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Abstract. Absolutely monotonic (∆) function of order n are characterized in
terms of n-dimensional totally increasing functions. Applications to n-copulas
are presented.

1. Introduction

Let n be a non-negative integer and let c, d be two real numbers such that
c < d. Let φ be a real function defined in [c, d]. Let t ∈ [c, d] and h > 0 be such
that t + nh ∈ [c, d]. The difference of order n and step h of φ in t is defined by

∆0
hφ(t) = φ(t), ∆n

hφ(t) = ∆n−1
h φ(t + h)−∆n−1

h φ(t).

Equivalently,

∆n
hφ(t) =

n∑

k=0

(−1)n−k

(
n

k

)
φ(t + kh).

If ∆k
hφ(t) > 0 for all t ∈ [c, d], k = 0, . . . , n and h > 0 such that t + kh 6 d, then

φ is said to be absolutely monotonic (∆) of order n (abbreviated: φ is AM(∆, n)).
The function φ is said to be absolutely monotonic (abbreviated: φ is AM) if it is
AM(∆, n) for all n.

AM functions were first introduced by Bernstein [1]. He proved that they are
necessarily analytic. A function is absolutely monotonic on the negative real axis,
if and only if it can be represented there by a Laplace–Stieltjes integral with non-
decreasing determining function (see e.g., [2] and [15]). AM functions appeared
first in the construction of n-dimensional distribution functions in connection with
Archimedean n-copulas (see [7]). They were used then in more general multivariate
models: mixtures of powers (see [8] and [4]) and mixtures of max-infinitely divisible
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distributions (see [5]). Absolutely monotonic (D) functions of order n (abbreviated:
AM(D, n) functions), i.e., non-negative functions with non-negative derivatives up
to and including the n-th, appeared recently with certain transformation of n-
copulas (see [9]). If a function is AM(D, n) then it is AM(∆, n), but the converse
is not true. For example, a non differentiable convex increasing and non-negative
function is AM(∆, 2) but not AM(D, 2).

In this paper, a characterization of AM(∆, n) functions is obtained, and it is
shown that for constructing Archimedean n-copulas and the transformed n-copulas
considered in [9] we can use AM(∆, n) functions instead of AM(D, n) functions.
In this manner, the multivariate models that can be obtained with these methods
is enlarged.

The rest of the paper is divided into sections as follows. In section 2, totally
increasing functions are introduced. Then a characterization of AM(∆, n) functions
in terms of n-dimensional totally increasing functions is obtained. In section 3, we
consider AM(∆, n) functions in connection with Archimedean n-copulas and the
transformed n-copulas considered in [9]. Finally, section 4 contains the proofs.

2. A characterization of AM(∆′, n) functions

A complete discussion of AM functions can be found in Chapter IV of [16].
For our purpose we only sate the following result.

Theorem 2.1. [16, Chapter IV, Theorem 6] Let φ : [c, d] → R be AM(∆, n)
with n > 1 and let s, t ∈ [c, d] be such that s 6 t. Then ∆k

hφ(s) 6 ∆k
hφ(t) for all

k = 0, . . . , n− 1 and all h > 0 such that y + kh 6 d.

In the sequel we suppose n > 1. In this section we do not use the non-negative
condition for AM(∆, n) functions. To simplify exposition, we say that if ∆k

hφ(t) > 0
for all t ∈ [c, d], h > 0 such that t + nh 6 d and k = 1, . . . , n, then φ is absolutely
monotonic (∆′) of order n (abbreviated: φ is AM(∆′, n)).

We have that a function φ is AM(∆′, 2) if and only if φ satisfies

(2.1) φ(t + h)− φ(t) > 0

for all t ∈ [c, d] and h > 0 such that t + h ∈ [c, d], and

(2.2) φ(t + 2h)− 2φ(t + h) + φ(t) > 0

for all t ∈ [c, d] and h > 0 such that t + 2h ∈ [c, d]. Indeed AM(∆′, 2) functions
can be characterized in the following alternative manner,

Theorem 2.2. The function φ : [c, d] → R is AM(∆′, 2) if and only if φ
satisfies

(2.3) φ(t4)− φ(t3)− φ(t2) + φ(t1) > 0

for all t1, t2, t3, t4 ∈ [c, d] such that t1 6 t2 6 t4, t1 6 t3 6 t4 and t4−t3−t2+t1 > 0.

Proof. Suppose first that φ is AM(∆′, 2) and set t1, t2, t3, t4 ∈ [c, d], such
that t1 6 t2 6 t4, t1 6 t3 6 t4 and t4 − t3 − t2 + t1 > 0. Since t1 6 t3, then
t1 + t4 − t3 6 t4. Since φ is AM(∆′, 2), from Theorem 2.1 we obtain

φ(t1 + t4 − t3)− φ(t1) 6 φ(t4)− φ(t3).
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We have t4 − t3 − t2 + t1 > 0 and φ is increasing, so

φ(t2) 6 φ(t1 + t4 − t3).

