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1. INTRODUCTION

Code artefacts that have non-trivial requirements with respect to the order in which
their methods or procedures ought to be called are commonplace [Beckman et al. 2011].
Such is the case for many API implementations and objects. In practice, descriptions
of intended behaviour are incomplete and informal, if documented at all, hindering
verification and validation of the code artefacts themselves and the client code that
uses the artefacts. Hence, researchers have not relied on these descriptions and devel-
oped techniques to support the mining or synthesis of typestates [Strom and Yemini
1986] from API implementations which are then used to verify if client code conforms
to the implemented protocol [Alur et al. 2005; Dallmeier et al. 2010]. Such approaches,
however, address only part of the problem: they assume the code from which the type-
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state is extracted is correct; that it conforms to the ordering of methods or procedures
intended at the time of design or developing the requirements for the API.

This work addresses the complementary problem of validating if API implemen-
tations provide their intended behaviour when descriptions of this behaviour are in-
formal, partial or non-existent. We believe that even in the absence of a full-fledged
formal specification, the developer still has an informal understanding of the class he
is building and the desired requirements that it has to meet. We usually refer to this
informal understanding as mental model [de Caso et al. 2010].

Validation of API implementation behaviour can result in the identification of bugs
in the code which induce undesired requirements, adjustment of the requirements ex-
pected by the engineer to the requirements implicit in the code, and the improvement
of available documentation for that code.

In this work, we argue that an automatically constructed abstraction of an API im-
plementation can be useful for validation against poorly documented requirements or
the engineer’s mental model and can lead to the identification of problems in the code,
in the requirements or the engineer’s understanding of both. Given that validation is
an activity that requires human intervention, the level at which an API implementa-
tion is abstracted is key and has different requirements than those abstractions used
for verification [Uribe 1999]. More concretely, abstractions aimed at automated verifi-
cation are generally very detailed (in terms of number of states, transitions and extra
annotations/data). Automated tools are good at dealing with these rich abstractions,
but humans can get easily confused or overwhelmed. Manual inspection therefore re-
quires smaller yet meaningful abstractions.

In this paper we present a novel technique for automatically constructing abstrac-
tions in the form of behaviour models from code artefacts equipped with requires
clauses for methods. These models, similarly to typestates, encode all admissible se-
quences of method calls. The level of abstraction at which such models are constructed
aims at preserving enabledness of sets of operations, resulting in a finite model with
intuitive and formal traceability links to the code. This level of abstraction and the
traceability links have shown to be useful for validation code artefacts and identifying
findings that relate to bugs in code and problems in expected or documented require-
ments.

Literature on typestate synthesis refers to safety and permissiveness as a way to
characterize abstraction properties: a typestate is safe [Alur et al. 2005] if no call se-
quence violates the library’s internal invariants; it is permissive if it contains every
such sequence. Previous approaches have aimed (e.g., [Henzinger et al. 2005]) at mod-
ular program analysis using typestates which are both safe and permissive for cases
in which the library’s internal state is finite, but may not be permissive for the infi-
nite case. Our approach deals with infinite internal state space and is permissive at
the cost of safety. We believe, and experience so far indicates, that this supports well
identification of implementation and requirements issues.

The contributions of this work can be summarised as follows:

— An algorithm to automatically and statically construct enabledness-preserving be-
haviour models from programs equipped with requires clauses.

— The implementation of this algorithm into a publicly-available practical tool that
analyses C programs.

— The evaluation of our implementation applied to a series of real classes on which
issues were found.

The rest of this paper is organised as follows. We begin with an overview of the
approach using a simple example (Section 2) and then provide a formal framework
for our approach (Section 3). Subsequently, we present an algorithm for constructing
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enabledness abstractions and its implementation into a practical tool (Section 4). We
then report on its use on a number of relevant source code subjects (Section 5). Finally,
we discuss related work (Section 6), ideas for future work and conclusions (Section 7).

2. OVERVIEW
In this section we provide a black box overview of the approach using a small example.

typedef struct node { 35 int remove_req() {
int data; struct node xnext; 36 return 1!=NULL && 1—>size > 0;
} node; 37
typedef struct list { 38 wvoid remove(){
int size; nodex first; 39 nodex new_first = 1—>first—next;
} list; 40 free (1—>first);
41 l-—>first = new_first;
listx 1; 42 }
43
int inv() { 44 int destroy_req() {
return 1==NULL || l-—>size >= 0; 45 return 1!=NULL;
} 46
47 wvoid destroy () {
int List() { 48 nodex current;
1 = (list*) malloc(sizeof(list)); 49 node* tmp;
if (1 == NULL) return O; 50 current = 1—>first;
l—>size = 0; 1->first = NULL; 51 l—>first = 0;
return 1; 52 while(current != 0) {
} 53 tmp = current—>next;
54 free(current);
int add_req() { return 1!=NULL; } 55 current = tmp;
int add(int data) { 56 }
node stmp = 1->first; 57 1 = 0;
while (tmp—>next != 1->first) 58 }
tmp = tmp—next;
tmp—>next =
(nodex) malloc(sizeof(node));
if (tmp—>next == NULL) {

1 = NULL; return O;

tmp—>next—>data data;
tmp—>next—>next = 1->first;
l—>size++; return 1;

Fig. 1: A singly-linked list C implementation

Consider the C source code of Figure 1, which implements a singly-linked integer
list. It features a node structure, which contains a data field and a pointer to the next
node in the list (or to the first one, if standing on the last node). The list itself is stored
in another structure, which holds the total number of elements and a pointer to the
first node.

The implementation provides an initialization operation, which creates the list
structure; an add operation which stores a new integer at the end of the list; a remove
operation which eliminates the first element (if any) and a destroy operation which
frees the memory used by the list and all its nodes. Note that besides its basic function-
ality, this list implementation is augmented with a system invariant (inv()) and a re-
quires clause for each of its operations (add_req(), remove req(), and destroy_req()).

How can we validate if this implementation provides the intended functionality
when there is no formal and validated model of the intended functionality to compare
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Fig. 2: Singly-linked list enabledness abstraction

against? As mentioned previously, one strategy would be to write a specification (or
use an existing one) and verify the implementation against it using techniques such
as testing, model checking or refinement checking. Such strategies can be effective at
finding faults, however, they require a specification and shift the validation problem
as it is now the specification itself that must be validated.

We propose to automatically extract a behaviour model such as the one shown in
Figure 2. In this model we abstract the concrete state space of the singly-linked list
based on the set of operations the concrete states enable, that is, the set of opera-
tions for which their requires clauses hold. Note that state labels are automatically
generated, are only for reference, and have no meaning. The abstract state S5 groups
concrete states that allow execution of add and destroy. Abstract state S7 groups con-
crete states that allow add, remove, and destroy. And SO groups all concrete states that
do not allow any operation. Note that initial states are marked with a double circle.

The behaviour model in Figure 2 is permissive. Every legal operation sequence on
the list implementation is included on the model’s language. This permissiveness is
succinctly obtained at the cost of sacrificing safety. There are operations sequences in
the model’s language which are not legal on the list implementation. Notice that in
general it is not possible to have a finite state machine that safely and permissively
captures the behaviour of an implementation, since only regular languages can be
encoded using finitely many states. In this particular case, the sequence add ~» remove
~» remove is part of the model’s language but it is not legal.

According to our previous experience [de Caso et al. 2010], sacrificing safety for the
sake of obtaining a finite (and hopefully compact) behaviour model enables human
inspection. Had we decided to construct a finite and safe behaviour model, we could
have only allowed a single call to remove, since a finite model can not keep track of
how many times this operation has been invoked with respect to add invocations.

More concretely, the model in Figure 2 allows an engineer to validate the imple-
mentation of the singly-linked list against his or her mental model of the intended
behaviour of the source code. It is simple to see that this model describes states which
relate to whether a singly-linked list is empty (S5), non-empty (S7), or inactive (S0).

Consider now the remove operation. It is only featured in a transition that loops over
state S7. This is suspicious, since it is indicating that whenever we erase an element
from a non-empty list, we always end up having a non-empty list. There would seem
to be a remove transition missing from S7 to S5, which would model the case when the
last element is removed from the list.

The implementation of remove does not ever empty the list. Surely, this is an un-
intended fault. Upon inspection of operation remove in Figure 1 we can observe that
the list size field is not being decremented. Fixing this fault is straightforward and
yields an enabledness behaviour abstraction that is the same as Figure 2, but with the
addition of the missing remove transition from S7 to S5.
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The abstraction in Figure 2 could also prompt the discovery of interesting aspects of
the implementation under analysis. For instance, both initializing the list and adding
an element can lead to the terminal state S0O. Inspection of the source code shows
that memory availability has an impact on the list’s behaviour. It is interesting to
note that such observations, elicited easily from the abstraction, would require explicit
modelling and or manipulation of the memory management aspects of the program’s
environment to be detected in verification-based approaches.

In summary, the example above illustrates how the depiction of an abstract model
that integrates the behaviour of multiple procedures that use a common data structure
for providing more complex services can support validation and aid identification of
potential problems the implementation may have.

The question arises, why choose this particular level of abstraction? While it may
seem overly specific to present just a single level of abstraction, our claim is that the
enabledness-based level of abstraction presents a good size/precision ratio in terms
of facilitating developer-in-the-loop API validation. This level of abstraction not only
yields a compact finite abstract model from an infinite concrete state space, but also
allows tracing back concerns to the source code for identifying and fixing problems in
the latter. That said, we do not discard the possibility that other abstraction levels
could also prove useful in helping developers during validation tasks.

In the next two sections we show how enabledness-preserving abstractions like the
one in Figure 2 can be built automatically from software implementations such as the
one depicted in Figure 1.

3. FORMAL MODEL

As we mentioned before, the object under analysis for our technique is the source code
of a program. In order to abstract ourselves from the concrete details of the execution
model for different programming languages, we will formally define API elements as
transformations over system configurations. A configuration encompasses the API in-
ternal state and the elements in the heap. In the rest of this work, C will denote the
set of all possible configurations.

We will first define an action system as the semantic interpretation of a program’s
source code. This action system references the functions that act as requires clauses
for each action, as well as the system invariant and the initial condition. Then, we
define the semantics of an action system as an infinite labelled transition system that
captures its state space.

Definition 3.1 (Action System). An action system is a structure of the form AS =
(Act, F, R, inv, inity, where:

— Act = {aq,...,a,} is a finite set of action labels.

— F'is an Act-indexed set of functions. For each action label a, the function F, : CxZ —
(C u 1) takes a configuration and an integer parameter and has two possible out-
comes: i) either it transforms the configuration, or ii) it does not terminate (repre-
sented by the L symbol).

For the sake of simplicity, without losing generality we will restrict ourselves to con-
sider functions with a single integer parameter.

— Ris an Act-indexed set of requires clauses. For each action label a, the requires clause
R, : CxZ — {true, false} indicates if the action a is enabled for the given configuration
and parameter.

—inv : C — {true, false} is the action system invariant.

— init : C — {true, false} is the initial condition, which indicates if a given configuration
is an initial configuration for the action system.
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In the rest of this paper, we assume that the provided invariant correctly and pre-
cisely characterises legal instances of the action system. In Section 4.5 we discuss the
consequences of the violation of this assumption.

Example 3.2 (List Action System). A possible action system for the func-
tional model of the list C implementation of the previous section is AS =
{(Act, F, R, inv, inity where:

— Act = {add, remove,destroy}. This set of actions indicates the names of the actions
exposed in the public interface of the list implementation.

—F = {Fadd, Frenoves Fdestroy}. Where these functions are the semantic interpretation
of the corresponding C functions in Figure 1.

— Raqq yields true only for configurations on which the 1 variable is not NULL.

— Ryemove yields true only for configurations that have a non-null 1 variable whose size
field is positive.

— Rgestroy is the same as Raaq.

— inv returns true only if i) the configuration has a NULL 1 variable; or ii) if 1 has a
non-negative size field.

— init yields true only for configurations that have the 1 variable pointing to NULL or to
a structure such that: i) its size field is 0 and i) its first field is NULL. This is the
condition after applying the List function, which serves as constructor.

Note that this example of an action system is rather arbitrary. For instance, we could
have decided to leave the destroy operation out of the labels set, which would have
characterised a system with a smaller state space.

We will use CodeOf[f] to refer to the source code that is originally found in
the program under analysis. For instance, consider the requires clause for the
add operation presented in Figure 1. Its code is represented by CodeOf[R.u] =
return head != NULL;. Similarly, CodeOf[F,44] is the fragment of lines 22—-34 in Fig-
ure 1.

We now proceed to characterise the state space of an action system as an infi-
nite deterministic Labelled Transition System (LTS). We define an LTS L as a tuple
(A,S,Sp, Ay where A is the action alphabet, S is a set of states, Sy < S is the set of
initial states and A : S x A — S is the partial transition function.

