Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Transactions of the Institution of Chemical Engineers: : PartA

ISSN 0263-8762

Chemical Engineering
Research and Design

Official journal of the European Federation of Chemical Engineering PartA

Volume 88 Mumber 4 April 2010

IChemE

Trstnation o Charviel Engioaars

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429

Chemical Engineering Research and Design

Contents lists available at ScienceDirect

|IChemE

journal homepage: www.elsevier.com/locate/cherd

Systematic generation of a CAPE-OPEN compliant
simulation module from GAMS and FORTRAN models

Alejandro O. Domancich®%¢*, Virginia Perez®, Patricia M. Hoch"<, Nélida B. Brignole®°

@ Laboratorio de Investigacién y Desarrollo en Computacién Cientifica (LIDECC), UNS, Departamento de Ciencias e Ingenieria de la

Computacién, Av Alem 1253, Bahia Blanca 8000, Argentina

b UNS, Departamento de Ingenieria Quimica, Av Alem 1253, Bahia Blanca 8000, Argentina
¢ Planta Piloto de Ingenieria Quimica, CONICET Complejo CCT-UAT, Camino La Carrindanga km. 7 CC 717, Bahia Blanca 8000, Argentina

ABSTRACT

The adaptation of complex existing modules so that they meet the CAPE-OPEN (CO) standard is important in order
to take advantage of previous work done for the simulation of processes. In this work we present the design and
implementation of two different Operation-Unit (OU) modules that support the CO interface. Each resulting OU
satisfies the definitions and guidelines established by the standard. The first module consists of a CO-compatible
component for the steady-state simulation of a multi-bed ammonia reactor, whose original code had been written
in FORTRAN. The second one, which also supports the CO interface, it is a GAMS-compatible module of a reactive
distillation column. In order to develop these modules, an existing CO wizard that targets the mechanical generation
of the OU Package was used. This wizard generates a Visual Basic project that contains the OU’s source code and its
installation package. In particular, the calculation routine and the Graphical-Unit Interface (GUI) were implemented.
Before implementing the interfaces, an analysis of requirements for the correct interaction between the OU and
the other simulator components was carried out. Both modules embedded in HYSYS take advantage of its complete
property-package, which complements GAMS and FORTRAN in order to carry out the accurate computation of the

chemical and equilibrium properties.

© 2009 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Keywords: CAPE-OPEN; Process simulation; HYSYS; GAMS; Process-modeling components

1. Introduction

In the area of process engineering, there are a lot of general
mathematical models developed in commonly used software
(e.g. GAMS, Brooke et al., 2004, FORTRAN, FORTRAN Company,
etc.), that represent different items of chemical process equip-
ment. In many cases, most of these individual models have
turned out to be unnecessary for simulation purposes with
the emergence of modular sequential simulators (e.g. HYSYS,
Hyprotech, 2002 and Aspen, Aspentech), due to the complete
equipment libraries that they include, thus allowing the users
to simulate almost any process plant.

There is a disadvantage that arises when the plantincludes
a specific piece of equipment (e.g. a specialized chemical reac-
tor, or a complex distillation column), whose behavior cannot

be accurately represented by any of these general models
provided by the existing commercial modular sequential sim-
ulators. A tailor-made model should be developed in order to
solve these problems. Then, it is desirable to define a general
mechanism for the conversion of specific equipment models
into modules that can be installed or plugged in a sequen-
tial modular simulator. In this way, the user is able to take
advantage of the benefits of such programs by using their
complete library of equipment models and thermodynamic
packages, but without losing the possibility of including in
any plant simulation some self-modeled equipment. In short,
it is undoubtedly convenient to be able to couple the tailor-
made chemical process equipment with the other standard
unit models, in order to simulate the whole plant under the
same environment.

* Corresponding author at: Planta Piloto de Ingenieria Quimica, CONICET Complejo CCT-UAT, Camino La Carrindanga km. 7 CC 717, Bahia

Blanca 8000, Argentina.

E-mail address: adomancich@plapiqui.edu.ar (A.O. Domancich).

Received 2 September 2008; Received in revised form 10 July 2009; Accepted 29 July 2009
0263-8762/$ - see front matter © 2009 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.cherd.2009.07.022

422 CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429

The CAPE-OPEN (CO) standard provides a suitable envi-
ronment for this purpose because it enables the generation
of modules with plug-and-play facilities, but it lacks a well-
established methodology to aid the users to incorporate
tailor-made modules. CAPE is becoming a commonly used
integration tool applied in modern industry. From a commer-
cial point of view, CO permits competitive product develop-
ment. Moreover, it is attractive for software-developers that
build components for process industries, who are prone to
expand the number of applications where their products can
be executed. In addition, software companies and academic
institutions will be able to develop components and to transfer
them to the process industry field afterwards, in a straightfor-
ward manner.

