment of pea buds with cold (4 °C) for more than 
48 h increased the number of microcalli. Conversely, in our 
study, cold treatment of flower buds at 4 ºC for 3 days was 
not beneficial for pea androgenesis induction. For cowpea 
also no cold pre-treatment was necessary for androgenesis 
induction (Croser et al. 2006).

With regard to the donor plant growth conditions, in 
soybean, for example, field-grown plants are routinely used 
(Cardoso et al. 2004; Rodrigues et al. 2004; Deswal 2018) 
however, the pea literature to date use flower buds collected 
from mother plants grown under controlled conditions 

(greenhouse, growth chambers or phytotrons). In our study 
we used flower buds collected directly from field material, so 
the donor plants were subjected to multiple abiotic stresses 
induced by nature such as low temperatures, periods of rain 
and drought and strong winds during the period of seedling 
development until the harvest of flower buds. As the donor 
plants were subjected to this set of environmental stresses, 
perhaps the subsequent pretreatment of the flower buds to 
the experimental conditions of cold for 3 days did not have 
a significant effect in the androgenesis induction. Grewal 
et al. (2009) and Ochatt et al. (2009) showed that there was 
a positive effect of pyramiding stress factors on the induction 
of embryo formation from intact anthers. The application 
of combined stress factors seems to be the way to overcome 
recalcitrance of legumes to androgenesis, likely mediated 
through increases in hormone levels in stressed anthers 
(Lulsdorf et al. 2011). Even though these reports in pea 
utilized pretreatments of floral buds ex-planta, in soybean, 
Garda et al. (2020) used floral buds in-planta that involved 

Fig. 3  Effect of different taxa within Pisum L. on the percentage of 
anthers producing calli (Callus percentage) and the percentage of 
calli producing plants (Plant percentage) without cold pretreatment 
of flower buds and on Medium 3 for callus induction. Different let-
ters indicate significant differences between genotypes (Tukey’s test, 
p < 0.05). a Different species of Pisum L.: Pisum fulvum Sibth. & 
Sm. accession JI1006, Pisum abyssinicum A. Br. accession JI1897 
and Pisum sativum L. represented by the mean value from accessions 
JI203, Vir2521, JI804, JI205, B37, B101, Primogénita FCA, Aurelia 
and Reusitte. b Different subspecies of Pisum sativum: subsp. asiati-

cum accession JI203, subsp. elatius accession Vir2521, subsp. tibet-
anicum accession JI804 and subsp. sativum represented by the mean 
value from accessions JI205, B37, B101, Primogénita FCA, Aurelia 
and Reusitte. c Different botanical varieties of Pisum sativum sub-
species sativum: var arvense accession JI205 and var sativum repre-
sented by the mean value from accessions B37, B101, Primogénita 
FCA, Aurelia and Reusitte. d Different commercial varieties of Pisum 
sativum subspecies sativum var sativum: B37, B101, Primogénita 
FCA, Aurelia and Reusitte
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the whole donor plant and indicated that androgenesis can 
be stimulated up to 9–12% induction frequency by the use 
of pyramidal stressors (a combination of an extended cold 
10 °C day/8 °C night shock in-planta for 3 days then over-
night cold shock at 4 °C, a series of incubation tempera-
tures from 11 °C to 18 °C to 25 °C, and nitrogen starvation 
medium). Ochatt et al. (2009) and Lüsdorf et al. (2011) also 
showed that high temperatures are detrimental to microspore 
viability but in contrast, cold storage was always beneficial, 
even for long periods of time without any detrimental effect 
on the subsequent viability of cultured anthers or the divi-
sion competence of cultured microspores. Islam and Tuteja 
(2012) observed the highest percentage of androgenesis 
induction and plant regeneration in wheat when spikes were 
subjected to drought stress for 3 h. In the current study, since 
periods of very low temperatures and drought and no peri-
ods of high temperatures were detected during the growth 
of the donor plants, these stress conditions could have been 
beneficial for the induction of androgenesis. A greater andro-
genic response also may be related to metabolic changes 
induced by the donor plants’ response to the cold shock as 
in the model Brassica system (Ferrie and Caswell 2011) 
and soybean system (Garda et al. 2020). In addition, since 
it was not need to perform pre-treatments in the laboratory, 
our protocol becomes a cheaper and simpler system, where 
mother plants can express their maximum potential, obtain-
ing more vigorous plants, with the production of a large 
number of flower buds.

The choice of plant growth regulator and relative 
auxin:cytokinin ratio is an important feature of androgen-
esis induction media (Croser et al. 2006). Lulsdorf et al. 
(2011) showed that phytohormones especially auxins play 
a major role in induction of androgenesis in legumes. In 
many anther culture systems, 2,4-D, is considered as one of 
the most important auxins, because it elicits rapid cell pro-
liferation and callus formation (Zheng and Konzak 1999). In 
our study, the medium with the highest 2,4-D concentration 
(Medium 3) was the most efficient to induce calli formation 
from the pea anthers. The positive effect of a high concen-
tration of 2,4-D on the frequency of callus production has 
also been reported in Cicer arietinum L. anther culture by 
Abdollahi and Rashidi (2018).