Definition 3.3 (Action System Semantics). Given an action system AS =
(Act, F, R, inv, inity, we say that its semantics is provided by an LTS L =
(A, S, Sg, A) satisfying that A = Act x Z, S = {ceC | inv(c) =true} and Sy =
{c €S | init(c) = true}. Also, for each ¢ € S and for each a € Act and p € Z such that
Ry(c,p) = true, if F,(c,p) = ¢ and inv(c’) = true then A(c, (a,p)) = ¢. The transition
function is not defined in any other values of a, ¢ and p.

Note that the LTS of an action system leaves out those configurations for which the
system invariant does not hold.

Example 3.4 (List underlying LTS). Given the action system described in Exam-
ple 3.2, Figure 3 presents a finite fragment of its underlying LTS. List configurations
are given using [a, b, c| to represent the list with elements a, b and ¢ (in that order).

Notice that, even fixing the possible elements to be 18, 32 or 25 and leaving out the
destroy operation, the state space is infinite. Dashed lines are used to represent the
extra edges that reach LTS nodes that were left out of the chosen finite fragment.
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remove()

remove()

add(18)

remove()

add(25)

Fig. 3: Finite fragment of the list underlying LTS

3.1. Enabledness Abstractions

Now that we have defined the state space defined by an action system by means of its
LTS, we need to define a proper level of abstraction in order to obtain a finite repre-
sentation out of it. Experience so far indicates that grouping LTS states for which the
same set of actions are enabled is an abstraction level that provides good compromise
between size and precision. The definitions in this section are an adapted version of
previous work by the authors [de Caso et al. 2010].

Definition 3.5 (Enabledness Equivalence). Given an action system AS =
(Act, F, R, inv, inity and two configurations c;,c; € C, we say that ¢; and ¢
are enabledness equivalent configurations (noted ¢; =. c¢p) iff for every a € Act
IpeZ.Ry(cr,p) =true < Ap' €Z . Ry(co,p’) = true.

Notice that this definition is comparable to requiring simulation equivalence for just
one step.

Example 3.6 (Enabledness Equivalent List Instances). Continuing with the list ex-
ample from Figure 1, we argue that the following two instances are enabledness equiv-
alent:

(1) Alist of size 3, with nodes carrying the integers 1, 3, 5.
(2) Alist of size 2, with nodes carrying the integers 39, 10.

This two instances enable the same set of actions, namely the add, remove and destroy
operations.

We use a non-deterministic finite LTS to provide an abstract representation of an
action system, or more precisely, of the state space defined by its infinite LTS. Simply,
a non-deterministic finite LTS is a structure M = (S, Sy, X, §) where S is a finite set
of states, Sy < S is the set of initial states, ¥ is a finite alphabet and 6 : S x ¥ — 2% is
a transition function.
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Given an LTS describing the semantics of an action system, we now define its
enabledness-preserving abstraction as a finite non-deterministic state machine which
groups the action system configurations according to the actions that they enable. Fur-
thermore, this abstraction is able to simulate any path in the LTS describing the action
system semantics.

Definition 3.7 (Enabledness-preserving Abstraction). Given an action system AS =
(Act, F, R, inv, inity and its LTS L = (A, S, Sy, A), we say that M = (&, S, Sp, §)
is an enabledness-preserving abstraction (EPA) of AS iff there exists a total function
a : S — S such that a(Sg) € Sy and for every ¢ € S, action label ¢ and parameter p
such that R,(c,p) holds, then a(A(c, (a,p))) € §(a(c),a). Furthermore, given a pair of
configurations ¢y, co on S, it holds that ¢; =. ¢2 < a(c1) = a(e).

Where o is extended so that it can also be used as a function in 2° — 2° in the
natural way.

Example 3.8 (Enabledness-preserving Abstraction for List). Figure 2 depicts an
enabledness-preserving abstraction for the action system induced by the program in
Figure 1.

In order to construct an enabledness-preserving abstraction we first define the no-
tion of action set predicate. Given a subset of actions A € Act of an action system AS,
we wish to characterise all configurations ¢ that satisfy the action system invariant
inv and in which every action a in A is possible from c (there exists a parameter p such
that the requires clause R, of action a holds) and, importantly, in which every action a
not in A it is not possible from c.

Definition 3.9 (Predicate of an Action Set). Given an action system AS =
(Act, F, R, inv, init)y, the predicate of a set of actions A € Act is the function pred , :
C — {true, false} defined as:

pred(c) & inv(e) A A I Ralep) & /\ 3. Ralc.p)
acA a¢ A

Example 3.10 (Predicate of the {add, destroy} Action Set from List). The predicate
for the {add, destroy} action set is obtained by indicating that there always exists pa-
rameters that enable add and destroy, while there is not any parameter that enables
remove. Particularly, in the case of destroy and remove they are parameterless, so this
can be simplified, obtaining:

pred{add,destroy}(c) = inv(c) A Ip.Raaa(c,p) A Rdestroy(c) A~ Rrenove(C)

We can now construct an enabledness-preserving abstraction of an action system
by fixing the states to be the enumeration of all the possible action sets. We connect
two action sets A and B with a label a when there is a configuration c¢ satisfying the
predicate of the action set A, such that when executing the action «a, ¢ evolves into a
configuration that satisfies the predicate of the action set B.

THEOREM 3.11 (EPA CHARACTERISATION). Given an action system AS =
(Act, F, R, inv, inity, then M =&, S, Sy, J)is an EPA of AS where:

(1) ¥ = Act

(2) § =24

3) So={A€e S |3ceC.pred,(c) A init(c)}

(4) Forall Ae Sanda e X, ifa ¢ Athen 06(A,a) = &, otherwise:

B de. pred(c) A Ip. Ry(c,p)
6(A,a) = {B ‘ A pﬁedB (Fuale,p)) }
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PROOF. Let L = <A, S, So, A) be the semantic interpretation of AS. Let a: S — S,

defined as follows:

a(c) def {a€ Act |3peZ . Ry(c,p) = true}

We first postulate the following lemma:
alc) = A < pred,(c) = true forceSand Ac S

The proof for this lemma follows directly from the definition of pred , and «.

In order to show that M satisfying the above conditions is an EPA for AS, we have

to check the following items:

i) Initial states:

a(So) < So

Remember, by Definition 3.3, S = {c€ C | inv(c) = true} and Sy € S is such that
So = {c€S | init(c) = true}.

Let A € a(Sp). Then A € a({ce S | init(c) = true}). It therefore exists ¢ € S such
that init(c) = true and A = a(c).

From the lemma above, we know that it exists c € S such that pred ,(c) = true and
init(c) = true. These are exactly the conditions for A to be part of the S, set, which
is what we wanted to prove.

ii) Transitions: for every c € S, action label a and parameter p such that R,(c,p)

holds, then:

a(A(c, (a,p))) € 6(a(c), a)
Remember, by Definition 3.3, under these conditions, A(c, (a,p)) = Fu(c,p).
Let A = a(c) and B = a(A(c, (a.p))) = a(Fa(c.p)).
We have to prove that B € §(a(c), a). More precisely, we have to check that:
)

Elco.predA(co A Hpo R, (Co,po) A predB( (Co,po))

We claim that ¢y = ¢ and pg = p satisfy the conditions. We analyse each conjunct:
— Since A = a(c), using the lemma above we know that pred ,(c) = true.

— Since ¢y = ¢ and py = p, we know that R,(co, po) = true.

— Using the same lemma, since B = a(F,(c, p)), we also get pred 5 (F,(c,p)) = true.

iii) Enabledness: for every pair of configurations ¢y, ¢c3, then:

O

c1=cc & alca) = ale)

This is directly satisfied by construction, since we defined « so that it only keeps
track of the enabled actions.

4. CONSTRUCTING EPAS

In this section we present the formal underpinnings behind the construction of the
enabledness-preserving abstraction of an action system. We first present a construc-
tion algorithm which indicates which satisfiability queries need to be solved, but not
how. We then discuss the impact of using a software model checker as a mean to solve
the satisfiability queries prescribed by the algorithm.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



© WA W N

[ R R R I e
AW N O ®© OO A WD =S

A:10 G. de Caso et al.

4.1. Construction Algorithm

Algorithm 1, presented in this section, performs a Breadth-first search (BFS) explo-
ration of the enabledness state space, mitigating the need to exhaustively enumerate
all the possible 2" abstract states for a program with n actions (as item 2 of Theo-
rem 3.11 otherwise suggests).

ALGORITHM 1: EPA Construction
Input: An action system AS = (Act, F, R, inv, init)y
Output: The EPA M = (&, S, Sy, §).
Y= Act; S = ;
0(Aja) =, VYA a
= {a € Act | Ve. init(c) = —Ip. Ra(c,p) };
*t = {a€ Act | Ve. init(c) = Ip. Ra(c,p) };
S§ ={AcC Act | At C A, A" nA=g};
So ={A€ S§ |3ec. pred 4 (c) A init(c) };
W = queue starting with elements in Sp;
while there is a certain A at the head of W do
W =W —[A];
S=5u{4a};
for each action a € A do
B = {b € Act | Ve,p.pred,(c) A Ra(c,p) = —3p'. Rb( /
t = {be Act | Ve,p.pred (c) A Ra(c,p) = 3. Rb( ),
“={BcAct |BYS<B, B nB=g};
for each state B € S¢ do
if 3c. pred,(c) A Ip. Ra(c,p) A predg(Fa(c,p)) then
5(A,a) =6(A,a) u{B};
if B¢ Sand B ¢ W then
| W=WulB];
end
end
end
end
end

——
-~

s>

The transition function is initialised as empty for every input. The set A~ stores
the actions that can never be enabled in any initial state. Conversely, A* holds those
actions that have to necessarily be enabled in every initial state. A set of candidate
initial states S§ is constructed by enumeratlng all the action sets that: i) exclude all
the actions in A~; ii) contain all the actions in A*. All of the action sets in S are
then tested in order to store in Sy only those that comply with item 3 of Theorem 3.11.
Notice that the more actions are classified as necessarily enabled (or disabled) the
smaller is the set of candidate initial states. Furthermore, this optimization takes a
linear amount of operations in terms of predicates that need to be analysed.

Having determined Sy, the algorithm initialises a queue W of states (action sets)
pending to be visited. Each time a given state A is visited, all of its enabled actions
a € A are considered. The set B~ holds all those actions that can not be executed with
any parameter after the execution of a from state A. Conversely, BY is the set of actions
which have at least one parameter to be executed with after the execution of a from
state A. The set of candidate destination states S¢ is constructed in a way similar to
S§'. All the states in this candidate set are considered in order to check each one of
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them and see if they can be actually reached by evolving A using a. Each time a new
state is found, it is added to the pending states queue W.

This algorithm is, in the worst case, exponential in space with respect to the number
of actions. However, the more actions we can classify as necessarily enabled (or dis-
abled) in a particular state, the fewer candidate states the algorithm needs to consider.
This optimisation makes running times come down significantly (i.e., reductions of up
to 5x were observed, see Table IV in Section 5) and allowed us to cope with real-life
programs while keeping time down to a few minutes in the worst case. Furthermore,
the exploration nature of this algorithm makes it simple to parallelise using worker
threads that share the pool of states to be visited.

We can now postulate that the outcome of this algorithm is in fact an EPA compliant
with Definition 3.7.

THEOREM 4.1. Given an action system AS, M as built by Algorithm 1 is an EPA
of AS.

The proof for this theorem is based on the fact that the abstraction constructed by
Algorithm 1 is the reachable fragment of the abstraction presented in Theorem 3.11.

Algorithm 1 is a template that stipulates which validity checks need to be performed,
but not how to solve them. Since validity checking is undecidable in general, we need
to analyse the impact that uncertain answers in the validity checks may have on the
algorithm’s result.

For instance, when deciding if an action a needs to be included in the set A~, the
validity check Ve. init(c) = —Ip. R,(c, p) may return an uncertain answer. In this case
it is safe to exclude the action a from the set A~ since there is no guarantee that it will
necessarily be disabled on any initial state.

This has no impact on the algorithm’s output, since A~ is only used to reduce the
set of potential initial states. In other words, if an action a which is always disabled on
any initial state is excluded from A~ due to an uncertain answer in the validity check,
then it only makes the algorithm run slower; it does not affect the result. Similarly,
the computation of sets A™, B~ and B is not affected by uncertainties. In fact, these
sets could be set to @ without affecting the result.

On the other hand, the validity checks in lines 6 and 16 are critical for the result
of the algorithm. Line 6 affects the set of initial states; line 16 affects the presence
of transitions among states, therefore affecting which states of the EPA are reachable
and deserve being explored. Uncertain answers in the validity checks in these two
lines do affect the quality of the result, as indicated in the following theorem.

THEOREM 4.2. Let AS be an action system, and let M be built by Algorithm 1
dealing with uncertainty as follows: a) If uncertain in line 6 then A is added to Sy. b)
If uncertain in line 16 then the then-branch is executed.

Then M satisfies a relaxation of the items in Theorem 3.11: i) S is a superset of the
one in item 3; and i) §(A, a) is a superset of the one in item 4.

A corollary for this result is that, in this context of uncertainty from the validity
checks, the constructed M is a simulation of the EPA. In the next section, we present
an operationalisation of the construction algorithm that deals with the fact that the
elements of an action system are denoted by code fragments, and we will therefore
present a novel approach to solve these validity checks by means of code reachability
queries.