In view of the above-mentioned considerations, it is desir-
able to develop some migration strategies that facilitate the
embedding of new process-modeling components within dif-
ferent simulation environments. In this work we present two
different migration strategies. In the first place, we developed
a strategy to embed a FORTRAN model in HYSYS. For this
methodology, we present the design and development of a
CO-compatible component for the steady-state simulation of
a multi-bed ammonia reactor. In order to develop this mod-
ule, the objects to be invoked were defined and the reactor
model was coded. The original code, which had been writ-
ten in FORTRAN, was encapsulated in a Dynamic Link Library
(DLL) and employed as an OU calculating routine. Both the CO-
compliant OU and the interfaces were implemented in Visual
Basic (VB), and then tested in the environment of a commercial
simulator.

In the second place, we describe a migration strategy to
design and implement a user-friendly GAMS-compatible mod-
ule. More specifically, a CO-compatible simulation component
for a reactive distillation column was developed. This module
was developed modifying the GAMS model in order to read
input values from a GDX file. An Excel file, which contains the
user-defined parameters and the incoming stream properties,
was created in the Graphical User Interface (GUI) written in
VB programming language. Afterwards, the GDX file was cre-
ated from the Excel file using the GDXXRW utility of GAMS.
Briefly speaking, we have attained the technical know-how
about the method to incorporate a user-defined item of equip-
ment that was both previously modeled and simulated via
GAMS.

The commercial simulator HYSYS was used in order to test
the developed components and both modules became avail-
able extensions on the list of operation units. Following both
strategies presented in this paper, the user will be able to
incorporate new process-modeling components within exist-
ing process-modeling environments. It will also be possible to
make the embedded models accessible to other applications.
Both modules embedded in HYSYS profit from its complete
property-package, which complements GAMS and FORTRAN
in order to carry out the accurate computation of the chemical
and equilibrium properties.

This paper begins with a description of the interoperabil-
ity CO standard, its main goals and its working environment.
From this point onwards, the possible migration strategies and
software tools available for this process follow. Then, the main
features of two cases of study (a reactor and a distillation col-
umn) are described. In each case, the VB code is reported and
the results obtained with the implemented modules are then
discussed. The final part of the document deals with the main
conclusions achieved.

2. CAPE-OPEN project

The CAPE-OPEN (CO) standards are the uniform rules to
interface process-modeling software components specifically
developed for the design and operation of chemical processes.
They are based on universally recognized software technolo-
gies such as Component Object Model (COM) and Common
Object Request Broker Architecture (CORBA). The CO stan-
dards are open, multiplatform, uniform and available free of
charge. They are described in a formal documentation set
(CAPE-OPEN Standards and Supporting Documents), which is
put forward by the CAPE-OPEN Laboratories Network (Co-LaN).

The primary purpose of CO-LaN is to promote the use and
development of the CO standards in Computer-Aided Process
Engineering (CAPE) software, and more generally to encourage
all actions aimed at facilitating the use of CAPE software tools
in industry, government agencies and academia. Some of CO-
LaN’s main activities are the following:

o the definition of user-friendly CO standards by working with
software vendors in order to clarify user priorities for the
development of process-modeling software component;

o the international promotion of the CO standards in order to
create commercially valuable modules;

o the supply of compliance testers in order to support com-
ponent development.

2.1. CAPE-OPEN vendors

In order to obtain better results when trying to solve a
particular problem, it should be possible to gain access to
both programs from several simulator providers and in-
house software that contains specific methods or data.
IK CAPE, CAPE-OPEN and GLOBAL CAPE-OPEN (Mayer and
Shoenmakers, 1998) are the major projects working on this
area. Their main features are the following:

e IK CAPE is a cooperation agreement of chemical compa-
nies. The main activities are the formulation of common
standards for either programming or interfaces.

e CAPE-OPEN (CO) is a project funded by European Com-
munity. Its partners are chemical and petrochemicals
companies (BASF, Bayer, BP, DuPont, Shell, Total, ICI, IFP,
etc.), universities (Imperial College, Institut National du
Petrole, RWTH Technische Hochschule Aachen, etc.) and
vendors (Aspentech, SinSci, Quantisci, etc.). The project pro-
motes an open environment for simulation with common
interfaces that should be independent from the vendors.
The main objective is to enable native components of a
simulator to be replaced with minimal effort by those
from another independent source, or by those coming from
another simulator (CAPE-OPEN Synthesis Report, 1999).
Then, the CO project aims at describing and publishing
agreed standards for the software-component development
of a process simulator.

e GLOBAL CAPE-OPEN is the extension of the CO concept to
a worldwide project that aims at the acceptance of those
standards for process-simulator interfaces and software.