From these two inequalities we obtain (2.3).
Suppose now that φ satisfies (2.3) for all t1, t2, t3, t4 ∈ [c, d] such that t1 6 t2 6

t4, t1 6 t3 6 t4 and t4 − t3 − t2 + t1 > 0. Let first t ∈ [c, d] and h > 0 be such that
t + h ∈ [c, d]. Setting t1 = t2 = t and t3 = t4 = t + h in (2.3), we obtain (2.1). Let
now t ∈ [c, d] and h > 0 be such that t + 2h ∈ [c, d]. Setting t1 = t, t2 = t3 = t + h
and t4 = t + 2h in (2.3), we obtain (2.2). Thus φ is AM(∆′, 2). ¤

The above theorem shows that for AM(∆′, 2) functions we can replace in-
equalities (2.1) and (2.2) (that involve two and three points in [c, d], respectively,
related in a simple manner), by the only inequality (2.3) (that involves four points
in [c, d] related in a more complicated manner). The aim of this section is to ex-
tend Theorem 2.2 for AM(∆′, n) functions, with n > 2. To obtain this extension,
we introduce a suitable expression for the needed points in [c, d]. This is achieved
introducing totally increasing functions.

Let S1,. . . ,Sn be partially ordered sets and, for simplicity, we denote with 6
the distinct orders. We consider in S1 × · · · × Sn the partial order of the product,
i. e., if (a1, . . . , an), (b1, . . . , bn) ∈ S1 × · · · × Sn then (a1, . . . , an) 6 (b1, . . . , bn) if
ai 6 bi for all i ∈ {1, . . . , n}; and we write (a1, . . . , an) < (b1, . . . , bn) when ai < bi

for all i ∈ {1, . . . , n}. If A and B are sets, then |A| denotes the cardinality of A
and ArB = {x ∈ A : x /∈ B}.

Let H : S1 × · · · × Sn → R and let (a1, . . . , an), (b1, . . . , bn) ∈ S1 × · · · × Sn

be such that (a1, . . . , an) 6 (b1, . . . , bn). If (a1, . . . , an) < (b1, . . . , bn), then the
H-volume of {a1, b1} × · · · × {an, bn} is given by

(2.4) VH({a1, b1} × · · · × {an, bn}) =
∑

sign(c1, . . . , cn)H(c1, . . . , cn)

where the sum is taken over all (c1, . . . , cn) ∈ {a1, b1} × · · · × {an, bn} and

sign(c1, . . . , cn) = (−1)k with k = |{i ∈ {1, . . . , n} : ci = ai}|.
If there exists i ∈ {1, . . . , n} such that ai = bi, then VH({a1, b1}×· · ·×{an, bn}) = 0.

Equivalently, the H-volume of {a1, b1}×· · ·×{an, bn} is the nth order difference
of H on {a1, b1} × · · · × {an, bn}, i.e.,

VH({a1, b1} × · · · × {an, bn}) = ∆(a1,...,an),(b1,...,bn)H(x1, . . . , xn)(2.5)

= ∆a1,b1 . . . ∆an,bnH(x1, . . . , xn),

where we define the n first order differences of H as

∆ak,bk
H(x1, . . . , xn) = H(x1, . . . , xk−1, bk, xk+1, . . . , xn)

−H(x1, . . . , xk−1, ak, xk+1, . . . , xn).

Also, by convention, if k = n we set

∆(a1,...,an−k),(b1,...,bn−k)H(x1, . . . , xn) = H(x1, . . . , xn).
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Definition 2.1. A function H : S1 × · · · × Sn → R is said to be n-increasing
if VH({a1, b1} × · · · × {an, bn}) > 0 for all (a1, . . . , an), (b1, . . . , bn) ∈ S1 × · · · × Sn

such that (a1, . . . , an) 6 (b1, . . . , bn).

Definition 2.2. Let m ∈ {1, . . . , n} and let F : S1 × · · · × Sn → R. F is
said to be m-increasing, if the functions obtained fixing any n−m variables are m-
increasing, i.e., if for all m integers k1, . . . , km such that 1 6 k1 < · · · < km 6 n, and
all yi ∈ Si with i ∈ {1, . . . , n}r{k1, . . . , km}, the function G : Sk1 ×· · ·×Skm → R
given by

G(xk1 , . . . , xkm) = F (y1, . . . , yk1−1, xk1 , yk1+1, . . . , ykm−1, xkm , ykm+1, . . . , yn)

is m-increasing.

Now we introduce n-dimensional totally increasing functions.