4.2. Construction via Code Reachability

Algorithm 1 performs logical manipulation of the mathematical functions defined in
the program under analysis given by AS and therefore requires a decision engine.
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Since we want to obtain EPAs from source code, in principle we do not have a sym-
bolic representation of the mathematical functions it denotes (e.g., postconditions) and
therefore, unlike previous work [de Caso et al. 2010], we can not use a theorem prover
(such as an SMT solver) in this context. In this section we explain how we can fulfil
the tasks prescribed by each step of Algorithm 1 resorting to code reachability queries.
Notice that some of the queries that we deal with in the algorithm are of the form:

Va. p(z) = ¢(F () (@)

The general strategy to encode will be as follows:

procedure GENERAL-QUERY(z)
if CodeOf [¢] (z) = true then
y < CodeOf [F] (z)
if CodeOf [¢] (y) = false then
TARGET

We can check if the TARGET statement is executed for at least one value of x when
invoking GENERAL-QUERY(x). If TARGET is never reached, then the formula (1) holds.

In some cases the formula to analyse involves extra parameter, in some cases we
need to resort to approximations, and in some other cases there are also existential
quantifiers in the formula. In the rest of this section we refine this general strategy for
each of the queries in the algorithm.

4.2.1. Query for line 3. For instance, given an action a, the step of line 3 requires an ef-
fective way of deciding the validity of Vc. init(c) = —3p. R.(c, p). Consider the following
procedure:

procedure a-DISABLED-ON-INIT(c: C, p: Z)
if CodeOf [init] (¢) = true then
if CodeOf [R,] (¢, p) = true then
TARGET

The TARGET statement is reachable by an execution of this procedure if and only
if: i) there exits a starting configuration ¢ which makes the initial predicate true; and
i1) there exists a parameter p that makes the requires clause of a hold for the same
configuration c. Formally:

TARGET is reachable = 3c. (init(c) A Ip. Ra(c,p))
TARGET is unreachable = Vc. — (init(c) A Ip. Ra(c,p))
Ve. init(c) = —3p. Ra(c,p)

Meaning that the unreachability of the TARGET statement in the given procedure is
equivalent to the validity of the predicate in line 3 of the algorithm. Following the dis-
cussion in the previous section, if the reachability decision engine is unable to provide
a definite answer, it is interpreted as TARGET may be reachable, and then the action a
is conservatively not added to the A~ set.

Example 4.3 (Reachability Query for the List). Continuing with the list example
presented in Figure 1, we now show how we construct a reachability query in order
to decide if the add action needs to be added to the A~ set.
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procedure App-DISABLED-ON-INIT(/ : List, e : int)
if | = NULL v (l.size =0 A [.first = NULL) then
if [ # NULL then
TARGET

Reachability queries like the one presented above require a decision engine to ex-
plore all posible choices for the parameters of the function at hand. In this case, a
decision engine should consider all possible lists [ and integer elements i and see if
there is any pair (I, ¢) such that LIST-Abp-QUERY-FOR-LINE-3(/, ¢) forces the execution
to visit the TARGET statement.

Notice that in this case, a non null list / with a size field set to 0 and a null first field
makes the execution of this procedure reach the TARGET statement, therefore the add
action is not included in the A~ set.

4.2.2. Query for line 4. The rest of the algorithm requires to decide the validity of simi-
lar predicates, however not any predicate can be solved using a code reachability query,
since reachability can only encode safety properties. For instance, in line 4, we need
to decide the validity of Ve. init(c) = Ip. R.(c,p). This can not be encoded as a safety
property since evidence of its validity takes the form of a function that returns which
p makes the requires clause hold for each configuration c.

The strategy we followed to overcome this problem is obtaining a pair of approxima-

tions of the original requires clause of action a: ]/?; and ]\%; Formally, for every configu-
ration ¢ € C and every parameter p € Z, then R,(c,p) = R.(c,p) and R,(c,p) = R,(c,p).

Furthermore, each approximation must be rewritten as the conjunction of two pred-
icates: one ranging over the configuration and another over the parameter. Formally:

PR (p)
Ra(cap) = %(C) APRa(p)

As we will show in the following section, it is frequent that the code of R, evaluates
a condition for the parameter and, independently, a condition over the configuration.
Such cases are easy to handle. Typical cases where condition involves both param-
eter and configuration are membership or comparison queries. Usually, those could
be exactly approximated by checking non-emptiness or non-nullity of substructures of
configuration.

Moreover, if non-trivial candidate approximations are provided they can be verified
correct. Checking the over-approximation is easy: it boils down to showing the impos-
sibility of finding a configuration and parameter that satisfies the original clause but
does not satisfy the over-approximation; which is equivalent to the TARGET statement
being unreachable in the following procedure:

procedure a-CORRECT-OVERAPPROXIMATION(p : Z)
if CodeOf[R,] (¢, p) = true then

if CodeOf [?‘RZ] (¢) = false then
TARGET
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The case of the underapproximation is a little bit trickier since it also requires a
Skolem function Sk on the configuration for computing a candidate parameter!. With
a Skolem function like that, checking the underapproximation boils down to verifying
that Sk always finds a parameter p such that the configuration and p satisfy the origi-
nal requires clause. This is equivalent to the unreachability of the TARGET statement
in the following procedure:

procedure a-CORRECT-UNDERAPPROXIMATION( )
if CodeOf [R.] (¢, Sk(c)) = false then
TARGET

Under this scenario, the validity of the sentence in line 4 is implied by Vec. init(c) =
Ip. R.(c,p). Since R, can be split in two parts, this sentence can be rewritten as
Ip. PRy(p) A Ve. init(c) = SR, (c). The validity of this conjunction can be solved using
code reachability by means of two separate queries. The first one deals with the first
part of the conjunction, and is solved by asking if the TARGET statement is reachable
in the following procedure:

procedure a-FEASIBLE(p : Z)
if CodeOf[PR,] (p) = true then
TARGET

In fact, notice that this query does not depend on the value for the configuration c.
If the TARGET statement were not reachable, then the a action can never be executed
for any parameter (regardless of the configuration). In the rest of the paper we will
assume that, given an action a, there is always at least one parameter that makes PR,
be true. The second part of the conjunction, namely Ve. init(c) = SR, (c), is solved by a
reachability query in this code:

procedure a-ENABLED-ON-INIT(c : C)
if CodeOf [init] (¢) = true then

if CodeOf [@\a] (¢) = false then
TARGET

Notice that the unreachability of the TARGET statement is a sufficient condition to
establish that a is enabled on every initial state. Therefore, we add a to the set A™
only if we have conclusive evidence of unreachability. In other cases (i.e., reachability
of TARGET or uncertain), we conservatively keep A" unchanged.

4.2.3. Query for line 6. To decide the validity of the predicates in the rest of the algo-
rithm, given an action set A € Act and a configuration ¢, we need to be able to deter-
mine whether pred ,(c) holds. As requires clauses can be weakened and strengthened,

IRemember, a Skolem function value “replaces” an existentially quantified variable x in a formula ¢. Its pa-
rameters are those variables in ¢ which are universally quantified in the scope where = appears. See [Hodges
1997] for a formal definition.
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we can calculate a weaker version:
p?e_d,A(c) « inv(c) A /\Elp. PR.(p) A §R/a(c) A /\ﬁ(flp. PR.(p) A @(c))
acA a¢A

This can be simplified, since Ip. PR,(p) is assumed to be true. Therefore, we can
calculate this approximated action set predicate using the following procedure:

procedure OVER-PRED-OF-A(c: C)
ret «— inv(c)
forae Ado
if CodeOf [SRQ] (¢) = false then
ret <« false
fora ¢ Ado
if CodeOf | SFq | (c) = true then
ret «— false
return ret

Using this action set predicate over-approximation we can decide the validity of the
predicate in line 6 as a code reachability query as follows:

procedure A-IS-INITIAL-STATE(c : C)
if OVER-PRED-OF-A(c) = true then
if CodeOf [init] (¢) = true then
TARGET

If the TARGET statement is reachable then we add A to the set .Sy of initial states. In
ordet to comply with Theorem 4.2, if we are uncertain whether it is reachable or not,
we still add the action set as initial state in the abstraction.

4.2.4. Query for line 12. Following a similar approximation strategy as the one used for
line 3, we can now determine the validity of the check in line 12. Namely, given labels
a,b€ Act and an action set A, we need to decide if:

Ve,p.predy(c) A Ra(c,p) = —3p'. Ry(Falc,p), p')
In this case we will use the following logic property:

(g\52>12):>(<p:>¢) where <p:>g5and1$:>¢
We obtain a logically weaker left-hand side of the implication:

pred,(c) A Ro(c,p) ~ predy(c) A PRa(p)
And a logically stronger right-hand side:
=3 Ry(Fule.p). )~ =3 By(Fu(e.p), p)

The validity of which can be modeled by the following procedure:

procedure b-DISABLED-AFTER-a-FROM-A(c: C, p: Z, p’ : 7Z)
if OVER-PRED-OF-A(c) = true then
if CodeOf [PR,] (p) = true then
¢ — CodeOf [F,] (c,p)
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if CodeOf [ﬁb] (¢,p') = true then
TARGET

Notice that in this case, if the TARGET statement is unreachable then every instance
that satisfies a pred 4 will certainly not enable b after the execution of a. On the other
hand, if TARGET is reachable, then b is not necessarily enabled after the execution of
a, due to the over-approximations used in the procedure. This is not a problem, since
line 12 is used only as an optimisation. In other words, as we discussed earlier, not
adding labels to B~ does not alter the final result of the algorithm.

4.2.5. Query for line 13. Similarly, in line 13 we need to decide the validity of:
Ve,p. pred,(c) A Rq(c,p) = 3p'. Ry(Falc,p), p')

As in the previous case, we will use a logically weaker left-hand side of the implica-
tion by replacing:

pred,(c) A Ru(c,p) ~ predy(c) A PR.(p)

On the right-hand side of the implication, we obtain a logically stronger formula by
changing:

. Ry(Fale.p), p)  ~  SRy(Falc,p))
We construct the following procedure:

procedure b-ENABLED-AFTER-a-FROM-A(c : C, p: Z)
if OVER-PRED-OF-A(c) = true then
if CodeOf[PR,] (p) = true then
cd « CodeOf[F,] (c,p)
if CodeOf | SF, | (¢') = false then
TARGET

The unreachability of the TARGET statement in this query will be enough evidence
to indicate that b is always enabled after executing a from a configuration ¢ which
satisfies the action set predicate of A. The action b is therefore added to the B+ set.

If TARGET is reachable, or if we are uncertain, we conservatively do not add b to B*.

4.2.6. Query for line 16. Now we focus on the validity check in line 16:

Je. predy(c) A 3p. Ry(c,p) A predg(Fu(c,p))

In order to comply with Theorem 4.2, if in doubt, the sentence needs to be accepted as
true, so that the then-branch of the if is executed. Therefore, and in order to translate
the validity problem into a reachability query, we will check the validity of a weaker
formula, using the approximations of the requires clauses. Concretely, we will try to
decide the validity of the following sentence:

Je. pred,(c) A 3p. PR(p) A SRa(c) A predy (Fua(c,p))
Since a € A, then p?éd/A(c) includes %(0) and this sentence is equivalent to:

Je. p?eT:l;(c) A dp. PR.(p) A m(Fa(c,p))
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The validity for this sentence can be derived by the reachability checking on the
following code:

procedure A-TO-B-USING-alc: C, p € Z)
if OVER-PRED-OF-A(c) = true then
if CodeOf [ PR,] (p) = true then
¢ « CodeOf[F,] (¢, p)
if OVER-PRED-OF-B(c¢’) = true then
TARGET

In case of unreachability of TARGET the transition is not added to the result. If the
TARGET statement is reported to be reachable, the transition is added to the result.
Finally, if the decision engine is uncertain, the transition is still added to the EPA
(it is suffixed with a ? symbol to report this uncertainty), therefore complying with
Theorem 4.2.

4.3. Example Run of the Algorithm

In the rest of this section, we present a step-by-step execution of the Algorithm 1. We
consider the action system introduced in the Example 3.2.

A~ construction:
First, we construct the A~ set of actions that are necessarily disabled in the initial
state.

—add

procedure App-DISABLED-ON-INIT(] : List, e : int)
if{ = NULL v (l.size =0 A [l.first = NULL) then
if | # NULL then
TARGET

TARGET is reachable. add ¢ A~

—remove

procedure REMOVE-DISABLED-ON-INIT(] : List)
if | = NULL v (l.size =0 A l.first = NULL) then
if [ # NULL A [l.size > O then
TARGET

—destroy
procedure pESTROY-DISABLED-ON-INIT(/ : List)
if | = NULL v (l.size =0 A [l.first = NULL) then
if | # NULL then
TARGET

TARGET is unreachable. remove € A~

TARGET is reachable. destroy ¢ A~

‘A* = {remove} ‘

AT construction:
We proceed by constructing the A" set of actions that are necessarily enabled in the
initial state.