Croser et al. (2006) and Lulsdorf et al. (2011) determined 
that the critical factor in the development of an efficient 
androgenesis protocol is the identification of most respon-
sive genotypes. In our work we cultured anthers of 11 pea 
genotypes from the primary and secondary genepools under 
the same experimental conditions, and studied their compe-
tence to produce calli, shoots and roots. These genotypes 
constitute a good representation of the genetic variability 
found in the genus Pisum (Gatti et al. 2017).

With regard to the species and subspecies analyzed, 
Pisum fulvum is a wild species and P. sativum subsp. elatius 

is considered a wild line representative of the P. sativum 
species (Kosterin and Bogdanova 2015). In our study, 
although no clear correlation between calli induction and 
plant regeneration response was observed (Fig. 3), these 
two wild forms regenerated plants from anther culture with 
the highest efficiency probably suggesting that either this 
capacity was lost or the genes responsible for an increased 
in vitro regeneration competence were switched off during 
the domestication of these species. The genetic determinism 
of regeneration competence is still poorly understood; how-
ever, a number of genes have been identified that positively 
influence the competence of plant cells for somatic embryo-
genesis and/or adventitious shoot formation (Horstman et al. 
2017; Kumar and Van Staden 2019; Meng et al. 2019). Most 
of these genes have been identified in Arabidopsis and many 
of them encode transcription factors or proteins involved in 
signal transduction (Jha et al. 2020). Seguí-Simarro (2010) 
proposed that androgenesis perhaps is a developmental path-
way based on this capacity of ancient plant relatives, and 
currently displaced by the evolutionary advantages of sex-
ual reproduction. Thus, when the normal process of sexual 
reproduction is blocked or disturbed by isolating anthers, the 
plant will activate this ancient mechanism in order to ensure 
reproduction by any means.

In line with our results, peanut androgenesis was induced 
in the anther cultures of the cultivated species (Arachis 
hypogaea) and a diploid wild species (A. villosa). Even 
though the anthers of A. villosa underwent little proliferation 
to form calli, they regenerated a high percentage of shoots 
and plantlets (40–70%), whereas in A. hypogaea, there was 
a profuse proliferation to form a mass of callus but shoots 
were only occasionally formed (< 18%) (Bajaj et al. 1981). 
In solanaceous crops like potato (Solanum tuberosum), the 
induction of androgenesis by anther cultures of potato rela-
tives such as S. phureja (Teparkum and Veilleux 1998), 
S. acaule (Rokka et al. 1998) and S. chacoense (Hermsen 
1969) has been reported. Likewise, in tomato, Reynolds 
(1990) reported the production of callus, embryoids and 
regenerated plants from cultured anthers of wild tomato (S. 
carolinense) while all evaluations of the androgenic compe-
tence in commercial tomato cultivars to date showed null or 
very few positive results (Seguí-Simarro 2016). Conversely, 
with eggplant, androgenetic responses were only found in 
the cultivated form suggesting that unsought selection may 
have been done for higher androgenic response in breeding 
programs (Salas et al. 2011).

In pea the evolution of androgenesis has not been studied 
yet, even if evolutionary studies for other traits could help to 
corroborate our assumption. For example, evolution of early 
flowering under domestication was studied by Weller et al. 
(2012), who performed genetic analysis of the differences in 
flowering and photoperiod responsiveness between wild and 
domesticated pea and indicated a loss of function in genes 
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controlling responsiveness to photoperiod or vernalization. 
These changes reduce the length of the growth cycle, permit-
ting a shift from winter to spring cropping, the latter being 
found in cultivated pea types. Other traits selected during 
domestication and development of modern cultivated types 
include those that are determined by one or a few genes, 
such as “a” (lack of anthocyanin production) and “r” (wrin-
kled seed in garden types), which improved palatability, and 
“p” and “v” for the absence of sclerenchymatic tissue in 
pods (Smýkal et al. 2018b). Both morphological and genetic 
studies have identified P. sativum subsp. elatius and P. ful-
vum as wild germplasm in that they have dehiscent pods and 
seed dormancy (thick testa). In contrast, P. sativum subsp. 
sativum (including varieties arvense, transcaucasicum and 
asiaticum) are diagnosed by characters that are selected dur-
ing domestication, namely: non-dehiscing pods, absence of 
seed dormancy and seeds with a smooth, thin testa (Trněný 
et al. 2018). Domestication has also resulted in increased 
seed and pod size in pea (although not as markedly as in 
other crops) with a correlated increase in leaf size and stem 
strength (Weeden 2018). Also many of protease inhibitors 
have been reduced or eliminated during the domestication 
process (Smýkal et al. 2018b).

Pisum sativum is now generally viewed as a complex spe-
cies that includes a wide variety of cultivated forms beside 
the wild form (Smýkal et al. 2017; Trněný et al. 2018). With 
regard to the different genotypes cultivated of P. sativum in 
our study, the botanical variety arvense regenerated plants 
with the highest percentage (40%) being a good candidate 
to study androgenesis, at least in the conditions we used.