Definition 2.3. If F : S1×· · ·×Sn → R is m-increasing for all m ∈ {1, . . . , n},
then F is said to be totally increasing (abbreviated: F is TI).

As an immediate consequence of the previous definitions we have,

Lemma 2.1. Let F : S1×· · ·×Sn→R be n-increasing and let m ∈ {1, . . . , n−1}.
Then the m-th differences of F are (n−m)-increasing functions.

Lemma 2.2. Let F : S1×· · ·×Sn → R be n-increasing. Suppose that Si contains
a least element ai, i ∈ {1, . . . , n}. If F (x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈
S1 × · · · × Sn such that xi = ai for at least some i ∈ {1, . . . , n}, then F is TI.

Using Lemma 2.2, we see that a simple and well known example of TI functions,
from statistics and probability theory, are n-dimensional distribution functions. It
is important to note that Rüschendorf in [11] considered TI increasing functions
with S1 = · · · = Sn = [0, 1] and he called them ∆-monotone functions.

AM(∆′, n) functions with n > 1, can be characterized in terms of totally
increasing n-dimensional functions. As a first result in this direction we have,

Lemma 2.3. Let n > 2 and let φ : [c, d] → R. Let t0 ∈ [c, d] and let h > 0 be
such that t0 + nh 6 d. Let Si = {ai, bi} be ordered sets with ai < bi, i ∈ {1, . . . , n}.
Let F : S1 × · · · × Sn → [c, d] be given by

F (x1, . . . , xn) = t0 + |{i ∈ {1, . . . , n} : xi = bi}|h.

Then, for all m ∈ {1, . . . , n} and all m integers k1, . . . , km such that 1 6 k1 < · · · <
km 6 n it holds

(2.6) ∆(ak1 ,...,akm ),(bk1 ,...,bkm )φ ◦ F (x1, . . . , xn)

= ∆m
h φ(t0 + |{i ∈ {1, . . . , n}r {k1, . . . , km} : xi = bi}|h)

In particular, φ is AM(∆′, n) if and only if φ ◦ F is TI for all such functions F .

Next appears the principal result of this article.

Theorem 2.3. Let φ : [c, d] → R be AM(∆′, n). If F : S1 × · · · × Sn → [c, d]
is TI, then φ ◦ F is TI.
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The proof of Theorem 2.3 (see Section 4) is of elemental algebraic nature but
it is very involved.

From Theorem 2.3 and Lemma 2.3 it results the following characterization for
AM(∆′, n) functions in terms of TI functions.

Theorem 2.4. A function φ : [c, d] → R is AM(∆′, n) if and only if for all TI
functions F : S1 × · · · × Sn → [c, d], the function φ ◦ F is TI.

Theorem 2.4 extends Theorem 2.2. Indeed, for n = 2, Theorem 2.4 is a refor-
mulation of Theorem 2.2 in terms of TI functions.

3. Applications to copulas

An n-copula is the restriction to the unit n-cube [0, 1]n of a multivariate dis-
tribution function whose marginals are uniform on [0, 1], more precisely,

Definition 3.1. An n-copula is a function C : [0, 1]n → 0, 1] with the following
properties:

1. C(x1, . . . , xn) = 0 if xi = 0 for any i = 1, . . . , n.
2. C(1, . . . , 1, xi, 1, . . . , 1) = xi for each i = 1, . . . , n and all xi ∈ [0, 1].
3. C is n-increasing.

Excellent references about copulas are [6], [10], [12] and [13]. In the sequel,
we suppose n > 2 when we talk about n-copulas. The notion of copula has been
introduced by A. Sklar in response to a question posed by M. Fréchet (see [14]).
Sklar proved that if H is the joint distribution function of n random variables,
X1, . . . , Xn, and F1, . . . , Fn are the distribution functions of X1, . . . , Xn, respec-
tively, then there exists an n-copula C such that

(3.1) H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

The n-copula C is uniquely determined on range(F1) × · · · × range(Fn), so
that C can be thought of as a description of the way in which a joint distribution
function is related to its 1-dimensional marginals.

Because of (3.1),if we have a collection of n-copulas then we automatically have
a collection of n-dimensional distributions with whatever 1-dimensional marginal
distributions we desire. This is useful in modelling and simulation. Moreover,
n-copulas are invariant under strictly increasing transformations of the random
variables (see e.g., Theorem 6.5.6 in [13]), so they can be used in nonparametric
statistic. Most of the dependence structure properties of an n-dimensional distri-
bution function H are in a associated copula C, which does not depend on the
marginals, and is often easier to handle than the original H. For these facts, it is
very important in statistics to have a great variety of n-copulas. In general, we are
interest in models that can lead to parametric families of multivariate distribution
functions or copulas with close-form cumulative distribution functions, flexible de-
pendence structure and partial closure under the taking the margins (see [6] for
more details).
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Different methods of constructing n-copulas have been proposed (see e.g. Chap-
ter 3 and Chapter 4 in [10]). One of them yields an important class of n-copulas
called Archimedean n-copulas. These n-copulas are of the form

(3.2) C(x1, . . . , xn) = λ[−1](λ(x1) + · · ·+ λ(xn)),

where λ : [0, 1] → [0,∞] is a continuous strictly decreasing function such that
λ(1) = 0 and λ[−1] is the pseudo-inverse of λ given by

(3.3) λ[−1](t) =

{
λ−1(t), if 0 6 t 6 λ(0);
0, if λ(0) 6 t 6 ∞.