—add
procedure ApD-ENABLED-ON-INIT(] : List)
if | = NULL v (l.size =0 A [l.first = NULL) then
if = (I # NULL) then
TARGET

TARGET is reachable. add ¢ At

—remove
remove is already in A, it can not be in A7 too.
—destroy
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procedure DESTROY-ENABLED-ON-INIT(] : List)
if | = NULL v (l.size =0 A [.first = NULL) then
if —(l # NULL) then
TARGET

%)

TARGET is reachable. destroy ¢ A+

Sy construction:
Having computed A~ and A" we can construct the set of initial states Sy as those
action sets A that:

(1) No action of A is included in A~.

(2) Every action in A* is included in A.

(3) Have at least one configuration that satisfies both the initial condition of the action
system and the action set predicate of A.

First, we construct the set S§ of candidate states that satisfy the first 2 conditions.

S§ = {@, {add}, {destroy}, {add, destroy}}

We now test the third condition on each of the states in the S§ set.

— A= @
procedure OVER-PRED-OF-¥(l : List)
ret «— 1 = NULL v l.size = 0 // list invariant
ret « ret an —(l # NULL) /| addis not enabled
ret « ret A —(l # NULL A L.size > 0) /| remove is not enabled
ret « ret A —(l # NULL) /| destroyis not enabled
return ret

procedure J-IS-INITIAL-STATE(] : List)
if OVER-PRED-OF-(!) then

if i = NULL v (l.size =0 A l.first = NULL) then TARGET is reachable. ¢ € So

TARGET
— A = {add}
procedure OVER-PRED-OF-{add}(/ : List)
ret «— 1 = NULL v l.size = 0 / / list invariant
ret < ret A I # NULL /| addis enabled
ret « ret A —(l # NULL A L.size > 0) /| remove is not enabled
ret « ret A —(l % NULL) /| destroyis not enabled
return ret

procedure {add}-IS-INITIAL-STATE( : List)
if OVER-PRED-OF-{add}(!) then
if | = NULL v (l.size =0 A [l.first = NULL) then
TARGET

— A = {destroy}
procedure OVER-PRED-OF-{destroy}(l : List)

TARGET is unreachable. {add} ¢ So

ret «— 1 = NULL v l.size = 0 // list invariant

ret « ret A —(l # NULL) /| addis not enabled

ret « ret A —(l # NULL A l.size > 0) /| remove is not enabled
ret « ret A | # NULL /| destroyis enabled
return ret

procedure {destroy}-IS-INITIAL-STATE(! : List)
if OVER-PRED-OF-{destroy}(l) then
if | = NULL v (l.size = 0 A [l.first = NULL) then
TARGET

— A = {add, destroy}
procedure OVER-PRED-OF-{add, destroy}(l : List)

TARGET is unreachable. {destroy} ¢ Sp

ret < | = NULL v l.size 20 /[ list invariant
et « ret A 1 # NULL /| addis enabled
ret « ret A —(l % NULL A l.size > 0) /| remove is not enabled
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ret « ret A | # NULL /| destroyis enabled
return ret

procedure {add, destroy}-IS-INITIAL-STATE(/ : List)
if OVER-PRED-OF-{add, destroy}(l) then
if | = NULL v (l.size =0 A [.first = NULL) then
TARGET

TARGET is reachable. {add, destroy} € Sy

So = {@, {add, destroy}}

Exploration from initial states in Sp:

Having computed the set of initial states, we initialize a work queue W that will be
used in the exploration phase of the algorithm. Initially, W = [, {add, destroy}]
While W is not empty, we extract the head and explore all the enabled actions.

—A=¢g, W =[{add,destroy}]

There are no enabled actions in A to explore.

— A = {add, destroy}, W =[]

In this case there are 2 enabled actions. We first explore the add action.
—a = add
B~ construction:

We construct the set B~ of actions that are necessarily disabled after executing
add from the state {add, destroy}.

—add
procedure add-DISABLED-AFTER-add-FROM-{add, destroy}(l : List, e : int,e’ :
int) TARGET is
if Olylzi—:ifg(};)—eO)F—{add, destroy}(l) then reacha;le.
) add -
if I’ # NULL then #
TARGET
—remove
procedure remove-DISABLED-AFTER-add-FROM-{add, destroy}(l : List, e :
int) T i
K 'ARGET is
if Olylf_R-:;lzIE;)-e())F-{add, destroy}(l) then reachable.
b ,e ] B
if I’ # NULL A l'.size > O then remove ¢
TARGET
—destroy
procedure destroy-DISABLED-AFTER-add-FROM-{add, destroy}(l : List, e :
int) T i
K 'ARGET is
if Olylf_R-;}ZE(lD-e())F-{add, destroy}(l) then reachable.
. ? dest B~
if I’ + NULL then estroy ¢
TARGET

B~ construction:

We now construct the set BT of actions that are necessarily enabled after execut-
ing add from the state {add, destroy}.

—add
procedure add-ENABLED-AFTER-add-FROM-{add, destroy}(l : List, e :
int)
if OVER-PRED-OF-{add, destroy}(l) then TARGET is reachable.
U « add(l, e) add ¢ Bt
if —= (I’ # NULL) then
TARGET
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—remove
procedure remove-ENABLED-AFTER-add-FROM-{add, destroy}(! : List, e :
int)
if OVER-PRED-OF-{add, destroy}(l) then TARGET is reach-
I « add(l, e) able. remove ¢ BT
if —=(I' # NULL A l'.size > 0) then
TARGET
—destroy
procedure destroy-ENABLED-AFTER-add-FROM-{add, destroy}(l : List, e :
int)

TARGET is reach-
able. destroy ¢
B~

if OVER-PRED-OF-{add, destroy}(l) then
" « add(l, e)
if I’ # NULL then
TARGET

Explore candidate states:

Having computed both B~ and BT we can explore all the states S¢ that comply
with the restrictions imposed by these. In this particular case, since both sets of
restrictions are empty, the set of candidate states will be complete.

SC — { &, {add}, {remove}, {add,remove}, {destroy}, }

{add, destroy}, {remove, destroy}, {add, remove, destroy}

We consider each candidate state B at a time, trying to determine if A can advance
to B using action a. If a state is reached for the first time, it is added to the W
queue.

— B =
proc%iure {add, destroy}-TO-(¥-USING-add(! : List, e :
int)
if OVER-PRED-OF-{add, destroy}(l) then TARGET is reachable.
U « add(l, e) & € 5({add, destroy} , add)
if OVER-PRED-OF-ZJ(I’) then
TARGET
Bis already in 5, so it is not added to W.
— B = {add}
procedure {add, destroy}-TO-{add}-USING-add(l : List, e :
int)
if OVER-PRED-OF-{add, destroy}(!) then TARGET is unreachable.
" « add(l, e) {add} ¢ 6({add, destroy}, add)
if OVER-PRED-OF-{add}(!') then
TARGET
— B = {remove
procedure {add, destroy}-TO-{remove}-USING-add(l : List, e :

int)
if OVER-PRED-OF-{add, destroy}(!) then TARGET is unreachable.
" « add(l, e) {remove} ¢ 5({add, destroy} , add)
if OVER-PRED-OF-{remove}(!') then
TARGET

— B = {add, remove,destroy}
procedure {add, destroy}-TO-{add, remove, destroy}-USING-add(! : List, e :
int)
if OVER-PRED-OF-{add, destroy}(l) then
" « add(l, e)
if OVER-PRED-OF-{add, remove, destroy}(l’) then
TARGET
W = W v [{add, remove,destroy}] = [{add,remove,destroy}]

TARGET is reachable.
{add, remove, destroy} €
6({add, destroy} , add)
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{add,
destroy}

{add,
remove,
destroy}

Fig. 4: Partially explored List EPA

At the end of this step, the algorithm has already explored the add action from the
{add, destroy} state. The partially explored EPA is depicted in Figure 4.

After this point, the algorithm will explore the destroy action from the
{add, destroy} state, and finally it will explore all the actions enabled in the
{add, remove, destroy} state. Due to space restrictions, we will not show a step-by-step
tracing of the rest of the execution.

4.4. Implementation Details

We implemented Algorithm 1 in the CONTRACTOR tool, already presented by the
authors at [de Caso et al. 2010]. This tool was originally targeted at constructing
Enabledness-preserving abstractions from pre/postcondition contracts. It originally
used a SMT solver (e.g. [Barrett and Berezin 2004]) in order to solve declarative logic
queries. We extended this tool so that it can handle C source code via reachability
queries.

Our CONTRACTOR extension takes a program equipped with requires clauses as in-
put and produces an EPA. Internally, it follows Algorithm 1 and constructs the reacha-
bility queries presented in the previous section. At each step, a software model checker
is invoked on the original program extended with a reachability procedure ( QUERY-FOR-
LINE-z) in order to decide if the TARGET statement is reachable.

In particular, our CONTRACTOR extension currently uses BLAST [Beyer et al. 2007]
as software model checker.

BLAST input is a tuple (P, [, ) where P is a C program, [ is a label defined somewhere
in that program and f is the point-of-entry function to that program. Whenever we
show a reachability query in Section 4.1, we define:

— f as the name of the function (e.g., b-DISABLED-AFTER-a-FROM-A),

— 1 = TARGET,

—and P to be the program composed of the original C code that defines AS extended
with the function f.

Given a tuple (P, !, /), BLAST tries to find an instantiation for every parameter of
f such that the execution of f using those parameters reaches / in program P. As we
mentioned before, reachability solving is undecidable in general so BLAST may not be
successful at finding a parameter valuation that hits [ even when it exists. In any case,
Theorem 4.2 guarantees that our result is a safe overapproximation.

The exploration for concrete parameter values is tricker when f has a formal param-
eter of a non-primitive type 7 (e.g., a C struct). In such scenarios, 7 instances need to
comply with an internal invariant I.. To the best of our knowledge, there is no explicit
mechanism in BLAST to impose an invariant on a complex type. Instead, if an action «
takes a parameter p of type 7, we add I (p) to the requires clause R,. Parameters that
do not comply with R, are not considered by the reachability queries, therefore avoid-
ing malformed instances of 7 as witnesses for reachability. Failing to include 7. in R,
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could imply having extra transitions in the resulting EPA, which does not compromise
its soundness.

Regarding our tool architecture, we use BLAST as a black-box component?. Doing so
may reduce our chances to incorporate optimisations in the EPA construction process.
On the other hand, using BLAST as a black-box enables CONTRACTOR to be defined in
a modular style that would allow BLAST to be replaced with other back-ends if needed.

For instance, instead of using a software model checker, we could have used a
verification-based approach (e.g., [Cok and Kiniry 2005]). As we further mention in
Section 6, we explored such possibility in [Zoppi et al. 2011].

Another option would be to use a symbolic execution engine (e.g., [Khurshid et al.
2003]). However, most symbolic execution engines fail to capture the complete be-
haviour of a program (e.g., due to loop unrolling). In this scenario, it is harder to
guarantee that EPAs indeed exhibit an overapproximation of the behaviour.

Finally, an alternative approach to solving reachability queries would be to use a
testing-based approach. For each query, we could use a random test-case generator
(e.g., RANDOOP [Pacheco and Ernst 2007]) for a limited number of time. If at least one
of the test-cases reaches the TARGET statement, then we would add the transition. If
none of the test-cases hits the TARGET statement, then there is no guarantee. Instead
of obtaining a behaviour overapproximation, our EPA would feature only a subset of
the legal behaviour, possibly difficulting the user validation process.

4.5. About the Technique’s Assumptions

In this section and the previous one we presented results that rely on two assump-
tions. We assumed user-provided invariants to be accurate. We also assume that re-
quires clauses can be split. In this section we discuss the impact of violating these
assumptions.

4.5.1. Violating the Invariant Correctness Assumption. We split the discussion in two sce-
narios:

a) First, we consider user-provided invariants that are too weak. This means that the

user provided invariant admits instances that are not reachable using the provided
set of actions. In such cases, as a direct consequence the abstract state predicates
become weaker than they should. Therefore, when constructing transitions, we will
possibly consider concrete class instances that satisfy the supplied (weak) invari-
ant. As a consequence, extra transitions could appear since they would use these
bogus concrete intances as witnesses.
In this case, the constructed EPA will still be an overapproximated version of the
class behaviour. However, in extreme cases (for instance, when the invariant is set
to true) the resulting EPA could be very different from the one we would get with a
more accurate invariant. This abrupt different with respect to the expected result
(i.e., one that matches the mental model) can be a hint for the developer that she
needs to provide a refined version of the invariant.

b) Second, the user can provide an incorrect invariant. That is, one that is falsified by
at least one legal instance of the class. By legal instance we refer to an instance that
can be constructed by starting from a valuation satisfying the initial predicate init
and arbitrarily invoking any number of actions in A.

For such cases, our current version of CONTRACTOR provides an experimental fea-
ture that checks the validity of the user-provided invariant on each transition. Ex-
tra reachability queries similar to the ones presented in this section are used for

21t is worth mentioning that BLAST uses predicate abstraction internally, but this is independent from our
general abstraction approach since we use this tool as a black box.
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this purpose. The offending transitions are then marked with a # in the output, so
that the user can realize that there is a problem with the invariant, and what ac-
tion triggers it. The details of this experimental feature are not further presented
in this work.