2.2 Scope

The CO-Interface System’s architecture is based on an
object-oriented technology. It allows software systems to be

CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429 423

SIMULATOR
PME External External
Vendor Uo Vendors Thermo

Vendors

External
Numeric
Vendors

Fig. 1 - Integration of various CO tools.

constructed from various components that can relate to each
other via previously defined interfaces. These components
may be supplied by different vendors, and they may reside
on the same or different machines connected through a
network.

The basic structure in an architecture for a modular
process-modeling tools contains a process modeling executive
(PME), which is responsible for both the model construction
and the computations necessary to solve it. Fig. 1 shows the
interaction that takes place between the PME and any other
module. In this scheme, the PME is supplied by one vendor,
whereas all the process-modeling components (PMC) come
from different suppliers. It is contemplated that the CO system
requires the following kinds of objects:

e a Unit Object that represents the CO unit and provides meth-
ods for initialization, calculation and result reporting;

e a Simulator Object that provides services that an Operation
Unit needs;

o a Thermo Object that provides physical-property services;

e a Numerical Object that has numerical solvers.

The CO-Interface System is a standard means of connect-
ing an external software component, e.g. an Operation Unit
(OU), to any compliant simulator. The internal coding is like
a black box for both the simulator and the OU. The sys-
tem’s main function is to translate requests for information
or action. These interfaces could be implemented in various
different ways. CAPE-OPEN has chosen to adopt an object-
oriented approach that views each PMC as a separate object.
Communication between objects is handled by a middle-
ware, such as the Object Management Group’s (OMG) CORBA
(CORBA, 2005) and Microsoft’'s COM (Microsoft COM, 2005).
Thanks to the availability of these technologies, each software
objectis able to interact with others that are based on a formal
interface definition, which is expressed in standard languages.
The communicating objects may be run as either a part of the
same process or in different processes. Besides, the software
may reside on either the same device or different comput-
ers connected through a network, thus providing local/remote
transparency.

2.3. Operation-Unit interfaces

A modular-oriented unit operation has the following facilities
(CAPE-OPEN, 2001):

e Ports: They allow the OU module to be connected to other
modules and to exchange material or energy data, or any
other kind of information with them. Each material port has
a thermo material object associated to it. By using appropri-
ate methods of this object, the OU is able to get the thermo
and physical properties of the inlet and outlet flows. These
properties are a part of the property-package system.

o Parameters: They represent information that is not associ-
ated to the ports. Nevertheless, they are necessary because
the modules wish to expose it to their clients.

e User interface: It allows the user to configure each instance of
the module in an appropriate fashion. This interface should
be provided by the developer and it is out of the scope of the
standard.

e Reports: They present the results of the module’s computa-
tions. This feature does not form part of the standard.

The computation of an OU module is triggered explicitly
by its clients via the invocation of a method provided by the
unit operation object, which is called Calculate. There are
no agreed standards for this method, but a validation test
should be performed at this point. For example, the validity
status of the material objects connected to each port should be
checked.

Equation-oriented OU objects also have the same config-
uration. The key difference lies in the PME task. Instead of
carrying out any computation, the PME’s main responsibility
is to form and expose a set of mathematical equations and to
solve it by interacting with one or more numerical solvers.

3. Development of a CAPE-OPEN compliant
simulation module from a FORTRAN model

In this part of the paper, the design and implementation of
a CAPE-OPEN compliant simulation module, which was pre-
viously developed in FORTRAN, are described. The module
corresponds to a multi-bed ammonia reactor and, once it was
developed, it was tested in HYSYS.

3.1. Migration strategy

Since CO standards are a recent development, a lot of aca-
demic, commercial, or in-house CAPE software naturally do
not still comply with the CO standards (K6ller and Tébermann,
2002). The main problem that may arise is that source code
could have been written in a procedural programming lan-
guage, such as FORTRAN, where there is only a collection of
subroutines. This viewpoint of a complete bulky system is dif-
ferent from the one of the software component to be created.
This latter approach is focused on object-oriented techniques.
Therefore, a migration process is needed. There are mainly
two ways to do this: reimplementing from scratch or wrapping
existing code (Koller, 1999).

e Reimplement-from-scratch technique: This strategy seems to be
the simplest one. But special care must be taken when creat-
ing the new system. Although the original system may have
been used and tested for a long time, the software created
from scratch may have a lot of errors resulting in system
crashes or, what is even worse, in inconsistencies between
the behavior of the old and the new implementation. Find-
ing and fixing these bugs will surely take a lot of resources.
Therefore, this strategy seems to be very dangerous and
expensive.