The function λ that appears in (3.2) is known as an additive generator of C.
Setting ϕ(t) = exp(−λ(t)) and ϕ[−1](t) = λ[−1](−ln(t)), (3.2) can be written as

(3.4) C(x1, . . . , xn) = ϕ[−1](ϕ(x1) · · ·ϕ(xn)).

The function ϕ that appears in (3.4) is known as a multiplicative generator of
C. The study of Archimedean n-copulas is fundamentally done using (3.2). It is
easy to see that C given by (3.2) satisfies 1 and 2 of Definition 3.1. Condition 3 of
Definition 3.1 requires additional properties of λ.

Theorem 3.1. C defined by (3.2) with n = 2 is 2-increasing if and only if λ
is convex.

A proof of the above theorem can be found in Chapter 4 of [10]. Kimberling
in [7] gives necessary and sufficient conditions for a strict generator λ to guarantee
that C given by (3.2) to be n-increasing for all n > 2. Indeed the arguments in [7]
can be used to obtain the following results.

Theorem 3.2. If C given by (3.2) is n-increasing, then λ[−1](−t) is AM(∆, n).

Theorem 3.3. If λ[−1](−t) is AM(D, n), then C given by (3.2) is n-increasing.

Note that in Theorem 3.2 and Theorem 3.3 conditions on λ[−1] differ. This fact
and Theorem 3.1 suggest the possibility of replace in Theorem 3.3, the condition
on λ[−1](−t) of being AM(D, n) by the weaker condition of being AM(∆, n). In
fact, using Theorem 2.3, we can prove,

Theorem 3.4. If λ[−1](−t) is AM(∆, n), then C given by (3.2) is n-increasing.

From Theorem 3.2 and Theorem 3.4 we obtain the following characterization
of AM(∆, n) functions in terms of Archimedean n-copulas.

Theorem 3.5. λ[−1](−t) is AM(∆, n) if and only if C given by (3.2) is n-
increasing.

Now we present the transformed copulas Cϕ. These copulas are given by

(3.5) Cϕ(x1, . . . , xn) = ϕ[−1](C(ϕ(x1), . . . , ϕ(xn)),
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where C is an arbitrary n-copula, ϕ : [0, 1] → [0, 1] is a continuous strictly increasing
function such that ϕ(1) = 1, and ϕ[−1] is the pseudo-inverse of ϕ defined by

(3.6) ϕ[−1](t) =

{
0, if 0 6 t 6 ϕ(0);
ϕ−1(t), if ϕ(0) 6 t 6 1.

If C(x1, . . . , xn) = x1 · · ·xn, then (3.5) is reduced to (3.4), i.e., in this case (3.5)
is the expression for an Archimedean n-copula with multiplicative generator ϕ.

Copulas Cϕ were first considered by Genest and Rivest in [3]. In [9] conditions
that ϕ must satisfy for Cϕ to be an n-copula for every n-copula C are studied and
some properties of n-copulas Cϕ are explored. It is easy to see that Cϕ satisfies
conditions 1 and 2 of Definition 3.1. To guarantee that Cϕ is n-increasing ϕ must
satisfy additional properties. If n = 2 and if ϕ is concave then Cϕ is 2-increasing
(see Theorem 2.6 in [9]). In general, if n > 2 and if ϕ is AM(D,n) then Cϕ is
n-increasing (see Theorem 4.7 in [9]).

For copulas Cϕ we have a situation similar to that for Archimedean n-copulas.
We note that to guarantee that Cϕ is n-increasing, the conditions impose to ϕ for
the bivariate case are weaker than for the general case. It is natural to think that
we can consider AM(∆, n) functions instead of AM(D, n) functions in the general
case. Indeed, from Theorem 2.3 we obtain,

Theorem 3.6. Let C be an n-copula. Let ϕ : [0, 1] → [0, 1] be a continuous
strictly increasing function such that ϕ(1) = 1. If ϕ[−1] is AM(∆, n), then Cϕ

given by (3.5) is n-increasing.