4.5.2. Violating the Requires Clauses Splitting Assumption. Regarding the requires clauses
splitting problem, based on our observations in a number of industrial APIs, we

present 3 common patterns of requires clauses. In the following, let z1,...,x; be a
subset of the parameters and let y1,..., %, be a subset of the API internal variables
(or fields).

_Pl(xlw'ka) A PQ(yla' 7ym)
An example of this is a push operation for a stack that stores possitive numbers. The
requires clause should check that the element being pushed is not negative (P;) and
that the stack is not full (7). Splitting this kind of requires clauses is trivial since
we set PR as P; and SR as P».

_P(yla' . aym.)
This is the case for many actions that take no parameters. An example of this is the
close operation for a file handler. The only requirement is that the file is open, and
there are no parameters. This pattern also appears when the action takes parame-
ters, but imposes no restriction on them, such as data containers. Splitting this kind
of requires clauses is also trivial, as it is a particular case of the previous one where
P is set to true.

—P1(£U17...,$]g) APQ(yla'-'7ym) A T OD Yj
This third pattern adds an extra check that involves a comparison of a field variable
and a parameter. An example of this is a login operation that checks that the given
password (as provided by the user in the parameter) matches the password that is
stored in a field. In this example op is the equality operation.
There is no generalised way to split this kind of requires clauses. However, for the
purposes of EPA construction, requires clauses are used to determine whether ac-
tions are enabled or not. Therefore, in such cases, the existential elimination of the
parameter xz; can yield a reasonable approximation of the requires clause. Earlier in
Section 4.2.2 we do provide reachability queries that check if the provided requires
clause approximation is sound.
For instance, in the login example, from an enabledness point of view, the password
check is irrelevant. In other words, there is always the possibility that the user will
provide the correct password, therefore the check that the input password matches
the stored password can be dropped.
A similar example arises when the requires clause for an action specifies that a pa-
rameter value has to be part of a collection stored in a field. For instance, a process
operation that takes the key k of an active work item and checks that k belongs to a
stored list of active work items W. In this example, op is the “belongs” € set opera-
tion. From an enabledness perspective, as long as the active work items set W is not
empty, there will always exist a key k that will enable the process action. Therefore,
the k € W restriction can be relaxed and rewritten as |W| > 0.

There are other patterns, such as multiple parameters x;,, z;, being compared with
several fields y;,, y;,, y;,. However, we did not find this kind of situations in practice.

4.5.3. About Requires Clauses Correctness. Notice that, even though we need requires
clauses to be splittable, the technique does not require any notion of requires clause
correctness. Furthermore, there is no general way to define what requires clauses
should describe. In some cases, requires clauses are set so that no exceptions are
thrown (this is the case in all of the classes evaluated in the next section). In some

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 G. de Caso et al.

other cases, the API uses error codes in the result (e.g., pop returns —1 if there are
no elements) and requires clauses have to be defined so that these special values
are avoided. Finally, some other APIs are more permissive and fail silently (e.g., push
leaves the stack as is if there is no more room for the new element).

The concept of requires clause is associated to weakest preconditions [Dijkstra 1975].
We analyse what happens when an action a has a requires clauses that does not imply
the weakest precondition of Fj,.

— F, could not terminate or terminate abnormally. In this scenario, the underly-
ing reachability solver (e.g., BLAST) could possibly not yield a definite answer. As we
discussed earlier, this does not affect the soundness of the construction algorithm.

— F, terminates normally but leaves the system in a possibly inconsistent
state. In this scenario the resulting EPA may present extra a-labeled transitions.
The developer could potentially discover these transitions, and then fix the problems
in R,.

Unlike invariants, requires clauses are not assumed to be accurate. There is no as-
sumption on requires clauses but the fact that they are satisfiable, which we check via
validity queries.

There are no other requirements for requires clauses. Furthermore, there is no easy
criterion to determine whether a requires clause is correct or not. Requires clauses
depend on the API designer’s intent.

For instance, consider the case of an ATM with an action withdraw(int amount)
with an empty requires clause. A reviewer might argue that the requires clause is in-
correct since there are two conditions that need to be checked: i) that the given amount
is positive, and ii) that the client has enough funds. While the first condition seems
reasonable for all possible ATMs, the second one might not be desirable if the bank
allowed clients to have a (bounded) negative balance. In other words, changing the
requires clause affects the resulting functionality of the action system. Therefore, this
is a validation problem, since we are comparing the behaviour of the withdraw action
with our mental model of what this operation should do.

Since this is a validation problem, not only we do not need requires clauses to be
accurate, but we also can help detect problems in them. In [de Caso et al. 2010] we
describe a series of validation guidelines that help the user navigate EPAs and identify
cases on which requires clauses are too weak or too strong. This is in the context of
pre/postcondition contracts, but the guidelines still apply for the case of EPAs produced
from source code.

In the next section we analyse our construction algorithm and its implementation
on a series of industrial programs. When dealing with programs that do not explicitly
mark requires clauses, a number of extra challenges arise. We discuss these in the next
section.

5. EXPERIMENTAL EVALUATION

In this section we comment on some of the aspects involved in the validation of our
approach. In particular, we aim to answer the following research question:

R.Q.: Is the proposed level of abstraction useful for validating code artefacts
and identifying findings that relate to bugs in code and problems in expected
or documented requirements?

In this section we present the experiment design and the set of subjects used, to-
gether with the motivation for their selection. We then comment on the results related
to answering the research question. This section ends with quantitative and qualita-
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Non-whitespace nor comment LOC

Name # Actions | API functionality Requires clauses Invariant
List 3 75 8 1
PipedOutputStream 4 90 10 1
Signature 5 83 12 1
ListItr 5 130 26 6
Socket 8 230 25 11
PCCRR 12 251 39 6
SMTPServer 9 85 19 4
SMTPProtocol 16 510 34 1

Table I: Case studies subjects size information

tive analyses of the presented results, as well as a description of the threats to their
validity.

5.1. Experimental Setting

In order to answer the previous research question, a series of case studies were con-
ducted using the following design. First, a program under analysis is abstracted using
the CONTRACTOR tool, generating an enabledness-preserving abstraction. Separately,
behaviour requirements are procured. They may be manually generated by a third-
party or derived from existing documentation.

Then, an expert reviewer compares the enabledness-preserving model with the be-
haviour requirements, yielding a list of suspicious differences between them. We will
refer to these as findings. Finally, leveraging the binding that action set predicates cre-
ate between EPA transitions and states with code fragments such as requires clauses,
each finding is manually tracked back to the original program in order to confirm it is
non spurious.

5.2. Subjects

The programs on which the studies were performed are the PipedOutputStream,
Signature, ListItr and Socket from the Java Development Kit (JDK) 1.4 implemen-
tation; the SMTPServer server-side from the JES Java mail server; the SMTPProtocol
client-side class from the RISTRETTO protocol-level Java mail client; and the PCCRR
class was taken from a C# SpecExplorer protocol model. Table I presents some addi-
tional information regarding the size of the subject APIs.

Subject classes were included according to the following criteria: i) Classes that fea-
ture rich restrictions in the order in which the methods must be called. ii) Classes
for which either behaviour documentation or manually-generated behaviour models
can be found. iii) Classes that have already been analysed using techniques compara-
ble to ours (e.g., [Alur et al. 2005; Henzinger et al. 2005]). And iv) classes that are of
industrial relevance.

The nature of the BLAST tool, which deals with C code, forced us to analyse programs
that are written in that programming language. Since most of previous work in our
area focuses on analysing Java classes, we had to manually translate these to C in
order to be able to compare our approach.

We used the existing run-time checks on each class source code as requires clauses.
Table II presents the information regarding requires clauses splitting. Almost all the
requires clauses could be split in most of the analised APIs. The exception was the
PCCRR class: a few actions had requires clauses which forced the value of a parameter
to be exactly the same as the value of a class field. Since there is always an assignment

to the parameter which is equal to the value of the field, setting R and R to true could
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Actions with Actions that required
Name Total actions | precise splitting approximation
List 3 3 0
PipedOutputStream 4 4 0
Signature 5 5 0
ListItr 5 5 0
Socket 8 8 0
PCCRR 12 9 3
SMTPServer 9 9 0
SMTPProtocol 16 16 0

Table II: Case studies subjects requires clauses splitting information

be used as an exact approximation of the original requires clause from an enabledness
point of view.

With respect to the time it took to produce the requires clauses, it is worth noticing
that they were not produced from scratch, but rather identified in the existing code.
While time was not accounted for the requires clauses extraction, we believe that au-
tomating this task is key to lowering the adoption barrier for CONTRACTOR.

Regarding the behaviour requirements, which were compared to the enabledness-
preserving abstractions, they were obtained as follows. The PipedOutputStream EPA
was compared against the official Java documentation (Javadoc). The Signature EPA
was compared against the class Javadoc and against a manually-generated model
made available by Dallmeier et al. [Dallmeier et al. 2010]. The ListItr EPA was
compared against a manually-generated model, which was constructed by a senior
Java developer. The Socket EPA was compared against the class Javadoc and an in-
ferred restriction reported in [Henzinger et al. 2005]. The PCCRR EPA was compared
against the reviewer’s understanding of the protocol since the C# SpecExplorer model
was undocumented. The SMTPServer and SMTPProtocol EPAs were compared against a
manually-generated model made available by Dallmeier et al. [Dallmeier et al. 2010],
as well as the SMTP Protocol RFC3.

Finally, there were a few cases in which action parameters had non-primitive types
(i.e., types other than bool or int). There are no a-priori limitations in our approach
with respect to non-primitive parameters. However, in our current implementation we
inherit the limitations of the BLAST back-end. As we will present later on this section,
even when BLAST does not necessarily specialize in finding values for complex data
types, it has performed reasonably well in all the scenarios that involved finding such
values.

5.3. Findings

In this section we report on the most relevant findings discovered while performing
the case studies. A more extensive report of these case studies, together with all the
generated models is included in the CONTRACTOR tool Web site http://lafhis.dc.
uba.ar/contractor. All the components of the CONTRACTOR tool are freely available
for download.

5.3.1. Java PipedOutputStream. The PipedOutputStream is an implementation of an out-
put stream that can be connected to a piped input stream to create a communications
pipe. The piped output stream is the sending end of the pipe. More precisely, an in-
stance of the PipedOutputStreanm class can engage in 4 different actions:

— connect (PipedInputStream snk) connects the PipedOutputStreanm to the reader side.

Shttp://www.fags.org/rfcs/rfc821.html
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close flush flush
flush write close

Fig. 5: EPA of JDK 1.4 PipedQutputStream

—uwrite(byte b) outputs the given byte and makes it available to the reader side.
— flush () notifies the reader side of the data availability in the pipe.
—close() ends the connection with the reader side.

We produced a straightforward translation of the JDK 1.4 implementation of the
PipedOutputStream to C. For the requires clauses we manually extracted the code frag-
ments which contain the necessary conditions to avoid exceptions being thrown when
executing methods of the class. It was trivial to split these requires clauses into two
parts, as required by our approach, because none of them depended both on parame-
ters and class attributes. Finally, we used true as system invariant.

The model in Figure 5 is the EPA for the PipedOutputStream obtained by CONTRAC-
TOR. This abstraction shows to be an accurate representation of the Java official doc-
umentation. For instance, the Javadoc for the connect method says that “if this object
is already connected to some other piped input stream, an I0Exception is thrown.”.
This is reflected in the EPA as the connect action is unavailable once a connection is
established.

The documentation for the close method reads that after closure the “stream may
no longer be used for writing”. This is reflected in the transition from S14 to S12, since
the latter does not allow to perform the write operation.

More interestingly, the abstraction of Figure 5 shows a close loop transition on the
initial state, which contradicts the Java documentation since it allows the following
trace: close ~» connect ~ write, which exhibits the use of the writing operation after
the pipe was closed. The expert reviewer analysed if this trace was legal in two ways:
1) by exercising this trace to see if it threw an exception; and ii) by analysing the JDK
implementation to see if there was any additional condition which might make the
closure of a non-connected buffer throw an exception. The reviewer found that, despite
the documentation says otherwise, the closure of unconnected piped output streams is
legal.

5.3.2. Java Signature. The Java Signature class is used to provide applications the
functionality of a digital signature algorithm. There are three phases to the use of
a Signature object for either signing data or verifying a signature: i) Initialization,
with either a public key, which initializes for verification, or a private key, which ini-
tializes for signing; ii) Updating, which updates the bytes to be signed or verified; and
1i1) Signing or verifying a signature on all updated bytes.

—initSign(PrivateKey privateKey) initializes the Signature object in signing mode.
The data to be signed is initialized to an empty byte array.

—initVerify(PublicKey publicKey) initializes the Signature object in signature ver-
ification mode.

—update (byte[] b) updates the data to be signed.

