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a b s t r a c t

A free water surface constructed wetland (CW) designed for effluent treatment was dominated by the
emergent macrophyte Typha domingensis reaching a cover of roughly 80% for 5 years. Highly efficient
metal and nutrient removal was reported during this period. In June 2009, a population of approximately
30 capybaras (Hydrochoerus hydrochaeris) caused the complete depredation of the aerial parts of mac-
rophytes. However, plant roots and rhizomes were not damaged. After depredation stopped,
T. domingensis showed a luxuriant growth, reaching a cover of 60% in 30 days. The objective of this work
was to evaluate the sustainability of the CW subjected to an extreme event. Removal efficiency of the
system was compared during normal operation, during the depredation event and over the subsequent
recovery period. The CW efficiently retained contaminants during all the periods studied. However, the
best efficiencies were registered during the normal operation period. There were no significant differ-
ences between the performances of the CW over the last two periods, except for BOD. The mean removal
percentages during normal operation/depredation event/recovery period, were: 84.9/73.2/74.7% Cr; 66.7/
48.0/51.2% Ni; 97.2/91.0/89.4% Fe; 50.0/46.8/49.5% Zn; 81.0/84.0/80.4% NO3

- ; 98.4/93.4/84.1% NO2
- ; 73.9/

28.2/53.2% BOD and 75.4/40.9/44.6% COD. SRP and TP presented low removal efficiencies. Despite the
anoxic conditions, contaminants were not released from sediment, accumulating in fractions that proved
to be stable faced with changes in the operating conditions of the CW. T. domingensis showed an excellent
growth response, consequently the period without aerial parts lasted a few months and the CW could
recover its normal operation. Plants continued retaining contaminants in their roots and the sediment
increased its retention capacity, balancing the operating capacity of the system. This was probably due to
the fact that the CW had reached its maturity, with a complete root-rhizome development. These results
demonstrated that faced with an incidental problem, this mature CW was capable of maintaining its
efficiency and recovering its vegetation, demonstrating the robustness of these treatment systems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

CWs have been used for the treatment of industrial effluents,
urban and agricultural stormwaters, mine waters, etc. (Hammer,
1989; Kadlec and Knight, 1996; Kadlec and Wallace, 2009; Maine
et al., 2007, 2009; Moshiri, 1993; Song et al., 2006; Vymazal et al.,
1998; Vymazal, 2011).

Sediment is the main responsible for contaminant removal from
waters in wetlands (Di Luca et al., 2011a,b; Golterman, 1995;
Machemer et al., 1993; Maine et al., 2009; Wood and Shelley, 1999).
However, sediment can release or retain contaminants according to
environmental conditions (Boström et al., 1985). The availability of

metal and P retained in sediment depends on redox conditions, pH
(Boström et al., 1985; Gambrell et al., 1991; Lefroy et al., 1993;
Maine et al., 1992), organic matter content (Wood and Shelley,
1999), etc. Contaminant dynamics also depends on the chemical
forms inwhich they are retained by sediment, which are studied by
sequential extraction schemes.