In the bivariate case, non differentiable generators yield interest copulas. For
example, if the additive generator of an Archimedean 2-copula C is piecewise lin-
ear, then C is singular. In the general case, in this article it has been shown
that AM(∆, n) functions can be used instead of AM(D,n) functions to obtain
Archimedean n-copulas and n-copulas Cϕ. Hereafter, all depend on the number
of interest examples of AM(∆, n) functions that can be obtained with the aim to
have multivariate models with nice properties. This will be the subject of future
investigations.

4. Proofs

Proof of Lemma 2.3. The proof proceeds by finite induction. Suppose m =
1 and consider k ∈ {1, . . . , n}. By definition of F we have

∆ak,bk
φ ◦ F (x1, . . . , xn) = φ ◦ F (x1, . . . , xk−1, bk, xk+1, . . . , xn)

− φ ◦ F (x1, . . . , xk−1, ak, xk+1, . . . , xn)

= φ
(
t0 + (|{i ∈ {1, . . . , n}r {k} : xi = bi}|+ 1) h

)

− φ
(
t0 + |{i ∈ {1, . . . , n}r {k} : xi = bi}|h

)

= ∆1
hφ(t0 + |{i ∈ {1, . . . , n}r {k} : xi = bi}|h)

Thus (2.6) holds for m = 1. Suppose (2.6) is valid for 1 6 m < n. Let now m ∈
{1, . . . , n}, and consider m integers k1, . . . , km such that 1 6 k1 < · · · < km 6 n.
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We have

∆(ak1 ,...,akm ),(bk1 ,...,bkm )φ ◦ F (x1, . . . , xn)

= ∆(ak1 ,...,akm−1 ),(bk1 ,...,bkm−1 )∆akm ,bkm
φ ◦ F (x1, . . . , xn)

= ∆(ak1 ,...,akm−1 ),(bk1 ,...,bkm−1 )φ ◦ F (xk1 , . . . , xkm−1 , bkm , xkm+1 , . . . , xn)

−∆(ak1 ,...,akm−1 ),(bk1 ,...,bkm−1 )φ ◦ F (xk1 , . . . , xkm−1 , akm
, xkm+1 , . . . , xn)

= ∆m−1
h φ

(
t0 + (|{k ∈ {1, . . . , n}r {k1, . . . , km} : xk = bk}|+ 1)h

)

−∆m−1
h φ

(
t0 + |{k ∈ {1, . . . , n}r {k1, . . . , km} : xk = bk}|h

)

= ∆m−1
h ∆1

hφ
(
t0 + |{k ∈ {1, . . . , n}r {k1, . . . , km} : xk = bk}|h

)

= ∆m
h φ

(
t0 + |{k ∈ {1, . . . , n}r {k1, . . . , km} : xk = bk}|h

)

This completes the induction procedure. ¤

To prove Theorem 2.3 we need the following two auxiliary statements. First of
them follows easily from Theorem 2.1.

Lemma 4.1. Let φ : [c, d] → R be AM(∆, n) or AM(∆′, n), and let h be such
that 0 < h < d− c. Then ∆1

hφ : [c, d− h] → R is AM(∆, n− 1).

Lemma 4.2. Let n > 2. Let Si = {ai, bi} be ordered sets with ai 6 bi, i ∈
{1, . . . , n}. If F : S1 × · · · × Sn → R is k-increasing for k = 1, 2 and there exists
j ∈ {1, . . . , n} such that F (b1, . . . , bn) = F (b1, . . . , bj−1, aj , bj+1, . . . , bn), then

F (x1, . . . , xj−1, bj , xj+1, . . . , xn) = F (x1, . . . , xj−1, aj , xj+1, . . . , xn),

for all xi ∈ Si, i ∈ {1, . . . , n}r {j}.
Proof. The proof proceeds by induction on n. Let n = 2. Suppose that j = 2

(the case j = 1 is similar). Thus, F (b1, b2) = F (b1, a2). Since F is k-increasing
for k = 1, 2, we have 0 6 F (a1, b2) − F (a1, a2) 6 F (b1, b2) − F (b1, a2) Therefore,
F (a1, b2) = F (a1, a2). This verifies the lemma for n = 2.

Suppose n > 3 and the lemma is valid for n−1. Suppose that j = n (the other
cases are similar). Thus, F (b1, . . . , bn) = F (b1, . . . , bn−1, an). Clearly, the function
F ′ : S1 × · · · × Sn−2 × Sn → R given by

F ′(x1, . . . , xn−2, xn) = F (x1, . . . , xn−2, bn−1, xn)

satisfies the hypothesis of the lemma (with j = n). Then, by our supposition

(4.1) F (x1, . . . , xn−2, bn−1, bn) = F (x1, . . . , xn−2, bn−1, an)

for all xi ∈ Si, i ∈ {1, . . . , n− 2}. Since F is k-increasing for k = 1, 2,

0 6 F (x1, . . . , xn−2, an−1, bn)− F (x1, . . . , xn−2, an−1, an)(4.2)