—sign() returns a cryptographic signature for the data given by the last update com-
mand, if any.
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initSign
sign
update initVerify
verify
update

initVerify

Fig. 6: EPA of JDK 1.4 Signature

initVerify
verify
update

Fig. 7: Manually generated model of JDK 1.4 Signature (extracted from [Dallmeier
et al. 2010])

—verify(byte[] signature) checks the cryptographic signature given in the parame-
ter.

As with the previous class, we translated the JDK 1.4 implementation of the
Signature to C. Similarly, we defined the requires clauses with the adequate manu-
ally extracted code fragments. We defined the system invariant as true.

The model in Figure 6 is the EPA for Signature obtained with CONTRACTOR on a C
version of the JDK 1.4 implementation of class Signature, introducing split requires
clauses that prevented exceptions from being thrown.

The EPA obtained with CONTRACTOR was exactly the same as the manual model
presented in [Dallmeier et al. 2010]. This model clearly represents how an instance
of Signature can only be in 3 different states: uninitialized, initialized for signing or
initialized for signature verification. After checking the source code, the reviewer found
that the implementation stores this information in an integer variable named state,
which takes values from the set {UNINITIALIZED, SIGN, VERIFY}.

Our abstraction also proved to be a faithful representation of both the manually-
generated model presented in [Dallmeier et al. 2010] (see Figure 7), as well as of the
restrictions imposed by the official Java documentation.

5.3.3. Java List Iterator. The Java List Iterator (ListItr) provides functionality to go
through the elements stored in a List. It is initialized passing both the target list and
the initial index from which the iteration begins. The available actions on a ListItr
object are:

—next () retrieves the following element, unless the end of the list has been reached.

—prev() retrieves the previous element, unless the iteratior points to the beginning of
the list.

—add(object o) inserts an new element in the current position.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Enabledness-based Program Abstractions for Behaviour Validation A:29

Fig. 8: EPA of JDK 1.4 ListItr

—rem() removes the last retrieved element. Therefore, it is enabled only after next ()
or prev() have been invoked.

—set(object o) replaces the last retrieved element for the given o. Just like rem(), it
is only enabled after the execution of next () or prev().

We translated the JDK 1.4 Java List Iterator implementation ranging over an
ArrayList. The requires clauses where defined using manually extracted fragments
of code so that no exception was thrown. The system invariant includes restrictions
such as:

— The current size of the ArrayList does not exceed its capacity.

— The cursor used by the iterator is in the range of the array.

— The last returned element by the iterator is either: @) undefined; or b) next to the
cursor.

The abstraction of Figure 8 is the EPA obtained by CONTRACTOR. Every state in it
represents an interesting situation to which an iterator can evolve. There are 4 initial
states:

S16. :the add operation is the only available action. We are iterating over an empty
list.

S17. : the prev operation is disabled, so the cursor is at the beginning of the list.
The set and rem operations are also disabled, so this means that an element has
not been just retrieved. The next operation is enabled, so the list is not empty.

S20. : just like the previous state, but with the cursor pointing at the end, so prev
is enabled but next is not.

S21. : the set and rem operations are disabled, so there has not been a retrieved
element. The cursor is pointing at a position in the middle of a list, so both prev and
next are enabled.
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ListItr(ndx) [ndx=size-1]

luvc [size>2]

fremove

emove [size=2]

[Listltr(ndx) [ndx=0, size=0]

prev

add

Fig. 9: Manually generated ListItr behaviour model

The states 527, S30 and S31 are like states S17, $20 and S21 respectively. The only dif-
ference between them is that in the former states an element has just been returned,
so the rem and set operations are also enabled. Notice that while producing this EPA
BLAST was uncertain in a number of transitions, which are suffixed with a “?” symbol.
CONTRACTOR reported that the cause of this uncertainty is that the system invari-
ant may not be preserved. A finer-grained manual analysis revealed that the system
invariant is not violated, however BLAST is not able to prove this.

A senior Java applications developer with more than 8 years of experience (including
experience with formal models) manually generated a behaviour model, shown in Fig-
ure 9, by analysing the JDK implementation for the list iterator. During this creation
process, the developer executed a number of usage scenarios to refine his understand-
ing of the code.
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Fig. 10: First EPA of JDK 1.4 Socket

When comparing this manually-generated model with the EPA, an expert reviewer
(which was not the same person as the developer who manually created the model)
discovered that the overall level of abstraction of the manually-constructed model was
comparable to that of enabledness: more than half of the states in the manually-
generated model were present in the EPA. Furthermore, there were 2 states in the
manually-generated model which were enabledness-equivalent. This is because the de-
veloper decided to separately consider the cases in which the iterated list had exactly
one element. Finally, there were 3 states in the manually-generated model which were
not traceable to states in the EPA. When further analysing these states, the expert re-
viewer discovered that they were exhibiting spurious behaviour and were accidentally
introduced by the developer, due to his misunderstanding of the requirements.

5.3.4. Java Socket. A Java Socket provides the client-side functionality to establish a
TCP connection between two hosts. A Socket can engage in the following actions:

—Dbind(SocketAddress bindpoint) establishes the local address (particularly, local
port) of the client socket.

— connect (SocketAddress endpoint, int timeout) establishes a connection with a
remote server socket.

— getOutputStream() and getInputStream() return the streams on which the client
can send and receive from the server, respectively.

— shutdownQOutput () and shutdownInput () close the sending and receiving streams, re-
spectively.

— close() ends the connection with the server.
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Fig. 11: Final EPA of JDK 1.4 Socket

We ran CONTRACTOR on a C translated version of the JDK 1.4 Socket implementa-
tion. The system invariant restricts that the port value is in range (from 0 to 65535),
and that the fields marking the shutdown state of each stream (either input or out-
put) actually reflect the state of the streams. Finally, we obtained the EPA depicted in
Figure 10.

This first abstraction provides evidence on how the bind operation may be omitted
before a call to connect, since they both eventually lead to the state S124. This is not
clearly stated in the Java official documentation for this class.

Furthermore, this EPA shows 2 suspicious elements:

— The connect operation from the initial state advances to several different states,
some of which do not allow sending to and/or receiving from the server. This is not
the expected behaviour, since a fresh connection should not block any of these actions.

— Furthermore, some states enable the shutdownInput action, even when
getInputStream is disabled. A similar situation happens with shutdownOutput
and getOutputStream.

A closer inspection of the Socket class reveals that both of these problems were due
to a weak action set predicate of the S17 and S19 states. The boolean variables that
store whether the sending and receiving streams are closed are always false since
the Socket creation. However, this restriction is not valid in all of the Socket states,
particularly after either shutdownInput or shutdownOutput have been executed.

In order to deal with this pseudoinvariant which holds on some of the abstract states,
we added a feature in CONTRACTOR which allows the user to specify properties which
are specific to some of the abstract states.

We then added a restriction that encodes that the variables that keep track of the
sending and receiving streams are closed in the S19 and S17 abstract states. Running
CONTRACTOR on this new version produces the EPA in Figure 11.

This second abstraction shows how once the connection is established both sending
and receiving are enabled. Each of these actions is disabled after its corresponding
shut-down operation. The same restriction is obtained by [Henzinger et al. 2005], but
it requires the user to add six predicates to keep track of the state.
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5.3.5. PCCR Framework. The Peer Content Caching and Retrieval (PCCR)* system is a
P2P-based distribution framework designed to reduce bandwidth consumption in wide
area networks. The key feature is that it allows clients to retrieve content from dis-
tributed caches when available, instead of content servers which are generally located
remotely. In order to increase the local availability of content, clients also serve as
caches.

This framework is defined by two protocols, one of which (PCCRR) is used for querying
the server for the availability of certain content and retrieving it.

Based on the quality process, model-based testing approach described in [Grieskamp
et al. 2011], an expert reviewer analysed the program that defines the SpecExplorer
model used to guide the testing process of the protocol’s client side. In a few words, a
SpecExplorer model is a C# class consisting of methods that are interpreted as guarded
rules defining a rich action machine. These rules are used to stimulate the system
under testing and check its answers. In this case, the model program could be regarded
as an abstract implementation of the server side.

Concretely, the PCCRR protocol model defines the following actions:

— GetSutPlatform(SutPlatform sutPlatform) establishes which operating system
runs on the client to be tested.

— InitSut(bool isTestingNegotiation) initializes the client to be tested, providing a
parameter that indicates if the negotiation phase of the SUT is being tested.

— RcvNegoReq () indicates that the server has received a message with the protocol ver-
sions supported by the client.

— SndNegoResp() is the same as the previous one, but the message is sent by the server.

—RcvGetBlkList () indicates that the server has received a message requesting the
hashes for set of blocks which the client is interested in.

— SndBlkList (bool isTimerExpire, bool isSameSegment, bool isWellFormed, bool
isOverlap) makes the server send the hashes for the requested blocks it possesses
to the client.

— SndBlkListAb(bool isTimerExpire, bool isSameSegment, bool isWellFormed,
bool isOverlap) is the same as the previous one, but with a response indicating the
request was not consistent.

—RcvGetBlk(uint index) indicates that the server has received a request for a partic-
ular block, indicated by its hash.

— SndBlk(ContentType cType, bool isTimerExpire, bool isSameSegment, bool
isWellFormed, uint index) is the action by which the server sends the requested
block to the client.

Where the Snd-prefixed actions are those that correspond to messages controlled by
the program, while the rest of the actions correspond to messages that the program
monitors.

It is worth mentioning that there are no ordering restrictions between the requests
that come from the client once the connection has been established. For example, a
client may first ask for the supported versions of the server, then for the list of packages
and finally decide not to download anything. Another client may directly ask for a
specific package without even asking for the package list.

The program also has the following control actions, which are communications with
the client under test that are not defined in the protocol documentation. These are
used to control the progress of the testing process itself:

4nttp://msdn.microsoft.com/en-us/library/dd304175(PROT. 13) . aspx
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Fig. 12: First EPA of the MS-PCCRR server side

— TriggerSutDwnld(ContentType cType) makes the client under test request a down-
load of the given kind to the server.

— SutTimeOut () indicates that the client has timed out.

— SutVerifyBlk(ContentType cType, uint index) verifies that the client has correctly
received the requested block.

We translated the C# class to C, using the guards for the SpecExplorer rules as
requires clauses for the CONTRACTOR input. In this case we needed to relax 3 precon-
ditions by hand in order to comply with the requisite of split preconditions. Some of
the requires clauses in the original model had constraints over parameters and model
variables, however these could be simplified by asumming worst-case fixed values for
fields. For instance p < f where pis parameter and f is field can be safely dropped since
there is always going to exist such a p (in particular p = f satisfies the constraint). In
order to keep code safe, the p < f restriction was then moved to the actual action
code. The relaxed preconditions were checked correct using the approach described in
Section 4.

The original C# class had a series of enum fields. The C version turns each enun field
into an int field. The system invariant for the PCCRR class imposes restrictions so that
these int fields are actually in range.

The first EPA obtained with CONTRACTOR, which had 16 states, which can be seen
in Figure 12, was relatively big but still much smaller that the model with 844 states
produced by SpecExplorer during an exploration of the PCCRR state space. The reviewer
analysed this abstraction and found that starting from the initial state (S1) the InitSut
initialisation action showed non-deterministic behaviour, as it can evolve to states S16
and S24.

The expert reviewer checked the code for the cause of non-determinism on
InitSut and discovered that it is an action with a single boolean parameter called
isTestingNegotiation, which is stored in a boolean field named isTestingNego. The
reviewer then searched for other appearances of the isTestingNego field and found
that when it this true then a negotiation response the SndNegoResp action is enabled.
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Fig. 13: Second EPA of the MS-PCCRR server side (eliminated the isTestingNego field)

In the EPA depicted in Figure 12, this issue is manifested as the quasi-partition of the
states into two sets which are only connected by 2 transitions. states S8 and S1316.
A negotiation response action is always enabled in one of the model fragments and
always disabled in the other. Furthermore, this is the only difference between these
sets.

This issue appears to be a case of a weak dispatch condition of the SndNegoResp
action, which might result in the generation of test cases where the program behaves
differently than the client under test is expecting.

In order to get a better understanding of the model code, we decided to fix the plat-
form to be not Windows-based, getting the abstraction in Figure 13.

CONTRACTOR was then ran over the modified version of the original code, obtained
by eliminating the isTestingNego field, getting an abstraction featuring 10 states. This
second abstraction allowed the reviewer to find another unknown issue in the program:
an operation SutTimeOut which should only be triggered when the client is idle has a
weak requires clause which could lead to false positives if the action is executed with
a package still on-the-fly. This second abstraction also reflected the fact that, once the
connection is established, there are no ordering restrictions between the messages that
the client may send.

5.3.6. SMTP Server. The SMTPServer class is a Java implementation of an SMTP pro-
tocol server extracted from Java Email Server (JES)®.

—ehlo(string hostname) is used by the client to indicate that it wishes to use the
extended SMTP protocol. The client hostname is provided, so that the SMTP server
can decided if it will relay e-mail for that domain.

—mail() indicates that the client wishes to send a new e-mail.

—rcpt (Address a) is invoked for each of the recipients that the client needs to add as
recipients for the newly created e-mail.