In addition to the importance of sediment, macrophytes are key
components of natural and constructed wetlands. Emergent mac-
rophytes are able not only to take up contaminants in their tissues
but also to influence the biogeochemical cycles of the sediment,
due to their capacity to transport oxygen to the rhizosphere influ-
encing the sediment redox conditions (Barko et al., 1991; Sorrel and
Boon, 1992). Many studies comparing planted and unplanted sys-
tems were carried out, but they often led to conflicting results
regarding the importance of plants (Calheiros et al., 2007; Lee and
Scholz, 2007; Vymazal, 2011).
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Wetland plants are exposed to animal depredation. A wide va-
riety of mammals reside in or visit treatment wetlands (Kadlec and
Wallace, 2009). Small rodents, most of which are herbivorous
species that graze on plants, are commonly found in CWs. However,
it is larger rodents, as muskrats, that have been proven problematic
in many treatment wetlands. Muskrats (Ondatra zibethica) cut large
number of emergent herbaceous plants (Latchum, 1996). This
grazing can change treatment wetland areas from densely vege-
tated to a patchwork of open and emergent areas (Kadlec et al.,
2007). Nutrias (Myocastor coypus) cause problems as muskrats do.
However, no designed research studies have been conducted to
quantify the effects of rodent depredation onwetland performance
(Kadlec and Wallace, 2009). In this paper, the removal efficiency of
a free water surface CW planted with Typha domingensis was
compared considering normal operation, an herbivorous depre-
dation event and the subsequent recovery period. In the CW
studied, T. domingensis became the dominant species covering 80%
(55e95%) of the wetland surface for approximately 5 years. Highly
efficient metal and nutrient removal was reported during this
period (Maine et al., 2009). In June 2009 a population of approxi-
mately 30 capybaras (Hydrochoerus hydrochaeris) caused the com-
plete depredation of the aerial part of the macrophytes. Capybaras
are pig-sized tailless South American amphibious rodents, which
are the largest rodent known in the world, with a mean weight of
80 kg. The wetland looked like a scarce vegetated pond (5% plant
cover). However, the roots and rhizomes of T. domingensiswere not
damaged. In November 2009, the wetland was fenced with wire to
stop animals from approaching. Subsequently, T. domingensis
showed a luxuriant growth that was also enhanced by the growth
season, reaching a cover of 80% after 30 days. The objective of this
work was to compare wetland efficiency in contaminant removal
considering the normal operation period (Feb. 2005eMay 2009),
the depredation period with plants without aboveground parts
(Jun. 2009eNov. 2009) and the subsequent recovery period (Dec.
2009eSep. 2010).

1.1. Study site

A free-water surface wetland was constructed at a metallurgic
plant located in Santo Tomé, Santa Fe, Argentina (S 31� 400; W 60�

470). The wetland covers an area of 2000 m2 with a water residence
time ranging was 7 days. Mean wastewater discharge was
100 m3 d�1. Further details were provided by Maine et al. (2007).
Emergent and floating, locally abundant macrophyte species were
transplanted into the wetland at the beginning of the operation
period, in 2003, but only T. domingensis persisted. T. domingensis
aerial parts have been harvested annually to ensure an optimal
growth after the winter season. Industrial wastewater and sewage
are treated together (25 m3 d�1 of sewageþ 75 m3 d�1 of industrial
wastewater), to improve the ability of macrophytes to take up
heavy metals from wastewater (Hadad et al., 2006, 2007).

2. Materials and methods

The study was divided in three periods: 1) normal operation
(Feb. 2005eMay 2009), 2) depredation period without aerial parts
of T. domingensis (Jun. 2009eNov. 2009) and 3) recovery (Dic.
2009eSep. 2010).

2.1. Water

Monthly samplings of the influent and effluent were performed.
Samples were collected in triplicate. Conductivity was measured
with an YSI 33 conductimeter, dissolved oxygen (DO) with a Horiba
OM-14 portable meter and pH with an Orion pH-meter. Water

samples were filtered through Millipore membrane filters
(0.45 mm) for soluble reactive P (SRP) and N determinations.
Chemical analyses were performed following APHA (1998); NO2

�

was determined by coupling diazotation followed by a colorimetric
technique. NH4

þ and NO3
� by potentiometry (Orion ion selective

electrodes, sensitivity: 0.01 mg l�1 of N, reproducibility: �2%). SRP
was determined by the colorimetric molybdenum blue method
(Murphy and Riley, 1962). Total phosphorous (TP) was determined
after sulfuric acidenitric acid digestion followed by SRP determi-
nation in the digested samples. Ca2þ was determined by EDTA
titration. Alkalinity (carbonate and bicarbonate) was measured by
HCl titration. Cl- was determined by the argentometric method.
SO4

2- was assessed by turbidimetry. Chemical oxygen demand
(COD) was determined by the open reflux method and biochemical
oxygen demand (BOD) by the 5-Day BOD test. Total Fe, Cr, Ni and Zn
concentrations were determined in water samples by atomic ab-
sorption spectrometry (by flame or electrothermal atomization,
according to the sample concentration, Perkin Elmer AAnalyst 200).