6 F (x1, . . . , xn−2, bn−1, bn)− F (x1, . . . , xn−2, bn−1, an)

for all xi ∈ Si, i ∈ {1, . . . , n− 2}. By (4.1) and (4.2),

(4.3) F (x1, . . . , xn−2, an−1, bn) = F (x1, . . . , xn−2, an−1, an)



A CHARACTERIZATION OF ABSOLUTELY MONOTONIC (∆) FUNCTIONS 101

for all xi ∈ Si, i ∈ {1, . . . , n− 2}. By (4.1) and (4.3),

F (x1, . . . , xn−1, bn) = F (x1, . . . , xn−1, an)

for all xi ∈ Si, i ∈ {1, . . . , n− 1}. This conclude the induction procedure. ¤

Now we are in position to prove Theorem 2.3.

Proof of Theorem 2.3. The proof proceeds by induction on n. For n = 1
the theorem is trivially valid. Suppose n > 2 and the theorem valid for n− 1.

Since φ is AM(∆′, n), then it is AM(∆′, n− 1). Thus we have,

Assertion 1. If T1, . . . , Tn−1 are ordered sets and G : T1× · · · × Tn−1 → [c, d]
is TI, then φ ◦G is TI.

By Assertion 1, since F is m-increasing for m ∈ {1, . . . , n−1}, then φ◦F is m-
increasing for m ∈ {1, . . . , n−1}. So, it only remains to see that φ◦F is n-increasing.
Let (a1, . . . , an), (b1, . . . , bn) ∈ S1×· · ·×Sn be such that (a1, . . . , an) 6 (b1, . . . , bn).
Consider the function Gbn

an
defined on S1 × · · · × Sn−1 by

Gbn
an

(x1, . . . , xn−1) = ∆an,bnF (x1, . . . , xn).

Since F is TI, then Gbn
an

is TI. We have,

∆(a1,...,an),(b1,...,bn)φ ◦ F (x1, . . . , xn)(4.4)

= ∆(a1,...,an−1),(b1,...,bn−1)

[
φ ◦ F (x1, . . . , xn−1, bn)−φ ◦ F (x1, . . . , xn−1, an)

]

= ∆(a1,...,an−1),(b1,...,bn−1)

[
φ
(
F (x1, . . . , xn−1, an) + Gbn

an
(x1, . . . , xn−1)

)

− φ ◦ F (x1, . . . , xn−1, an)
]

There are three cases:
Case 1. Gbn

an
(b1, . . . , bn−1) = 0. By Lemma 4.2, Gbn

an
(x1, . . . , xn−1) = 0 for all

xi ∈ Si, i ∈ {1, . . . , n− 1}. Therefore, by (4.4),

∆(a1,...,an),(b1,...,bn)φ ◦ F (x1, . . . , xn) = 0.

Case 2. Gbn
an

(b1, . . . , bn−1) = d − c. Since F (x1, . . . , xn) ∈ [c, d] and F is 1-
increasing, then F (x1, . . . , xn−1, an) = c for all xi ∈ Si, i ∈ {1, . . . , n − 1}. Then,
by (4.4),

∆(a1,...,an),(b1,...,bn)φ ◦ F (x1, . . . , xn)

= ∆(a1,...,an−1),(b1,...,bn−1)

[
φ
(
F (x1, . . . , xn−1, bn)

)− φ(c)
]

= ∆(a1,...,an−1),(b1,...,bn−1)φ
(
F (x1, . . . , xn−1, bn)

)

By Assertion 1 and the previous equality, since Fbn : S1 × · · · × Sn−1 → [c, d]
given by Fbn(x1, . . . , xn−1) = F (x1, . . . , xn−1, bn) is TI, then

∆(a1,...,an),(b1,...,bn)φ ◦ F (x1, . . . , xn) > 0.

Case 3. 0 < Gbn
an

(b1, . . . , bn−1) < d − c. Set h = Gbn
an

(b1, . . . , bn−1). By
Lemma 4.1, since φ : [c, d] → R is AM(∆′, n), then ∆1

hφ : [c, d − h] → R is



102 MORILLAS

AM(∆, n−1). Since Fan
: S1×· · ·×Sn−1 → [c, d−h] given by Fan

(x1, . . . , xn−1) =
F (x1, . . . , xn−1, an) is TI, then (∆1

hφ) ◦ Fan is TI. Therefore,

∆(a1,...,an−2),(b1,...,bn−2)

[
φ
(
F (x1, . . . , xn−2, bn−1, an) + Gbn

an
(b1, . . . , bn−1)

)
(4.5)

− φ ◦ F (x1, . . . , xn−2, bn−1, an)
]