—data(byte[] data) is used to indicate the actual contents of the e-mail. It can be
invoked when at least one recipient was already provided.

—verify(Address a) is used to check if a given e-mail address is served by this SMTP
server.

—rset () is a clean-up operation to restore the server back to the initial state.

—noop() is an empty command used to keep alive the connection.

Shttp://www.ericdaugherty.com/java/mailserver
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Fig. 14: EPA for SMTP protocol server class

We translated the SMTPServer class to C and run CONTRACTOR, using the requires
clauses as extracted from the runtime checks on each method. As with the previous
class, the system invariant imposes a restriction over a translated enum field so that it
is in range. We then obtained the EPA in Figure 14.

We found two anomalies in the EPA:

(1) After a mail command (S47 — S79), a noop operation modifies the SMTP server in-
ternal state (S79 — S111). Particularly, instead of just being able to add new recip-
ients, in S111 the mail operation is also enabled (as many others). This non-empty
behaviour for the noop operation is against the SMTP protocol standard.

(2) After a data command (S207 — S15), we should be able to send a new email using
the mail command. However, the EPA shows that this implementation requires the
client to first call another command such as noop or rset in order to go back to the
initial state.

Taking a closer look at the STMPServer source code, we found that it uses a vari-
able to store the name of the last invoked command. Storing noop as the last in-
voked command is clearly a bad implementation strategy, since the server loses track
of whichever command was executed before that. This problem was causing the first
problem described above.

On top of this, the second problem is caused by an omission in the requires clause
of the mail command, which causes the operation to remain disabled when data is the
last executed command.

5.3.7. SMTP Client. The SMTPProtocol class is a Java implementation of an SMTP pro-
tocol client extracted from the RISTRETTO Java mail client®. The requires clauses were
set according to the run-time checks found in the first lines of each method. The system
invariant imposes a restriction on a translated enum field. CONTRACTOR was run and
outputted the enabledness-preserving abstraction in Figure 15.

When compared to the manually-generated model in [Dallmeier et al. 2010] (see Fig-
ure 16) the reviewer discovered that the constructed EPA was much more permissive.
In particular, the manually-generated model reflected a number of method ordering
restrictions, such as requiring mails to be initiated (mail) before recipients could be
added (rcpt).

Snttp://ostatic.com/ristretto
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Fig. 15: EPA for SMTP protocol client class

On the other hand, the EPA does not impose ordering restrictions to any command,
as long as the connection with the server is established. This lack of restrictions in
the EPA is caused by the fact that the SMTPProtocol implementation only keeps track
of a single variable which indicates if the client is connected or not. When the client
is connected, the implementation acts as a pass-through of the user requests to the
server and delegates the enforcement of invocation ordering restrictions to the server.

The manually-generated model was indeed constructed by considering the behaviour
that emerges when connecting the SMTPProtocol instance to a well behaving SMTP
server (i.e., a server that complies with the ESMTP standard [Klensin et al. 1995]).
Should the client connect to an SMTP server that does not follow the protocol standard,
then the behaviour would significantly differ.

The pass-through behaviour that the EPA unveils can quickly help an expert re-
viewer realize that the SMTPProtocol implementation does indeed have a design flaw,
since it heavily relies on the server being correctly implemented. This dependence is
not reflected in the manually-generated model.

5.4. Quantitative Analysis

The case studies presented in this section were ran on an Intel Core i7 (hyper-threaded
quad-core) computer with 8 GB of RAM. The algorithm was executed with 8 worker
threads running in parallel performing the BLAST queries.

Table III presents a quantitative view of the performed case studies. Engine cer-
tainty accounts for the percentage of successful (i.e., certain) answers from BLAST.

As we can observe, running times do not only depend on the number of actions, but
also on the size of the abstraction, as can be seen when comparing the two versions of
PCCRR.
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Fig. 16: Manually generated model for SMTP protocol client class (extracted
from [Dallmeier et al. 2010])

Input Tool execution Output
#BLAST queries
#Actions, Name (certainty) Time States, transitions

3, List (buggy) 60 (100%) 6s. 3,7
3, List (fixed) 62 (100%) 7s. 3,8
4, PipedOutputStream 85 (100%) 8s. 3,8
5, Signature 127 (100%) 13s. 3,10
5, ListItr 279 (97.5%) 5m. 14s. 7, 32
8, Socket (1%%) 400 (100 %) 42m. 11s. 9, 38
8, Socket (2nd) 255 (100 %) 24m. 32s. 6,19
12, PCCRR (1) 558 (100%) 10m. 28s. 16, 34
12, PCCRR (20d) 253 (100%) 6m. 38s. 10, 14
9, SMTPServer 461 (99.8 %) 27m. 22s. 5,34
16, SMTPProtocol 979 (100%) 5m. 18s. 2,39

Table III: Case studies summary

It is worth mentioning that the reachable fragments of the EPAs constructed with
CONTRACTOR feature significantly fewer states than the complete 2/4¢!l enabledness-
based state space. For instance, the ListItr EPA has 7 states out of 32; the second

PCCRR EPA has 10 states out of 4096.
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In particular, we analysed if the overhead of computing A*/A~ is compensated later
when less actions have to be considered. Table IV shows the CONTRACTOR tool running
times when the AT/A~ optimisation is disabled. In this case, in every abstract state,
every enabled action and every possible reaching state is considered by the engine.
For the smaller examples (up to 5 actions) disabling this optimisation is almost always
beneficial; in bigger cases however, the unoptimised version runs up to 5 times slower.
The exception is the SMTPServer class, for which the unoptimized version runs a little
bit faster. This behaviour clearly reflects the fact that computing the A™/A~ sets is
linear, and is therefore amortized.

Finally, the engine certainty was very high in all of the analysed case studies, and
completely certain in 4 out of 6 cases. This is remarkably high for the BLAST tool,
specially considering that most of the analysed classes were relevant programs already
studied in previous work [Alur et al. 2005; Henzinger et al. 2005; Dallmeier et al.
2010].

5.5. Qualitative Analysis

In order to provide an answer to our research question, we will argue that the EPAs we
create convey a representation of the behaviour which is tractable by human inspection
and meaningful with respect to elements in the input program.

For instance, the PipedOutputStream case study shows the potential of our approach
to contrast the descriptive official documentation of an artefact with its current pre-
scriptive implementation, which is what ends up being executed. In this case the re-
viewer found interesting behaviour which is officially undocumented but still legal.

In the Signature case study, our approach proved useful to easily trace elements
in the abstraction back to source code elements such as variable definitions or value
ranges.

The ListItr case study allowed us to discover that the states in a manually-
generated model can sometimes be easily traced to enabledness-based states. Fur-
thermore, the automatic nature of our approach prevents the developer from making
mistakes when creating this kind of model. This case study also showed that, even in
the presence of (a small number of) uncertain answers from the reachability engine,
our approach successfully builds a non-trivial abstraction that is still amenable for
validating and understanding the program under analysis.

In the Socket case study, our abstraction was able to convey a simple, yet represen-
tative picture of the implementation state space; identifying the key parts that keep

Input Tool execution
Optimised Unoptimised

Name running time running time
List (buggy) 6s. 4s.
List (fixed) Ts. 4s.
PipedOutputStream 8s. 6s.
Signature 13s. 9s.
ListItr 5m. 14s. 6m. 9s.
Socket (first) 42m 11s. 87m. 45s.
Socket (second) 24m. 32s. 51m. 24s.
PCCRR (first) 10m. 28s. 17m. 58s.
PCCRR (second) 6m. 38s. 11m. 38s.
SMTPServer 27m. 22s. 25m. 44s.
SMTPProtocol 5m. 18s. 28m. 10s.

Table IV: Comparing running times with and without A™/A~ optimisation
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track of the sending and receiving streams’ state. It also was able to reproduce the call
order restrictions obtained using previous techniques.

The SMTPServer case study shows how our abstraction can reveal implementation
strategy errors and omissions; which, in turn, show how even implementations for
popular and well understood protocols such as SMTP can be tricky to get right.

In the SMTPProtocol case study, our abstraction clearly reflects the fact that the
client-side implementation relies on server-side action ordering restriction checks;
something which was not explicit in a previous manually-generated model available
in literature.

Finally, the PCCRR case study showed how the automated construction of an EPA was
helpful in identifying previously unknown relevant problems in an industrial model
program.

It is worth mentioning that, even when the abstractions include a few spurious tran-
sitions due to undecidability and approximations, the findings discovered by the re-
viewers, which are the ones we report here, were non spurious.

To conclude, the level of abstraction of the resulting EPAs has showed to be useful
for tracing back both transitions and states to the source code, providing a helpful aid
to gaining insight on the behaviour of the code and performing bug finding related
tasks.

5.6. Threats to Validity

As any study, the results presented in this section are subject to threats to validity. We
distinguish between threats to internal, external and construct validity.

Threats to external validity concern our ability to generalise the results of our
study. We cannot generalise the results since the scope of our study is relatively small
(a sample of 7 programs). For instance, we have translated and analysed 2 of the 3
complete models presented in [Dallmeier et al. 2010].

Scalability of our tool to cope with larger classes still remains a question. However,
the scalability of our methodology relies on the scalability of the underlying software
model checker. Furthermore, the complexity of our algorithm is not as affected by the
number of lines of the API implementation under analysis, but by the number of ac-
tions of the API which modify the state. Finally, our approach can be easily adjusted in
a precision vs. scalability trade-off by introducing time-outs when calling the software
model checker.

Although interesting findings were revealed by the abstraction, there may be issues
at the method body level which could not be revealed by the chosen granularity of
action labels. It is possible to use labels to denote request/response pairs by providing
requires clauses that ensure the expected type of response is yielded. Such a denotation
would produce a finer grained abstraction that could reveal more issues. We plan to
explore this in future work.

We are also biased in the selection since we have deliberately chosen programs with
a rich action ordering restrictions. Simpler programs would yield trivial models which
would not be as useful.

Threats to internal validity concern our ability to draw conclusions between our
independent and dependent variables. The C translations of the subject programs,
the manually annotated requires clauses and invariants or the manually-generated
models may be incorrect.

Regarding the manually-generated models, we minimise this risk by using material
previously used by other authors, as well as making available all the new material.
Regarding the requires clauses, their extraction followed a principled approach based
on discovering exceptions thrown at the beginning of each method. Finally, while hav-
ing good invariants poses a real challenge for the approach, most of the invariants we
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used were obtained by formalizing colloquial descriptions found in the classes Javadoc,
as well as some other type restrictions imposed by the manual translation to C.

Threats to construct validity concern the adequacy of our measures for captur-
ing dependent variables. The reviewer may have made mistakes when comparing the
enabledness-preserving abstractions with the behaviour requirements. We believe that
making all the material publicly available mitigates this threat.

6. RELATED WORK

In this section we compare our approach to the construction of behaviour models with
other previously published techniques. Table V presents a summary comparison.

From the comparison presented in this table, we can conclude that to the best of our
knowledge, our technique is the first to:

(1) Statically and automatically construct, from an API source code, a model that ac-
cepts a superset of the legal API traces.
(2) Statically and automatically construct a model suitable for human inspection.

A more detailed discussion of related work follows.

Static Typestate Inference

Our technique is related to approaches that synthesize typestates [Strom and Yemini
1986; DeLine and Fahndrich 2001; Nanda et al. 2005] or interfaces [Alur et al. 2005;
Giannakopoulou and Pasédreanu 2009; Henzinger et al. 2005] out of a program: any
sequence of methods that is not accepted by our abstraction will not be allowed by a
program. However, in typestate and interface synthesis approaches the aim is modular
verification, rather than validation.

Aiming at verification imposes a safety requirement which tends to make abstrac-
tions overly restrictive in terms of the model behaviour. Permissiveness is possible
only at the cost of assuming certain conditions over the artefacts being analysed, for
instance the algorithms in [Giannakopoulou and Pisdreanu 2009; Henzinger et al.
2005] guarantee correctness only when the library’s internal state is finite. Examples
with unbounded internal state are treated by limiting the number of observed excep-
tions and changing the signature of methods, as can be seen in the interface of Fig. 6
of [Alur et al. 2005]. This abstraction for the ListItr class aims at client safety for only
2 of the 5 operations, and considers only 1 out of 3 exception types. Obtaining a safe
interface for the complete class, considering all the actions and exceptions would have
produced a trivial abstraction that omits most of the iterator behaviour and would be
of little use for validation purposes.

In [Nanda et al. 2005] the authors present a technique to statically infer safe type-
states in the presence of inter-object references. This approach is based on a mixture
of predicate abstraction and abstract interpretation, and does not require the class
internal state to be finite. However, like in the other approaches that we mentioned,
the results obtained are aimed at creating test drivers and performing verification of
client code. The result is accompanied with plenty of information regarding the boolean
values obtained in the predicate abstraction process. The obtained amount of detail,
while it helps to construct tests or guide verification processes, may hinder human-in-
the-loop tasks such as visual inspection.