2.2. Sediment

Sediment samples were collected monthly using a 3-cm diam-
eter PVC corer and stored at 4 �C until analysis. Redox potential (Eh)
and pH of the bulk sediment layers were measured in situ with an
Orion pH/mV-meter. Organic matter (OM) was determined by
weight loss on ignition at 550 �C for 3 h. Each sediment sample was
analyzed according to the sequential extraction proposed by
Golterman (1996) for P fractionation and by Tessier et al. (1979) for
metal fractionation. Sediment samples were oven-dried at 45 �C
until constant weight was reached and ground using a mortar and
pestle. Subsequently, they were sieved through a 53 mm sieve prior
to sequential extraction of metals. For TP ormetal analyses, samples
were digested with a HClO4:HNO3:HCl (7:5:2) mixture. These di-
gests and the extracts obtained from the sequential extraction
procedurewere analyzed for Cr, Ni and Zn and by atomic absorption
spectrometry (Perkin Elmer, AAnalyst 200) using an air-acetylene
flame. In the case of TP, SRP was determined in the extracts and
in the digested samples (Murphy and Riley, 1962).

2.3. Macrophytes

Macrophytes were sampledmonthly. Four replicates were taken
randomly at the inlet in each sampling. Themacrophytes were then
separated between above (stems and leaves) and belowground
parts (roots and rhizomes). TP, Cr, Ni and Zn in above and below-
ground parts were determined in the same way as in the sediment
samples. Plant cover was estimatedmeasuring the area occupied by
the aerial (visible) parts in the wetland.

2.4. Statistical analysis

ANOVA analysis was performed to evaluate the difference in
contaminant removal efficiencies among the three periods studied.
ANOVA was also carried out to determine if there were significant
differences among the periods for contaminant concentrations in
plant tissues (leaves and roots) and sediment. Duncan’s test was
used to differentiate means where appropriate. A level of p < 0.05
was used in all comparisons.

2.5. QA/QC

All glassware was pre-cleaned and washed with 2 M HNO3 prior
to each experiment. All reagents were of analytical grade. All so-
lutions were prepared with Milli-Q water. Certified standard solu-
tions were used. Replicate analyses (performed at least ten times)
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Table 1
Inlet and outlet mean concentrations, ranges (Min.eMax.), and estimated removal efficiencies in the periods studied (normal operation, depredation event, and recovery). Concentrations are expressed in mg L�1.

Period Normal operation Depredation event Recovery

Parameter Inlet Outlet Rem. (%) Inlet Outlet Rem. (%) Inlet Outlet Rem. (%)

Temperature (�C) 20.5 (10.2e29.6) 18.1 (6.6e27.5) e 21.3 (19.5e28.9) 18.7 (14.8e29.2) e 19.5 (14e23.9) 17.6 (12.5e23) e

DO (mg L�1) 2.21 (0e9.5) 1.34 (0e7.5) e 2.93 (0.2e5.32) 1.79 (0.1e4.53) e 3.40 (0e6.2) 2.12 (0.3e5.2) e

Conductivity
(umho cm�1)

4653.3 (1500e8500) 2413.9 (1400e5500) e 6450 (4800e10,000) 2242.5 (1950e2570) e 5113.3 (3890e7700) 1955.6 (1400e2500) e

pH 10.2 (6.5e12.6) 8.05 (7.1e9.1) e 10.9 (10.5e11.4) 8 (7.9e8.3) e 10.8 (10.4e11.5) 8.3 (7.9e9.3) e

NO3
� 37.3 (3.3e153.7) 7.09 (0.3e45.5) 81.0 59.5 (33.5e103.6) 9.5 (5.7e16.7) 84.0 50.6 (15.4e98.2) 9.9 (3.6e24.2) 80.4

NO2
� 2.612 (0.061e28) 0.041 (0.005e0.33) 98.4 1.183 (0.38e2.61) 0.078 (0.005e0.166) 93.4 2.221 (0.258e6.22) 0.352 (0.017e0.766) 84.1

NH4
þ 3.04 (0.16e15.0) 2.65 (0.265e10.6) 12.8 2.12 (0.65e4.5) 1.94 (0.146e3.31) 8.5 0.88 (0.154-2-67) 0.77 (0.05e2.14) 11.8