> ∆(a1,...,an−2),(b1,...,bn−2)

[
φ
(
F (x1, . . . , xn−2, an−1, an) + Gbn

an
(b1, . . . , bn−1)

)

− φ ◦ F (x1, . . . , xn−2, an−1, an)
]

Since F and Gbn
an

are TI, then for all k such that 2 6 k 6 n, the function
H : S1 × · · · × Sn−1 → R given by

H(x1, . . . , xn−1) = F (x1, . . . , xn−k, an−k+1, xn−k+2, . . . , xn−1, an)(4.6)

+ Gbn
an

(b1, . . . , bn−k, xn−k+1, . . . , xn−1),

is TI. Thus, from Assertion 1 and (4.5), we obtain

Assertion 2. For 2 6 k 6 n we have

∆(a1,...,an−k,an−k+2,...,an−1),(b1,...,bn−k,bn−k+2,...,bn−1)(4.7) [
φ
(
F (x1, . . . , xn−k, bn−k+1, xn−k+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−k+1, xn−k+2, . . . , xn−1)
)

− φ ◦ F (x1, . . . , xn−k, bn−k+1, xn−k+2, . . . , xn−1, an)
]

> ∆(a1,...,an−k,an−k+2,...,an−1),(b1,...,bn−k,bn−k+2,...,bn−1)[
φ
(
F (x1, . . . , xn−k, an−k+1, xn−k+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−k, an−k+1, xn−k+2, . . . , xn−1)
)

− φ ◦ F (x1, . . . , xn−k, an−k+1, xn−k+2, . . . , xn−1, an)
]

To see Assertion 2 we proceed by finite induction. For k = 2, the function
H : S1 × · · · × Sn−1 → [c, d] given by (4.6) takes the form

H(x1, . . . , xn−1) = F (x1, . . . , xn−2, an−1, an) + Gbn
an

(b1, . . . , bn−2, xn−1)

By Assertion 1, since H is TI, then φ ◦H is TI. Thus,

∆(a1,...,an−2),(b1,...,bn−2)

[
φ
(
F (x1, . . . , xn−2, an−1, an) + Gbn

an
(b1, . . . , bn−1)

)
(4.8)

−φ ◦ F (x1, . . . , xn−2, an−1, an)
]

> ∆(a1,...,an−2),(b1,...,bn−2)

[
φ
(
F (x1, . . . , xn−2, an−1, an) + Gbn

an
(b1, . . . , bn−2, an−1)

)

−φ ◦ F (x1, . . . , xn−2, an−1, an)
]

By (4.5) and (4.8),

∆(a1,...,an−2),(b1,...,bn−2)

[
φ
(
F (x1, . . . , xn−2, bn−1, an) + Gbn

an
(b1, . . . , bn−1)

)

−φ ◦ F (x1, . . . , xn−2, bn−1, an)
]

> ∆(a1,...,an−2),(b1,...,bn−2)

[
φ
(
F (x1, . . . , xn−2, an−1, an) + Gbn

an
(b1, . . . , bn−2, an−1)

)

−φ ◦ F (x1, . . . , xn−2, an−1, an)
]
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This verifies (4.7) for k = 2. Suppose (4.7) is valid for 2 6 k < n and rewrite it to
obtain

∆(a1,...,an−(k+1),an−(k+1)+2,...,an−1),(b1,...,bn−(k+1),bn−(k+1)+2,...,bn−1)(4.9)
[
φ
(
F (x1, . . . , xn−(k+1), bn−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−(k+1)+1, xn−(k+1)+2, . . . , xn−1)
)

− φ ◦ F (x1, . . . , xn−(k+1), bn−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)
]

> ∆(a1,...,an−(k+1),an−(k+1)+2,...,an−1),(b1,...,bn−(k+1),bn−(k+1)+2,...,bn−1)[
φ
(
F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−(k+1)+1, xn−(k+1)+2, . . . , xn−1)
)

− φ ◦ F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)
]

For k + 1, the function H : S1 × · · · × Sn−1 → [c, d] given by (4.6) takes the form

H(x1, . . . , xn−1) = F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−(k+1), xn−(k+1)+1, . . . , xn−1)

By Assertion 1, since H is TI then φ ◦H is TI. Thus,

∆(a1,...,an−(k+1),an−(k+1)+2,...,an−1),(b1,...,bn−(k+1),bn−(k+1)+2,...,bn−1)(4.10)
[
φ
(
F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−(k+1)+1, xn−(k+1)+2, . . . , xn−1)
)

− φ ◦ F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)
]

> ∆(a1,...,an−(k+1),an−(k+1)+2,...,an−1),(b1,...,bn−(k+1),bn−(k+1)+2,...,bn−1)[
φ
(
F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1)
)

− φ ◦ F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)
]