424 CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429

e Wrap-existing-code technique: Applying this technique the
system can be migrated without changing the source code.
In this case, the FORTRAN code is treated as a black box
whose functionality is used, but it is ignored how this func-
tionality is implemented. An object-oriented shell around
this black box is provided to integrate the system into the
component-based framework. This shell is implemented
using an object-oriented language, such as Java or C++.
Based on this shell, a CORBA layer is provided to make
the functionality available to the outside. This layer is also
implemented in Java or C++.

Leaving source code untouched is a way to avoid intro-
ducing new bugs to the system’s core functionality. Another
advantage of this strategy is that code optimization is no
longer necessary because it was already done by the original
developers.

Taking all its benefits into account, the Wrap-existing-code
strategy was chosen for this project. Some specialized tools
become necessary for the implementation of this technique.

In the GLOBAL CAPE-OPEN project a number of tools have
been developed to support the implementation of CAPE-OPEN
components (Kéller and Tébermann, 2002). All these tools are
wizards that can produce source code skeletons for CAPE-
OPEN components, thereby relieving the developer from the
implementation of everything that is conceptually repeated
in almost every CAPE-OPEN component. One of these wiz-
ards that targets the mechanical generation of Operation-Unit
Package, was used in the present project. This wizard gener-
ates a Visual Basic project containing the source code of the
OU and the installation package for other machines. In partic-
ular, the calculation routine and the Graphical-Unit Interface
are not generated. It is the developer’s responsibility to pro-
vide this code. The OU generated will be compatible with the
0-9-3 version of the CO standard.

As we have seen so far, migration requires the integration
of code pieces that have been implemented in different pro-
gramminglanguages. Each of these languages has its own data
structures and data types and each one has different calling
conventions for procedures, subroutines or functions (Koller
and Tébermann, 2002). To overcome these differences a bridg-
ing technology is needed. A piece of software that may be an
executable, a library, a piece of source code, or macros, is used
to call legacy routines that reside in a compiled library in the
new source code. The bridging approach clearly separates old
and new code, thereby facilitating the maintenance of both
subsystems.

One of these technologies is the Dynamic Link Libraries
(DLL), which is employed in this project. Creating a DLL
allowed us to call a FORTRAN subroutine from Visual Basic
(Fig. 2) without using additional code.

3.2. Study case: A simple chemical reactor

3.2.1. Description

The reactor used as case of study is a plug-flow unit and is
assumed to be isothermal with fixed conversion (Byke and
Grossman, 1985). The kinetics of the ammonia synthesis reac-
tion over a double-promoted iron catalyst is described by the
following rate equation:

N> +3Hy & 2NH;3

The reactor must be cooled to prevent the temperature
of the catalyst from rising above 800K, its deactivation tem-

FORTRAN 77

FORTRAN DLL

Fig. 2 - Wrapping FORTRAN code.

perature. An inlet temperature of 703K and a heat transfer
coefficient of 19,644 kJ/h K are sufficient to maintain the cata-
lyst temperature below 800K.

Conversion varies directly with catalyst volume inside the
unit. For a given catalyst volume there is a single heat transfer
coefficient (UA) whose value corresponds to a maximum con-
version. UA dictates the rate that the heat can be withdrawn at
from the reactor. For low values of UA, the heat generated by
the reaction builds up rapidly in the reactor, a hot spot occurs
near the feed point and most of the catalyst volume becomes
inactive. As a result, the conversion is low. For high values
of UA, the rate of heat removal is large enough to slow the
reaction rate, thus decreasing the conversion.

Private Sub ICapeUnit_Calculate()
‘Declare private variables

'Gets connected ports

Set PORTIN = GetPort("PORTIN")

Set PORTOUT = GetPort("PORTOUT")

'Gets material objects associated to the ports

Set materialln = PORTIN.connectedObject

Set materialOut = PORTOUT.connectedObject

'Gets components ids and number of components

Components = materialln.Componentlds

NumComponents = materialln.GetNumComponents

'Gets the total flow and partial flows of the input

flowIN = materialln.GetProp("flow","Overall”,Components,vbNullString, "mole"™)
totallN = materialln.GetProp("totalFlow","Overall",Empty,vbNullString, "mole")
Gets the temperature and pressure of the input

T = materialln.GetProp("temperature”, "Overall", Empty, vbNullString, Empty)
P = materialln.GetProp("pressure”, "Overall", Empty, vbNullString, Empty)
'Gets the values of the parameters