TP 0.435 (0.028e2.08) 0.333 (0.032e1.51) 23.4 0.514 (0.041e1.59) 0.379 (0.167e0.33) 20.4 0.396 (0.064e1.38) 0.309 (0.129e0.696) 22.0
SRP 0.074 (0.003e0.346) 0.065 (0.005e0.273) 12.1 0.104 (0.015e0.215) 0.093 (0.014e0.078) 10.6 0.030 (0.005e0.079) 0.026 (0.005e0.334) 13.3
SO4

2� 1711.3 (248.4e3598.5) 765.9 (203.5e2238.3) 65.2 2380.1 (2447e6917) 736.5 (480.2e911.6) 54.0 1872.9 (991.4e2316.1) 626.4 (412.1e884.1) 66.5
Alkalinity 555.2 (71.2e1647.2) 292.9 (167.9e427.1) 47.2 327.7 (224.3e403.2) 263.2 (168.4e313.6) 19.7 353.2 (114.6e750.4) 224.1 (156.8e332.3) 36.5
Ca2þ 187.8 (6.8e642) 76.3 (17.3e349.4) 65.3 252.1 (35.9e617.5) 93.2 (58.5e111.6) 63.4 136.1 (99.4e358.8) 47.5 (30.9e75.6) 65.1
Fe 8.833 (0.05e72.3) 0.249 (0.001e2.1) 97.2 1.051 (0.09e2.49) 0.095 (0.05e0.19) 91.0 0.824 (0.05e2.54) 0.087 (0.05e0.230) 89.4
Cr 0.053 (0.002e0.4) 0.008 (0.001e0.045) 84.9 0.041 (0.01e0.079) 0.011 (0.01e0.014) 73.2 0.092 (0.023e0.204) 0.014 (0.002e0.033) 84. 7
Ni 0.054 (0.004e0.748) 0.018 (0.003e0.049) 66.7 0.025 (0.01e0.047) 0.017 (0.01e0.039) 48.0 0.041 (0.022e0.070) 0.020 (0.015e0.050) 51.2
Zn 0.04 (0.01e0.146) 0.02 (0.003e0.09) 50.0 0.019 (0.01e0.039) 0.012 (0.01e0.033) 36.8 0.038 (0.004e0.101) 0.023 (0.004e0.082) 49.5
BOD 124.9 (6.7e405) 32.6 (3e297) 73.9 34.1 (9.6e78.6) 24.5 (5e56.9) 28.2 21.3 (9.8e30.9) 9.97 (3.0e20.1) 53.2
COD 322.7 (44.3e1238) 79.4 (7.5e470) 75.4 88.6 (15.7e158.6) 52.4 (10.5e78.4) 40.9 85 (27.9e154.0) 47.1 (13.9e72.9) 44.6
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pyrite formation in the bottom sediment. Cr, Ni and Zn were effi-
ciently retained.

3.2. Sediment

In sediment, pH was alkaline and the Eh revealed anoxic con-
ditions in the three periods studied (Table 2). During the depre-
dation period, both pH and Eh values were significantly lower than
the ones registered in the other periods. Emergent macrophytes are
capable of altering local soil pH conditions through assimilation/
production of anions/cations through root exudates (Nye,1981) and
stabilizing and oxidizing bottom sediments due to their capacity to
transport oxygen from roots into the rhizosphere (Barko et al., 1991;
Brix and Schierup, 1990; Dunbabin et al., 1988; Jacob and Otte,
2003). Plant associated microbial processes can stimulate
alkalinity-generating redox reactions such as ferric iron or sulfate
reduction which can enhance metal retention (Vile and Wieder,
1993). However, organic material associated with plant growth,
senescence and root exudates, directly affects microbial activity
(Dunbabin and Bowmer, 1992), increases soil oxygen demand
(Rovira,1956), and can decrease soil pH (Roane et al., 1996), as it can
be seen during the depredation period. Researchers have reported
generally higher soil Eh in vegetated than in plant-free soil (Reina
et al., 2006; Negrin et al., 2011). Changes in root oxygen diffusion
or dying roots supply a source of energy for microbe respiration and
thus intensify the reducing conditions (Armstrong et al., 1990). This
can be observed in this study, where the measured Eh values were
higher in the normal operation and recovery periods than in the
depredation period. The organic matter content in sediment
increased in the last two periods, probably due to plant material
degradation.

