
Applied Mathematics and Computation 167 (2005) 635–649

www.elsevier.com/locate/amc
Dykstra�s algorithm with strategies
for projecting onto certain polyhedral cones

Patricia Mariela Morillas

Instituto de Matemática Aplicada San Luis (UNSL-CONICET), Ejército de los Andes 950,

C.P. 5700, San Luis, Argentina
Abstract

We consider Dykstra�s alternating projection method when it is used to find the pro-

jection onto polyhedral cones of the form
Tn

i¼1fx 2 H : hvi; xi 6 0g where H is a real

Hilbert space and hvi,vji > 0, i, j = 1, . . .,n. Based on some properties of the projection,

we propose strategies with the aim to reduce the number of cycles and the execution

time. These strategies consist in previous discarding and arrangement, and in projecting

cyclically onto the intersection of two halfspaces. Encouraging preliminary numerical

results with cut semimetrics as vectors vi are presented.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Alternating projection methods; Dykstra�s algorithm; Polyhedral cones; Cut cone
1. Introduction

Dykstra�s algorithm [1] is based on a clever modification of the classical

alternating projection method first proposed by von Neumann [2], and studied

later by Cheney and Goldstein [3]. It is a simple iterative technique that
0096-3003/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2004.06.136

E-mail address: morillas@unsl.edu.ar

mailto:morillas@unsl.edu.ar


636 P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649
guarantees convergence to the closest point in the intersection of closed convex

sets that are not necessarily closed subspaces. It was applied to a wide range of

problems and it is usually easy to program. For a recent application of

Dykstra�s algorithm to compute the nearest diagonally dominant matrix see

[4–6]. For a complete survey on Dykstra�s algorithm and applications see [7].

We consider Dykstra�s alternating projection method when it is used to pro-
ject onto polyhedral cones of the form\n

i¼1

fx 2 H : hvi; xi 6 0g;

where H is a real Hilbert space and hvi,vji > 0, i, j = 1, . . .,n. With the aim to

reduce the number of cycles and the execution time, we propose strategies that

consist in previous discarding and arrangement, and in projecting cyclically

onto the intersection of two halfspaces. These strategies are based on some
properties of the projection onto polyhedral cones.

If V � {1, . . .,n} and 0 6 jV j 6 ½n
2

, the cut semimetric dV is the vector defined

by dV(i, j) = 1 if jV \ {i, j}j = 1, and dV(i, j) = 0 otherwise, for 1 6 i < j 6 n. The

cone generated by these vectors, denoted by cutn, is known as cut cone. Cuts are

very important in discrete mathematics and its applications (see [8] for more

details). In particular, cutn contains the set of ‘2-embeddable distances and it

is contained in the set of ‘2-embeddable squared distances (associated with

euclidean distance matrices). So the projection onto cutn is a relaxation to the
projections onto these sets which play an important role for determining

molecular conformations [9]. In the numerical experiments we use no null

cut semimetrics as vectors vi. So, we compute the projection onto the polar

cone of cutn and then onto cutn (see Lemma 3.1).

The rest of this paper is divided into sections as follows. In Section 2, we

present Dykstra�s algorithm and its most relevant characteristics. Section 3

contains some properties of the projection onto polyhedral cones. In Section

4, we present two versions of Dykstra�s algorithm. One of them is simply a for-
mulation of this algorithm for projecting onto a polyhedral cone. The other

also includes the strategies to reduce the number of cycles and the execution

time. In Section 5, we show numerical results to compare both algorithms.