'Calculates input parameters for the DLL routine

‘Calls the DLL routine
Call DLL_QBED(XIN, XOUT)
'Sets outport temperature and pressure from the output parameter XQUT

materialOut.SetProp "temperature”, "Overall", Empty, vbNullString, Empty, TOUT
materialOut.SetProp "pressure”, "Overall”, Empty, vbNullString, Empty, POUT
‘Sets total and partial flow of outport from the output parameter XOUT

materialOut.SetProp "flow”","Overall",Componentes,vbNullString, "mole”, flowOQUT
materialOut.SetProp "totalFlow","Overall",Empty,vbNullString,"mole", totalOUT
End Sub

Fig. 3 - Visual Basic code implementing a reactor Unit
Operation.

CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429 425

Fle Edt Simulstion Floweheet Tools Window Help

Dol Cmak =X ow i

Environment: Caze (Mai
Made: Shn‘!%{:\]vs

| ——— o

Categoties—————— r-Available Unil Operations——

Al Unit Ops: CAPE-OPEN Urit 1 e 1 3t
£ Vessels

" Heat Transter Equipment
€ Rotating Equipment
 Pping Equipment

" Soids Handing

" Reaclors

€ Prebuilt Columns

" Short Cut Columns

=10lx]
© [Defak Colou Scheme]

and M abarial f

PORTIN

falpseandn [PORTOUT

Pottype |Direction | Matetial name
aterial Inlet
Material Qutlet

-=FFB1|

Material Connections

Urit Variebles il General il Themmo

Optional Indo - .. ~ Unknown Temperature
Optional Info : ... ~ Unknown Pressue

Optionallnfo : .. ~ Unknown Compositions [

‘Show Urit GLI é]

Not Solved

[Holang.. |

|ar=

Fig. 4 — CO Operation Unit available at HYSYS.

3.2.2. Source code considerations

The original code for the simulation of the reactor is written in
FORTRAN 77 for the VAX 11/780 (Byke and Grossman, 1985). It
invokes an IMSL library routine, called Dgear, in order to inte-
grate the model’s differential equations. The new version of
the IMSL library includes this routine under a different name
and with some additional features. This new routine is called
Ivpag and it was the one employed in this project.

Another modification added to the original code involved
the interaction with the user. The source code already had a
user interface that was removed because it overlapped with
the OU functionalities. It became the OU responsibility to
obtain and check the input parameters and to display the
results in an appropriate way.

3.3. Results

Once the FORTRAN code had been tested and wrapped into
a DLL, the OU was created. This OU presents the following
features:

e There are two available material ports, INPORT and OUPORT.
The material object connected to the INPORT carries the
initial flow rates of hydrogen, ammonia, nitrogen, water,
methane and argon. It also provides the feed temperature
and pressure. The OUTPORT flow rates, temperature and
pressure are specified by the unit.

e A set of parameters specify the remaining data that must
be provided to the calculating routine.

3.3.1. Visual Basic code of the reactor module

A pseudo-code’s core of the calculation routine for the reac-

tor’s OU that relates FORTRAN with HYSYS is shown in Fig. 3.
Unit conversions were added in this OU calculation routine.

This was necessary because CO specifies certain units strictly

for temperature, pressure, flows and so on. Since these units

differed from the ones used in the FORTRAN code, the appro-

priate transformation was included. In addition, the names of
the components had to be properly written in order to agree
with those from the standard. All this information is available
at the Thermodynamics and Physical Properties document
(CAPE-OPEN, 2002).

3.3.2. Reactor module tested in HYSYS

The CO-compliant OU developed was successfully installed
and it became available in HYSYS as an extension to the OU
list (Fig. 4).

In order to test this new OU, it was installed in an ammonia
plant simulated with HYSYS. This plant used a reactor pro-
vided by the mentioned simulator that implements a model
different from the one presented in the study case (Byke and
Grossman, 1985). This is the reason why differences in the val-
ues between the simulation runs and the case study results
arose. Then, the HYSYS’ reactor was replaced by the CO com-
ponent developed and simulation runs were analyzed. The
obtained results were similar to those from the case study,
thus demonstrating that the whole simulation works success-
fully using the CO unit. Table 1 shows a comparison between
the results obtained before incorporating the CO UO and after
doing so (Fig. 5).

Table 1 - Comparison between the results obtained for

the ammonia plant before incorporating the CO UO and
after doing so.