Cr, Ni, Zn and TP concentrations in the outlet sediment did not
present significant differences among the three periods studied
(data not shown). These concentrations were significantly higher in
the inlet than in the outlet sediment along the study, demon-
strating that they were efficiently retained in the wetland.

At the inlet sediment, TP and metal concentrations presented
the highest values during the depredation period when plant cover
decreased, thereby maintaining the overall retention capacity of
the system. In the recovery period, total metal concentrations
decreased in the inlet sediment probably due to plant uptake.
However, these concentrations were significantly higher than those
measured in the normal operation period. TP concentrations
decreased significantly during the recovery period, probably due to
the high macrophyte productivity.

Metal partitioning in the bottom sediment of the outlet did no
present significant differences among the three periods studied
(data not shown). In the inlet sediment (Fig. 2), Cr was mainly
associated with FeeMn oxides and, to a lesser extent, with the
carbonate fractions. In the depredation period, a significant in-
crease in Cr bound to FeeMn oxides was observed. Ni and Zn were
accumulated mainly bound to carbonates in the normal operation
period and mainly bound to FeeMn oxides in the depredation
period, whereas they were found bound in both fractions, without
significant differences, in the recovery period. This behavior shows
that the system tended to recover its normal conditions.

In the case of P, in the inlet sediment, the CaCO3eP fraction was
significantly higher than the others in the three periods studied
(Fig. 3). This could be explained by the high pH of this area and by
the high Ca2þ and CO3

2� loads in the effluent which led to P co-
precipitation with CaCO3 (calcite saturation indices greater than
1). This P fraction showed a significant increase when the TP
increased during a depredation period. The second important P-
fraction was Fe(OOH)eP.

The four contaminants studied were accumulated mostly bound
to FeeMn oxides in the inlet sediment during the depredation
period. This fraction is pH and Eh sensitive, since the stability of Fe2þ

and Fe (hydr)oxides primarily depends on a combination of Eh and
pH of the sediment. A general thought is that under anoxic

Table 2
Redox potential (mV), pH and OM (%) in the inlet and outlet sediment during the periods studied (normal operation, depredation event, and recovery).

Eh (mV) pH OM (%)

Normal Depredation Recovery Normal Depredation Recovery Normal Depredation Recovery

Inlet �229.3 �283.6 �193.6 9.23 8.04 8.25 5.1 6.1 6.8
Outlet �336.5 �387.0 �285.9 9.24 7.95 7.98 5.4 8.0 6.2

Fig. 2. Exchangeable, Bound to Carbonates, Bound to FeeMn oxides, Bound to OM and
Residual fractions in the inlet area during the periods studied (normal operation,
depredation event, and recovery).
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conditions as those found during the three periods studied, and
particularly during the depredation period, contaminants bound to
FeeMn oxides were released. However, the nearly amorphous
Fe(OH)3minerals (ferrihydrite) are reduced at a higher Eh for a given
pH than it happens with crystalline minerals of FeOOH (goethite) or
Fe2O3 (hematite). Therefore, contaminants initially released due to
the transformations of Fe were then re-adsorbed on amorphous or
poorly crystalline Fe-oxides and mixed Fe(II)Fe(III)-hydroxy com-
pounds (Gale et al., 1994; Reddy et al., 1999). It is also possible that
occluded Fe3þ covered with organic matter (mainly humic com-
pounds) may be protected from reduction (Peng et al., 2007).

3.3. Plants

Throughout the study, metal concentrations in plants were
higher in roots and rhizomes than in aerial parts, suggesting scarce
translocation (Table 3). The toxic elements such as Cr, Ni, and Zn are
taken quickly and retained in the root system (Hadad et al., 2007;
Maine et al., 2004; Suñé et al., 2007). The binding of positively
charged metal ions to the negative charges on the cell walls of roots
or chelation to phytochelatins followed by accumulation in vacu-
oles has been reported to reduce the transport mechanisms of

metals to the aerial parts (Göthberg et al., 2004) thus increasing the
tolerance of plants (Poschenrieder et al., 2006).