From (4.9) and (4.10) we obtain

∆(a1,...,an−(k+1),an−(k+1)+2,...,an−1),(b1,...,bn−(k+1),bn−(k+1)+2,...,bn−1)[
φ
(
F (x1, . . . , xn−(k+1), bn−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−(k+1)+1, xn−(k+1)+2, . . . , xn−1)
)

− φ ◦ F (x1, . . . , xn−(k+1), bn−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)
]

> ∆(a1,...,an−(k+1),an−(k+1)+2,...,an−1),(b1,...,bn−(k+1),bn−(k+1)+2,...,bn−1)[
φ
(
F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)

+ Gbn
an

(b1, . . . , bn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1)
)

− φ ◦ F (x1, . . . , xn−(k+1), an−(k+1)+1, xn−(k+1)+2, . . . , xn−1, an)
]
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This shows Assertion 2. Now, by Assertion 2 with k = n, we have

∆(a2,...,an),(b2,...bn)

[
φ
(
F (b1, x2, . . . , xn−1, an) + Gbn

an
(b1, x2, . . . , xn−1)

)

− φ ◦ F (b1, x2, . . . , xn−1, an)
]

> ∆(a2,...,an),(b2,...bn)

[
φ
(
F (a1, x2, . . . , xn−1, an) + Gbn

an
(a1, x2, . . . , xn−1)

)

− φ ◦ F (a1, x2, . . . , xn−1, an)
]

or equivalently,

∆(a1,...,an−1),(b1,...,bn−1)

[
φ
(
F (x1, . . . , xn−1, an) + Gbn

an
(x1, . . . , xn−1)

)

−φ ◦ F (x1, . . . , xn−1, an)
]

> 0.

Thus, by (4.4),
∆(a1,...,an),(b1,...,bn)φ ◦ F (x1, . . . , xn) > 0.

This shows that F is n-increasing. ¤
Proof of Theorem 3.4. Let (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n be such that

(a1, . . . , an) < (b1, . . . , bn). Set B = {a1, b1} × · · · × {an, bn} and consider the
following two cases:

Case 1. λ(0) < ∞; or λ(0) = ∞ and ai 6= 0 for all i ∈ {1, . . . , n}. Let
c = max{λ(x1) + · · · + λ(xn) : (x1, . . . , xn) ∈ B}. Clearly c < ∞ and since λ is
decreasing, then the function F : B → [−c, 0] given by

F (x1, . . . , xn) = −[λ(x1) + · · ·+ λ(xn)]

is TI. By Theorem 2.3, since λ[−1](−t) is AM(∆, n) then λ[−1](−F ) is TI. In
particular, λ[−1](−F ) is n-increasing, and consequently VC(B) > 0.

Case 2. λ(0) = ∞ and ai = 0 for some i ∈ {1, . . . , n}. For simplicity, suppose
that a1 = · · · = am = 0 and am+1 > 0, . . . , an > 0 for some m ∈ {1, . . . , n}.
Consider the set

Bε = {ε, b1} × · · · × {ε, bm} × {am+1, bm+1} × · · · × {an, bn}
where 0 < ε < min{b1, . . . , bn}. By case 1, VC(Bε) > 0. Since C is continuous,
VC(Bε) tends to VC(B) when ε tends to 0. Thus, VC(B) > 0.

From the previous analysis it results that C is n-increasing. ¤
Proof of Theorem 3.6. Consider the function F : [0, 1]n → [0, 1] given by

F (x1, . . . , xn) = C(ϕ(x1), . . . , ϕ(xn)). Let k ∈ {1, . . . , n} and let K ⊆ {1, . . . , n}
with |K| = k. For simplicity, suppose K = {1, . . . , k}. Consider the set

B = {a1, b1} × · · · × {ak, bk}
where 0 6 ai < bi 6 1, i ∈ {1, . . . , k}. Since ϕ is strictly increasing, then
(ϕ(a1), . . . , ϕ(ak)) < (ϕ(b1), . . . , ϕ(bk)). Consider now the set

B′ = {ϕ(a1), ϕ(b1)} × · · · × {ϕ(ak), ϕ(bk)}
Clearly,

∆(a1,...,ak),(b1,...,bk)F (x1, . . . , xn) = ∆(ϕ(a1),...,ϕ(ak)),(ϕ(b1),...,ϕ(bk))C(x1, . . . , xn)

By Lemma 2.2, C is TI. Then ∆(a1,...,ak),(b1,...,bk)F (x1, . . . , xn) > 0.
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This shows that F is TI. Now, by Theorem 2.3, Cϕ = ϕ[−1] ◦ F is TI and, in
particular, is n-increasing. ¤
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Instituto de Matemática Aplicada San Luis (Received 21 03 2005)
UNSL-CONICET (Revised 29 12 2005)
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