Variable Without With
CO Uo CO U0
Reactor conversion (%) 24.41 27.91
Reactor temperature (K) 702.9 697.6
Reactor heat exchanged (Kcal/h) 4.181e7 4.208e7
Total plant production (kg NHz/h) 54,630 55,170
Product purity (specified variable) 0.9995 0.9995

Plant purge gas (kg No/h) 4944 6385
Plant extracted water (kg/h) 909.6 846.0

426 CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429

PFD - Case (Main)

Hye Hid oA7 B

@ [Defack Colou Scheme]

Fig. 5 — CO Unit Operation in a HYSYS simulation case.

4, Development of a CAPE-OPEN compliant
simulation module from a GAMS model

In this section, the design and implementation of a
user-friendly GAMS-compatible module that supports the
CAPE-OPEN (CO) interface were carried out. A CO-compatible
simulation component for a reactive distillation column was
developed. HYSYS was employed in order to test the developed
component, which became an available extension on the list
of operation units.

4.1. Migration strategy

4.1.1. Software embedment

In order to obtain a CO-compliant module of the reactive
distillation column we used the CO Unit Operation Wizard
described in Section 3.1.

In the first place, the distillation column model was devel-
oped and tested in the General Algebraic Modeling System
(GAMS), which is a high-level modeling system for mathemat-
ical programming and optimization. As the wizard-generated
code was written in Visual Basic, a code migration was
required to integrate the pieces of code that had been imple-
mented in different programming languages.

The original GAMS code was modified, in order to obtain
simulation data from an external source. For this purpose the
GDX (GAMS Data Exchange) was used (GAMS, GDX). This facil-
ity provides a utility called GDXXRW that allows reading and
writing data of an Excel spreadsheet. The OU code generated
creates an Excel spreadsheet with all the necessary input data
and then calls GDXXRW before running the GAMS model. Once
the model is solved, the output data is written into another
Excel spreadsheet so it can be read from OU Visual Basic code

(Fig. 6).

4.1.2. Steps on how to embed existing software

In order to develop a CO Operation Unit from an existing
GAMS model, some small modifications should be done in
the original GAMS code. For instance, all the user-defined data
must be provided from an external file. Our approach for data
input consists in creating an Excel file (i.e., datain.xls) with

all the user-defined data, and then creating a GDX file (i.e,,
datain.gdx) using the GDXXRW tool.

GAMS code should include the following:

$GDXIN datain.gdx (load the GDX file)

SET VAR1 (*) (define a variable)
$LOAD VAR1 (load the value from the external file)

Once the GAMS code has been tested in GAMS IDE, we
developed a CO Operation Unit using the Wizard tool provided
by CO project.

The Visual Basic code generated by the wizard was modi-
fied in order to create the Excel file with input data and to call
GAMS IDE. Visual Basic code should include the following:

x =CreateProcessA(0&, “gams.exe model.gms”, 0&, 0&,

1&,

NORMAL_PRIORITY_CLASS, 0&, 0&, NameStart,
NameOfProc)
(call to model.gms)

x = WaitForSingleObject(NameOfProc.hProcess,
INFINITE)

x = CloseHandle(NameOfProc.hProcess)

In summary, the steps to embed an existing GAMS model
in HYSYS are the following:

(A) In GAMS, develop and test the unit operation model.

(B) Use the CO Unit Operation Wizard in order to generate a
Visual Basic project containing:

GDXXRW

Input Data $GDXIN

Visual Basic Excel

code spreadsheet R

GAMS code

Output Data GDXXRW $GDXOUT

Fig. 6 - Bridging approach.

CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429

427

(a) Conventionnal process

Rectifyiing

3 Section

Reaction
Section

Stripping
Section

c4
(b) Reactive distillation

Fig. 7 - (a) Conventional process and (b) reactive distillation.

- the source code of the Operation Unit (OU);
- the installation package. This enables the unit to be
installed in other machines.

(C) Modify the original GAMS code in order to obtain simu-
lation data from an external source. For this purpose the
GDX (GAMS Data Exchange) is used.

(D) The GDX facility provides a utility called GDXXRW that
allows reading and writing data of an Excel spreadsheet.

4.2. Case study: A reactive distillation column

4.2.1. Description

To take advantage of the existing software, we concentrated on
a complex model for a reactive column that had been built and
tested in advance (Domancich et al., 2007). Reactive distillation
is a hybrid operation that combines two key tasks in chemical
engineering, i.e., reaction and separation processes (Almeida-
Rivera et al., 2004). Considering the next reversible reaction
scheme:

C1+Cr« C3+Cy

where the boiling points of the components follow the
sequence Cy, C3, C4 and Cy, the traditional flow-sheet for this
process consists of a reactor and a sequence of distillation
columns (Fig. 7a). Components C; and C, are fed to the reac-

1°) The VB code receives all the necessary
mput data from HYSYS process
simulation

2°) The OU code creates ar Excel
spreadshest vzith the receved information

3°) The OV code calls GDXXRW in order
to generate a GDX file

4% GAMS solves the model.