Metal concentrations increased in the belowground parts of
T. domingensis during the depredation period and they remained
constant or continued increasing in the recovery period. Taking into
account the high macrophyte productivity, metal concentrations
would be expected to decrease in roots during the recovery period.
It can be proposed that plants may act as pumps sucking metals,
“cleaning the sediment”. The increase of concentrations in the
belowground parts is in agreement with the decreasing concen-
trations in sediment during the recovery period.

Metal concentrations studied in the aerial parts did not show
significant differences between the normal operation and the re-
covery periods. It can be proposed that the bioaccumulation of
metals in the aerial parts is not a key factor in the retention
mechanism. However, the aerial parts translocate oxygen to the
roots and sediment, playing an important role in the retention
mechanism.

Regarding P, the highest concentrations in belowground tissues
were found in the recovery period, in agreement with the
decreasing P concentration in sediment. This might happen
because plants, faced with a scarcity of P, absorb this nutrient and
translocate it to the leaves, whereas when there is a large avail-
ability of P, plants absorb it, translocate it to the leaves up to a
certain concentration, and subsequently start to accumulate it in
roots producing a “luxury consumption”. This is probably a growth
strategy for further biomass development. Macronutrients such as
P are taken quickly by the roots and translocated to the aerial parts
to carry out photosynthesis. In this case study, T. domingensis could
probably survive without aerial parts because the depredation
event lasted a short time.

These results demonstrated that faced with an incidental
problem a mature CW planted with T. domingensis is capable of
maintaining its efficiency and to recover its vegetation, demon-
strating the robustness of the free surface constructed wetlands.
This was probably because the CW had reached its maturity, with a
complete root-rhizome development. The root-rhizome system of
the emergent plant plays a key role in contaminant removal. Kadlec
et al. (2000) proposed that a complete root-rhizome development
for a newly CW may require 3e5 years and the CW performance
improves with wetland maturity (Kadlec et al., 2000; Maine et al.,
2009). Vymazal and Krópfelová (2005) reported that for Phrag-
mites sp., three to four seasons are usually needed to reach
maximum standing crop but in some systems it may take even
longer. The CW studied has been dominated by T. domingensis for
the last five years. Probably this treatment system could continue in
efficient operation due to the fact that it has reached its maturity.

Table 3
Contaminant concentrations in the above and belowground parts of T. domingensis during the periods studied (normal operation, depredation event, and recovery).

Period Normal operation Depredation event Recovery

Contaminant Mean Min Max Mean Min Max Mean Min Max

P
Aboveground 2.242 0.787 4.91 e e e 2.598 1.81 3.54
Belowground 1.839 0.66 4.58 1.498 1.04 1.86 2.466 1.81 4.3
Cr
Aboveground 0.023 <0.001 0.285 e e e 0.023 0.010 0.079
Belowground 0.265 0.015 1.97 0.520 0.215 1.27 0.795 0.401 1.63
Ni
Aboveground 0.014 <0.001 0.129 e e e 0.017 0.004 0.053
Belowground 0.199 0.005 1.14 0.525 0.217 1.32 0.527 0.202 1.06
Zn
Aboveground 0.034 0.006 0.177 e e e 0.053 0.015 0.161
Belowground 0.090 0.022 0.319 0.096 0.062 0.323 0.109 0.068 0.307

Fig. 3. Fe(OOH)eP, CaCO3eP, org acid-P, org alk-P, and Residual P fractions in the inlet
area during the periods studied (normal operation, depredation event, and recovery).
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4. Conclusions

Cr, Ni, Zn and P were efficiently retained in the CW during the
three periods studied. This was probably because the CW had
reached its maturity, with a complete root-rhizome development.
Despite the anoxic conditions, contaminants were not released
from sediment, accumulating in fractions which proved to be stable
faced with changes under normal operating conditions for the CW.
T. domingensis showed an excellent response regarding growth and
propagation, consequently the period without aerial parts lasted a
few months and the CW could resume its normal operation. Plants
continued retaining contaminants in their roots and the sediment
increased its retention capacity, balancing the operating capacity of
the system. These results demonstrated that faced with an inci-
dental problem, this mature CW was capable of maintaining its
efficiency and recovering its vegetation, demonstrating the
robustness of these treatment systems.
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