When comparing the different commercial varieties, 
some of them failed to regenerate shoots from the calli and 
others regenerated but with low frequencies demonstrating 
that the different pea genotypes are recalcitrant to anther 
culture. These results agree with those reported by Ochatt 
et al. (2009) who indicated that whatever the basal medium, 
treatment or culture conditions, genotype is the main factor 
governing androgenetic capacity in pea, when microspores 
are not exposed to any specific treatment. The commercial 
varieties showing the best performance in our studies were 
Primogénita FCA-INTA and B101 in terms of both calli and 
plant production. Also, they showed the best grain yield, 
earliness and morphological characteristics in the field as 
indicated INTA (2019).

In breeding, it is usual to exploit the natural variability 
present in related species. Wild relatives offer tremendous 
opportunities for improving a number of traits in cultivated 
legumes. Many interesting traits such as biotic and abiotic 
stress tolerance/resistance have been identified in wild rela-
tives and introgressed in cultivated pea (Pratap et al. 2018; 
Coyne et al. 2020). Based on results obtained here, we con-
sidered that the wild species P. fulvum and the wild form P. 
sativum subsp. elatius were highly responsive genotypes to 

anther culture, whereby it would be important to use these 
wild form and species as donor parents in hybridizations 
with P. abysinicum or with different commercial varieties 
of P. sativum to improve their androgenetic competence. 
In other species, such as with eggplant, Chakravarthi et al. 
(2010) established that some traits related to in vitro cul-
ture (callus initiation, embryogenic callus percentage, mean 
number of regenerated shoots per callus) are easily transfer-
able from related species to economically important, recal-
citrant cultivars. They showed that additive gene action was 
predominant for the in vitro characters and the regeneration 
of shoots from explants appears to be under strong genetic 
control. In another anther culture study, barley and potato 
high-responding genotypes were crossed with commercial 
varieties. The  F1 generation showed an intermediate reac-
tion between both parents, suggesting that the high response 
to anther culture is heritable (Wenzel and Foroughi-Wehr 
1984).

Within cultivated forms of P. sativum, it would be useful 
to explore the possibility of making crosses with P. sativum 
var arvense to transfer its androgenic competence to recal-
citrant genotypes of agronomic interest such as genotypes 
Primogénita FCA-INTA and B101. In doing so, it could be 
possible to obtain then pure lines that have earliness, and 
high yield from the genotypes Primogénita FCA-INTA and 
B101. Başay and Ellialtioğlu (2013) determined the andro-
genic capacity of some eggplant (Solanum melongena L.) 
commercial varieties and breeding lines, and established that 
androgenesis may be induced in the less responsive geno-
types by crossing them with more responsive genotypes.

Although the plants were regenerated with an uncer-
tain knowledge of their origin (i.e. haploid microspore vs. 
somatic anther wall tissue), the ultimate goal of our work 
was to identify within the genus Pisum potential sources 
of androgenic competence to introduce it into recalcitrant 
commercial varieties (which, to our knowledge, has not been 
achieved to date).

The present results are consistent with previous reports 
of difficulties in obtaining confirmed haploid shoots or 
plantlets, with most results stopping short of the recovery 
of pea plants (Croser et al. 2005, 2007; Sidhu and Davies 
2005), irrespective of the use of male organs (anthers) or 
reduced gametophytes (microspores) as starting material. 
Based in the pea bibliography to date (Gupta 1975; Croser 
and Lülsdorf 2004; Sidhu and Davies 2005; Ochatt et al. 
2009; Bobkov 2010, 2014; Lulsdorf et al. 2011; Ribalta et al. 
2012) where the recovery frequency of confirmed haploid 
pea plants through anther or microspore culture has been 
about 4% and 20% we could estimate the frequency of puta-
tive haploid plants that we would have obtained. The number 
of haploid plants ranged from 2 to 10 highlighting the geno-
types of P. fulvum, P. sativum subsp. elatius and P sativum 
subsp. sativum var arvense.
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Likewise, the confirmation of their haploid origin using 
an optimized methodology such as flow cytometry (Ochatt 
2008; Ochatt et al. 2011; Ribalta et al. 2012) is an impor-
tant challenge that must be addressed before pea androgen-
esis can be exploited in genetic breeding.

Data presented here form a solid basis for further 
efforts (currently under way) designed to improve these 
responses and also to extend the strategies developed to 
other genotypes and to microspores of these species. This 
investigation is part of an effort we are carrying to obtain 
more information on the androgenic competence of genus 
Pisum. It is our hope that our results will shed some light 
on this slow-developing but important field of research.

Conclusions

There was a great variation in the androgenic response 
among different genotypes in the genus Pisum exposed to 
the same set of inductive and cultural conditions.

The wild species P. fulvum and the wild form of P. sati-
vum (P. sativum subsp. elatius) were identified as potential 
sources of androgenetic competence useful to exploit and 
transfer this trait to the cultivated forms.

Pisum sativum subsp. sativum var arvense could be 
used to optimize the conditions for the anther culture pro-
tocol prior to widening its application to other genotypes, 
and also to induce androgenesis by crossing with recalci-
trant commercial varieties.
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