5% GAMS writes the output data in

another Escel spreadsheet so that ¢ can be
read from OU.

6°) Visual Basic code transfers the results
to HYSYS simulation

N Y N

®sstecscsesrrsssrrsssssrrrtsseitts eI RREERIIRREIERRTS

tor, where the equilibrium reaction takes place in the presence
of a catalyst. A distillation train is required to produce C3 and
Cq4, which are obtained as pure products. An alternative for
this process is the use of a reactive distillation column.

The reactive distillation column, see Fig. 7b, integrates
reaction and separation and offers the possibility to overcome
constraints given by chemical and phase equilibrium. It con-
sists of a reactive section in the middle with non-reactive
rectifying and stripping sections at the top and bottom. The
task of the rectifying section is to recover reactant C, from
the product stream Cs. In the stripping section, the reactant
C1 is stripped from the product stream Cs. In the reactive sec-
tion the products are separated, driving the equilibrium to the
right and preventing any undesired side reactions between the
reactants with any of the products. For a properly designed
column, virtually 100% conversion can be achieved.

4.3. Results

Once the Visual Basic code was tested, the OU was installed
in HYSYS and it became available as an External Unit. Fig. 8
shows how the data are transferred between HYSYS and
GAMS.

In summary, the HYSYS OU, which was naturally pro-
grammed in Visual Basic, calls GAMS, where the OU
mathematical model should be previously introduced. It is

Fig. 8 - Data-transfer cycle between HYSYS and GAMS.

428

CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429

[IGAMS process initialization

NameStart.IpTitle = "VB GAMS"

NameStart.dwFlags = STARTF_USESHOWWINDOW

NameStart. wShowWindow = SW_SHOWDEFAULT

NameStart.cb = Len(NameStart)

/I datain.gdx file creation

x = CreateProcessA(0&, "C:\Program Files\GAMS21.5\GDXXRW datain.xls set=i
rng=etapas!B1:R1 cdim=1 par=etapas rng=etapas!A1:R5 cdim=1 rdim=1 set=val

rng=valores!A1:R1 cdim=1 par=valores mg=valores!A1:R2 cdim=1 par=portin
rng=portin!A1:J5 rdim=1 cdim=1 set=j mg=portinlA2:A5 rdim=1 par=aw
rng=alA1:E5 cdim=1 rdim=1 par=bw rng=b!A1:E5 cdim=1 rdim=1 par=antoine
rng=antoine!A1:D5 cdim=1 rdim=1 par=cp rng=cp!A1:E5 cdim=1 rdim=1", 0&, 0&,

If x <> 1 Then

Err.LastDIError
End If

x = CloseHandle(NameOfProc.hProcess)

/IGAMS call

If x <> 1 Then

End If

x = CloseHandle(NameOfProc.hProcess)
Il dataout.xls file creation

NameOfProc)
If x <> 1 Then

Err.LastDIIError
End If

x = CloseHandle(NameOfProc.hProcess)

1&, NORMAL_PRIORITY_CLASS, 0&, 0&, NameStart, NameOfProc)

MsgBox "CreateProcess GDXXRW in failed. Error: " &

x = WaitForSingleObject(NameOfProc.hProcess, INFINITE)

x = CreateProcessA(0&, "C:\Program Files\GAMS21.5\gams.exe modelo.gms", 0&,
0&, 1& NORMAL_PRIORITY_CLASS, 0&, 0&, NameStart, NameOfProc)

MsgBox "CreateProcess GAMS failed. Error: " & Err.LastDIIError

x = WaitForSingleObject(NameOfProc.hProcess, INFINITE)

x = CreateProcessA(0&, "C:\Program Files\GAMS21.5\GDXXRW dataout.gdx var=x
rmg=x! var=y rng=y! var=| rng=I! var=v mg=v! var=FD mg=FD! var=T rng=T!

var=rx rng=rx! var=Qcond rng=Qcond! var=Qreb rng=Qreb! var=conversion
rng=conversion! ", 0&, 0&, 1& NORMAL_PRIORITY CLASS, 0&, 0&, NameStart,

MsgBox "CreateProcess GDXXRW out failed. Error: " &

x = WaitForSingleObject(NameOfProc.hProcess, INFINITE)

Fig. 9 - Visual Basic code implementing a reactive distillation Unit Operation.

important to note that GAMS solves that model, and sends the
results back to HYSYS. These results may be used by HYSYS as
the entry to any other equipment entries in order to continue
with the complete simulation of the process plant.