Approaches to perform modular verification of typestate usage (e.g., [Bierhoff and
Aldrich 2008]) are based on annotating both the protocol and the client class with pre
and postconditions (among other clauses). In general, the annotations for the protocol
class can be manually generated since they are created once and used several times.
On the other hand, there are thousands of different programs where a protocol is used
and it is very time consuming to manually annotate all of those. In [Beckman and Nori
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Technique

Input

Output

Construction
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Purpose

[Alur et al. 2005]

API source code

Model that accepts subset
of legal traces

Predicate abstraction,
language learning

Verification of
API client usage

[Nanda et al

2005]

API source code

Model that accepts subset
of legal traces

Predicate abstraction,
abstract interpreta-
tion

Verification of
API client usage

[Henzinger et al.

API source code

Model that accepts all le-

Predicate abstraction

Verification of

2005] (Sf;l;ltlg internal gal traces Z}llicksiggware model API client usage
[Glannavk(zpoulou .. Model that accepts all le- Softw_are model Compositional
and Pasdreanu  Finite LTS gal traces checking, language verification
2009] learning

[Graf and Saidi

Set of guarded-

Model that accepts super-

Predicate abstraction

Verification of

1997] as&gmpents, set set of legal traces via gsmsted theorem system proper-
of predicates proving ties

[Grieskamp Abstract state  Underapproximation  of Symbolic execution Construction of

et al. 2002] machine the “true FSM” Yy test-suite

[Liu et al. 2007]

API source code

Partition of  concrete
states according to the
output of boolean ob-
servers

SMT solvers, testing

Construction of
API test-suite

CONTRACTOR

API source code,
requires clauses
and invariant

Model that accepts super-
set of legal traces

Predicate abstraction
using enabledness of
operations

Human
tion

inspec-

[Gabel and Su
2008]

API client traces

Model that accepts super-
set of observed traces

BDD-based
algorithm

mining

API specification
recovery

[Dallmeier et al.
2006]

API client traces

Partition of  concrete
states according to ob-
servers output

Predicate abstraction
over given traces

Construction of
API test-suite

[Ghezzi
2009]

et al

API client traces

Model that accepts super-
set of given traces

Extrapolation via
graph transformation
rules

API specification
recovery

[Lorenzoli et al.
2008]

API client traces

Model that accepts super-
set of given traces, pre-
serving data dependencies

k-tail, data invariant
inference

Construction of
API test-suite

States model meth-

[Pradel and . Model that accepts super- ods, edges model API specification
API client traces
Gross 2009] set of observed traces precedence frequency  recovery
between methods
[Beschastnikh . Model that accepts super- Extrapplatmn Via  fuman inspec-
API client traces transitive closure of .
et al. 2011] set of observed traces . . tion
temporal invariants
[Demsky and Ri- API client traces Model that accepts super- ngslczt:etagigaﬁ?ﬂﬁ Human inspec-
nard 2009] set of observed traces using u tion

predicates

Table V: Related work summary

2011] the authors present a technique to automatically infer annotations for the client
usages of the protocol.

Predicate Abstraction and Model Minimisation

Our work can be considered an instantiation of the predicate abstraction [Uribe 1999]
framework. In this setting our work is related to techniques that construct abstract
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state graphs from infinite state systems (e.g., [Lee and Yannakakis 1992; Graf and
Saidi 1997; Grieskamp et al. 2002]). However, these techniques aim at verification or
generation of test cases rather than validation, hence the level of abstraction, the size
of the resulting model and the challenge of traceability with the original artefact vary.
For instance, even setting the input predicates in [Graf and Saidi 1997] to model the
enabledness conditions of actions, the output would be too large for manual inspection
(see [de Caso et al. 2010] for further discussion). Notably, the setting in [Grieskamp
et al. 2002] admits producing the same abstraction as ours for testing purposes but the
approach is to under-approximate it by finitely bounding the artefact under analysis.

Testing-related Approaches

A level of abstraction somewhat related to that of enabledness has been used in [Liu
et al. 2007]. The authors quotient the state space of a class based on its parameterless
boolean observers. The abstraction is not meant to represent behaviour (e.g., it does
not define transitions between states) but to define goals for test coverage criteria.
These models are then fed to an algorithm that attempts to create a test suite that
covers all of the states. Our work differs in two significant ways: (i) their approach
constructs the set of states using (a subset of the) class observers while we rely on
(all of the) class methods that change its state; and (ii) we do not require the presence
of a representative set of boolean observers in order to produce an abstraction. The
abstraction produced in [Liu et al. 2007] is then highly dependent on the quantity
and quality of observers which may not have a correspondence with requires clauses,
therefore yielding a different result from ours.

In [Grieskamp et al. 2008] the state space of a model given by a set of precondition-
guarded actions is explored. They do not intend to construct a complete finite abstrac-
tion out of it, but to explore it in order to generate test cases.

Model Mining

Our approach relates to the mining of temporal specifications (e.g., [Dallmeier et al.
2006; Ghezzi et al. 2009; Gabel and Su 2008; Lorenzoli et al. 2008; Dallmeier et al.
2010; Beschastnikh et al. 2011; Pradel and Gross 2009]), which aims at producing,
from traces, a finite state automaton that describes how a set of operations is used.
Unlike our approach, these techniques aim at inferring a specification which is used
for test case generation or verification. Furthermore, mining techniques have a dy-
namic flavour, and thus heavily depend on the quality of the traces used as input. The
inferred models may have both under and over-approximations of the artefact under
analysis behaviour. On the other hand, our technique statically yields a model that is
an abstraction of the program’s source code, considering all possible paths.

The main difference with [Gabel and Su 2008] is that the resulting automata are
built from the client’s actual usage of a set of operations rather than from the con-
straints of usage provided by requires clauses.

Tools such as ADABU [Dallmeier et al. 2006] produce finite state machines whose
states are determined by a fixed level of abstraction ranging over the return values
of the inspectors in a class. For instance, integers are abstracted according to its sign,
therefore this technique is not suitable for differencing two significant concrete pro-
gram states distinguished by a different positive integer. Our approach depends on
the preconditions in order to create the set of states; if preconditions mention specific
integer values then BLAST is going to consider them for us.

In [Ghezzi et al. 2009], a way to generalise component behaviour using samples
taken during a systematic bounded execution is presented. In a first step a determin-
istic finite state machine is built using the sampled behaviour. This is then generalised
using graph transformation rules and invariant detection tools. If an implementation
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were to be sampled using this technique then we would end up having a set of graph
rules tightly correlated to the original artefact. That is, the technique would traverse
the inverse path we define in our work.

A similar approach can be found in [Lorenzoli et al. 2008], a technique in which be-
havioural models that preserve data and control dependencies are mined out of execu-
tion traces. In a first step, sets of traces that share the same actions are identified and
their parameters are abstracted away by applying DAIKON. This produces a tree-like
representation in which then states are joined if they share a common k-future. These
techniques unsoundly generalise observed behaviour by applying invariant detecting
tools. Unlike our approach, the amount and quality of behaviour space synthesized de-
pend on the traces used as input. On the other hand, there is no clear indication that
yielded abstractions would be coarse enough for validation. The models we produce
can be seen as the k-tail abstraction [Lorenzoli et al. 2008] (with & = 1) of the infinite
set of traces for a given program.

Finally, [Pradel and Gross 2009] introduces a similar mining approach, but avoids
the approximation introduced by learning algorithms. Each state in the model they
produce is mapped to a single method. A transition between two states (methods) is
added whenever one method is invoked after the other in an observed trace. Weights
are used to distinguish the most frequently observed method interactions.

Models Aimed at Human Inspection

As we previously stated, most of the models used in the typestate and interface syn-
thesis literature are used to feed engineering tasks such as verification and test-case
generation. These approaches build a model suitable for verification at the cost of ei-
ther: (i) aiming at verification of client code; or (ii) targeting a particular property .

With respect to (i), even when it is an interesting and challenging problem, we are
currently not interested in checking client usage of an API. We are focused in helping
the developer determine if the API implementation provides (and only provides) the
intended services. Determining this is prior to deciding if a client does proper use of
those services.

Regarding (ii), while it is sometimes taken for granted that a ¢ to be checked against
the API implementation exists, it is usually not a trivial problem getting such . In
some cases it is hard to come up with the given property in the first place. In many
cases the desired property is informally specified. How do we know that ¢ is a correct
formalization of the intended property? Even when having a correct formalized , how
do we know if it is enough, on its own, to guarantee that the API implementation
provides the intended services to its clients? Sometimes it suffices to verify 2 or 3
properties, but how do we know if a set of properties ® is enough?

If the developer has a property ¢ in mind, then EPAs may not have the best level
of abstraction to determine if such property holds. On the other hand, if the developer
does not have any property in mind, but instead wants to get a quick overview of the
behaviour space of the API implementation, EPAs can provide a good starting point.

There are other approaches that, similarly to ours, aim at constructing models for
validation. For instance, the approach followed in [Beschastnikh et al. 2011] uses log-
ging mechanisms already in place and regular expressions to obtain behaviour models
without too much user intervention. The logs are mined looking for invariants encod-
ing simple temporal restrictions among operations. Then, models are produced such
that they satisfy every invariant found in the previous step. The results obtained in
this case, similarly to ours, have been successfully used to guide human validation
processes such as program understanding or bug confirmation. However, the tool pre-
sented at [Beschastnikh et al. 2011] requires a logging mechanism in place, something
which is not generally available in an early development stage on which we envision
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CONTRACTOR being applied. We therefore think this approach is complementary to
ours.

Another example of synthesised models being used for human inspection is intro-
duced in [Demsky and Rinard 2009]. Authors present a technique to dynamically con-
struct role transition diagrams (among other models), which have a resemblance to
typestates. These models are used, together with a powerful graphical user interface,
to support program understanding tasks.

In [de Caso et al. 2010] the authors studied the enabledness-based abstractions and
their potential for contract specifications validation. In that work we leveraged the fact
that the input contract was a first-order logic description of the artefact under anal-
ysis, therefore amenable to symbolic manipulation with SMT solvers. This previous
technique could have been applied in the context of analysing an API implementa-
tion by inferring a specification. However, precise postcondition inference is known
to be hard in practice [Leavens et al. 2007]. Instead, in this paper we deal directly
with source code artefacts, which are more complex than contract specifications since
they are not declarative and they exhibit features such as loops, memory management
and procedure invocations, among others. In order to cope with this complexity, as we
presented in Section 4, we introduced Theorem 4.2 together with the over and under-
approximated requires clauses, which allowed us to use a software model checker for
the EPA construction.

In [Zoppi et al. 2011] we also explore the possibility to construct EPAs using
verification-based approaches. In particular, we implemented an experimental tool
that uses CODE CONTRACTS [Andersen et al. 2009] to build EPAs out of C# programs.
We also present an experimental technique to verify proper API client usage using the
inferred EPAs.

The DAIKON tool [Ernst et al. 2007] could have been used to obtain a program’s
contract and use the technique we presented in [de Caso et al. 2010] to generate its en-
abledness preserving abstraction. However, postconditions are complex logic formulas
in general and accurate inference is unfeasible in practice. The technique presented
in this paper does not require postconditions to be explicit, therefore we could benefit
from DAIKON’s potential to infer good preconditions, while not having to endure the
problem of obtaining postconditions. Nevertheless, we could still use Daikon to au-
tomatically obtain requires clauses and invariants. We would still have to take into
account that the assertions that DAIKON outputs are true for the runs that it used to
create them, yet not necessarily true for all the possible runs.

Alternatively, we could use the function summaries that tools such as BLAST in-
ternally construct. These summaries have a strong resemblance of pre/postcondition
contracts, therefore enabling the use of the methodology presented in [de Caso et al.
2010].

7. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a novel technique aimed at constructing abstract
behaviour models out of a program’s source code. The model is built using an
enabledness-preserving level of abstraction, which is well suited for validation and de-
bugging of the original artefact. We implemented an algorithm to build such behaviour
models which relies on the use of a software model checker as a decision procedure to
solve code reachability queries. We showed how the obtained models can be used to
gain insight into the intended behaviour of a program, to discover defects in it, and to
fix them by tracing them back to the original code.

We plan to analyse our approach in more industrial artefacts to further asses its
scalability and validity.
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We plan to conduct empirical studies in order to evaluate how useful are EPAs for
various software engineering activities such as bug finding, program understanding
or test-case generation. Other possibilities involve studying how these activities are
impacted when using incomplete EPAs (i.e., EPAs that fail to capture some fragment
of the legal behaviour).

We are currently studying the application of EPAs in model-based testing. In par-
ticular, we envision that EPAs can be used to derive coverage criteria. EPAs could
also drive the test-case generation in order to reach all abstract states (or transitions),
therefore avoiding to miss corner cases.

Two candidate areas for providing a better tool support are: i) enhanced means of
model visualisation, and ii) debugging by means of explorations over ground values.

Besides, we conjecture it is easy to integrate different types of software analysis
tools in the construction algorithm. For instance, assertion verification techniques
like [Leavens et al. 2007] could be used to solve the validity checks, instead of reacha-
bility decision tools.

We also plan to work in mitigating the annotation burden by including automated
techniques for invariants and requires clauses mining.
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