Finally, in Section 6 we present some concluding remarks.
2. Dykstra�s algorithm

Let H be a real Hilbert space with scalar product hx,yi and norm kxk =

hx,xi1/2, x; y 2 H. For a given non-empty closed convex subset C of H and

a given x0 2 H there exists a unique solution x* of

min kx0 
 xk ð1Þ
subject to x 2 C; ð2Þ



P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649 637
which is characterized by

x� 2 C and hx0 
 x�; x
 x�i 6 0 for all x 2 C; ð3Þ

(see [10], Theorem 1, p. 69). This solution x* is called the projection of x0 onto

C, and we write x* = P(x0jC). We consider the case that C is the intersection of
a finite number of closed convex sets Ci � H, i = 1, . . .,n, and that each Ci is

simple enough to compute P(yjCi) for any y 2 H, i = 1, . . .,n.

Dykstra�s algorithm [1,11], solves the problem (1) and (2) by generating two

sequences, fxki g and fIki g, with k 2 N and i = 1, . . .,n. These sequences are de-

fined by the following recursive formulas

xk0 ¼ xk
1
n ; k 2 N;

xki ¼ P xki
1 
 Ik
1
i jCi

� �
and Iki ¼ xki 
 xki
1 
 Ik
1

i

� �
; ð4Þ

i = 1, . . .,n, k 2 N, with initial values x0
n ¼ x0, I0

i ¼ 0, i = 1, . . .,n.
The utility of Dykstra�s algorithm is based on the following theorem.

Theorem 2.1 [11]. Let C1, . . .,Cn be closed convex subsets of a real Hilbert

space such that C ¼
Tn

i¼1Ci 6¼ ;. For any i = 1, . . ., n and any x0 2 H, the

sequence fxki g generated by (4) converges strongly to x* = P(x0jC) (i.e.,

kxki 
 x0k ! 0 as k ! 1).

The rate of convergence of Dykstra�s algorithm (2.3) in the polyhedral case
(i.e., the intersection of a finite number of closed halfspaces) is linear. Starting

with any point x0 2 H, it is possible to show that the sequence of iterates gen-

erated by Dykstra�s algorithm (4), satisfies an error bound which will depend

on the angles between the linear varieties which comprise the boundaries of

the halfspaces involved [12]. More precisely, for each i = 1, . . .,n, the sequence

fxki g satisfies kxki 
 P ðx0jCÞk 6 gck for all k 2 N, where C ¼
Tn

i¼1Ci, g is a con-

stant, and 0 6 c < 1. In the case when C is the intersection of two halfspaces, a

stronger result is proved in [12]: the sequence of iterates is either finite or sat-
isfies kxki 
 P ðx0jCÞ 6 ck
1kx0 
 P ðx0jCÞk for all k 2 N, where c is the cosine of

the angle between the two functionals which define the halfspaces.
3. Some properties of the projection onto polyhedral cones

We begin recalling some basic notions. For an arbitrary subset S � H we

consider its orthogonal complement

?
S ¼ fy 2 H : hx; yi ¼ 0 for all x 2 Sg ð5Þ



638 P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649
and its polar cone

S0 ¼ fy 2 H : hx; yi 6 0 for all x 2 Sg: ð6Þ
The following results appear in [13] for the finite dimensional case, but it is

easy to see that they remain true for an arbitrary real Hilbert space. The next

lemma is concerning to the projection onto a convex cone (see [13], (2.7.5)

Lemma, p. 51).
Lemma 3.1. Let K � H be a convex cone and a 2 H. If a admits an orthogonal

decomposition a = p + p* with p 2 K, p* 2 K0 and hp,p*i = 0, then p = P(ajK)

and p* = P(ajK0). Conversely, if P(ajK) exists, then P(ajK0) exists and both
projections constitute an orthogonal decomposition of a.

A more specific result is the following (see [13], (2.7.7) Theorem, p. 51 and

(2.8.4), p. 55).
Theorem 3.2. Let n P 1 and let a; v1; . . . ; vn 2 H, with vi 5 0, i = 1, . . .,n. Then

P ðaj
Tn

i¼1fvig
0Þ exists, and p ¼ P ðaj

Tn
i¼1fvig

0Þ if and only if p 2
Tn

i¼1fvig
0

and

there exist real numbers ki P 0, i = 1, . . .,n, such that p ¼ a

Pn

k¼1kivi andPn
k¼1kihvi; pi ¼ 0.