4.3.1. OU Visual Basic code

Fig. 9 shows a relevant part of the pseudo-code of the calcu-
lation routine that relates GAMS with HYSYS for the column’s
Oou.

5. Conclusions

The present document aimed at identifying the primary
concepts and tools that should be used when building a
CO-compliant module. The methods for software embedding
described in this paper are useful for the industry, where
HYSYS has become widespread. For simulation purposes,
HYSYS provides a lot of general models. In contrast, there
are some dedicated, accurate, specific models in any plant,

which the process engineers need to include in their simu-
lation. Thanks to our methodology, the engineers can take
advantage of their accurate models, which surely demanded
hard efforts for their development. We have developed meth-
ods to incorporate two different user-defined process units.
The first one was both previously modeled and simulated
via FORTRAN, whereas the second one was previously imple-
mented via GAMS. In this way, it is possible to make any
FORTRAN or GAMS model compatible with HYSYS. More-
over, there is access to the complete HYSYS property-package,
which is lacking in these programming languages. This facility
enables to carry out the accurate computation of the chemi-
cal and equilibrium properties. It is advantageous because the
cumbersome procedure of adding thermodynamic equations,
correlations and property data in the original mathematical
models can be avoided.

From an academic point of view, CAPE-OPEN allows new
theoretical developments to be implemented and tested
together with qualified software components. New modules

CHEMICAL ENGINEERING RESEARCH AND DESIGN 88 (2010) 421-429 429

are able to use external software components, such as data
bases with thermodynamic properties of the simulator. These
components may come from a different source, thus improv-
ing the final product quality and reducing implementation
time and cost.

From a commercial point of view, CO permits competi-
tive product development. Companies that develop software
components for process industries will expand the number
of applications where their products can be executed. In
addition to this, software companies and academic institu-
tions will be able to develop components and then transfer
them to the process industry field in a straightforward
manner.

The development of CO-compliant software involves inter-
action between two main disciplines: Computer Science and
Process Engineering. This knowledge complementation is
necessary because Software expertise (DLL, Object-Oriented
Programming, etc.) is required and details of the process to
be implemented should be deeply and properly understood.
Then, it should be noted that the migration process is a
complex task, while the generalized automation is practi-
cally unfeasible because there are a lot of diverse individual
cases.

Acknowledgments

We gratefully acknowledge the economic support given by
the Consejo Nacional de Investigaciones Cientificas y Técni-
cas (CONICET) through grant PIP 5930. We would like to thank
the Agencia Nacional de Promocién Cientifica y Tecnoldgica,
SeCyT, Argentina, for their Grants: PICTO UNS 917, and Grant
No. 11-12778, which are part of the “Programa de Modern-
izacién Tecnoldgica”, Loan Contract BID 1728/0OC-AR.

References

Almeida-Rivera, C., Swinkels, P. and Grievink, J., (2004). Designing
reactive distillation processes: present and future. Comput.
Chem. Eng,, 28: 10.

Aspentech, http://www.aspentech.com.

Brooke, A., Kendrick, D., Meeraus, A. and Raman, R., (2004).
GAMS: A User’s Guide.

Byke, S. and Grossman, I., (1985). Design of an Ammonia Synthesis
Plant Department of Chemical Engineering. (Carnegie-Mellon
University, Pittsburgh, PA).

CAPE-OPEN Synthesis Report, (1999). Available at http://www.
colan.org.

CAPE-OPEN Open Interface Specifications—Unit Operations,
(2001). Available at http://www.colan.org.

CAPE-OPEN Open Interface Specifications—Thermodynamics and
Physical Properties, (2002). Available at http://www.colan.org.

CAPE-OPEN Standards and Supporting Documents. Available at
http://www.colan.org.

CORBA Object Management Group, (2005). http://www.omg.org/
corba.

Domancich, A., Brignole, N. and Hoch, P,, (2007). Optimal
structure of reactive and non-reactive stages in reactive
distillation processes, in Chemical Engineering Transactions,
Jiri Klemes, (ed). (AIDIC Servizi S:R.L)

FORTRAN Company. http://www.fortran.com.

GAMS GDX facilities and tools. Available at http://www.gams.
com.

Hyprotech., (2002). HYSYS User Guide.

Koller, J., (1999). Migration Methodology Handbook. Available at
http://www.colan.org

Koller, J. and Tobermann, J., (2002). Migration Cookbook. Available
at http://www.colan.org

Mayer, H. and Shoenmakers, H., (1998). Application of CAPE in
industry—status and outlook. Comp. Chem. Eng., 22: 1061.

Microsoft COM, (2005). Available at http://www.microsoft.com/
com.