We now present some properties of the projection onto a polyhedral cone

that will be useful to state algorithms in Section 4. We begin with the following

elemental fact.
Theorem 3.3. Let n P 1 and let a; v1; . . . ; vn 2 H, with vi 5 0, i = 1, . . .,n. Let

p ¼ P ðaj
Tn

i¼1fvig
0Þ.

1. If hv1,pi < 0 then p ¼ P ðaj
Tn

i¼2fvig
0Þ.

2. If J = {i 2 {1, . . .,n}: hvi,pi = 0} then p = P(aj˙i 2 J{vi}
?).
Proof. (1) Set p0 ¼ P ðaj
Tn

i¼2fvig
0Þ. By Lemma 3.1, ha 
 p 0, p 0i = 0 and

a
 p0 2 ð
Tn

i¼2fvig
0Þ0 � ð

Tn
i¼1fvig

0Þ0. Suppose now that hv1,p 0 i > 0. Consider

for each t 2 [0,1] the point p(t) = (1 
 t)p + tp 0. For each i = 2, . . .,n, we have

hvi,p(t)i 6 0. Consider the continuous function g : ½0; 1
 ! R given by

g(t) = hv1,p(t)i. By hypothesis, g(0) = hv1,p(0)i = hv1,pi < 0, and by our suppo-

sition, g(1) = hv1,p(1)i = hv1,p
0i > 0. Then, by Bolzano�s theorem, there exists

t0 2 (0,1) such that g(t0) = 0. Since p 2
Tn

i¼2fvig
0, then kp 0 
 ak2 6 kp 
 ak2.

So, kp(t0) 
 ak2 6 (1 
 t0)kp 
 ak2 + t0kp 0 
 ak2 6 kp 
 ak2. But pðt0Þ 2Tn
i¼1fvig

0 and p is the projection of a onto
Tn

i¼1fvig
0, consequently p(t0) = p

and then hv1,pi = hv1,p(t0)i = 0. This equality contradicts the hypothesis. Thus,



P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649 639
hv1,p 0i 6 0. Since we also have p0 2
Tn

i¼2fvig
0, then p0 2

Tn
i¼1fvig

0. We have

seen that p0 2
Tn

i¼1fvig
0, a
 p0 2 ð

Tn
i¼1fvig

0Þ0 and ha 
 p 0,p 0 i = 0. Thus, by

Lemma 3.1, p 0 = p.

(2) Applying (1) we obtain p = P(aj˙i 2 J{vi}
0). Set p 0 = P(aj˙i 2 J{vi}

?). By

definition of J, p 2 ˙i 2 J{vi}
?. By Lemma 3.1, a 
 p 2 (˙i 2 J{vi}

0)0�
(˙i 2 J{vi}

?)0 and ha 
 p,pi = 0. Thus, using again Lemma 3.1, we obtain
p = p 0. h

Remark 3.4

1. From part 1 of Theorem 3.3, to compute p ¼ P ðaj
Tn

i¼1fvig
0Þ it is possible

discard halfspaces {vi}
0 for which hvi,pi < 0.

2. Part 2 of Theorem 3.3 states that project onto an intersection of halfspaces is

reduced to project onto an intersection of hyperplanes. The inequalities
hvi,xi 6 0 with i 2 J are called active constraints for P ðaj

Tn
i¼1fvig

0Þ, whereas

the other inequalities are called inactive constraints.
The following theorem is based on part 1 of Theorem 3.3 and provides a cri-

terion for discarding halfspaces when we project onto certain polyhedral cones.

Theorem 3.5. Let n P 1 and let a; v1; . . . ; vn 2 H, with vi 5 0, i = 1, . . .,n and

p ¼ P ðaj
Tn

i¼1fvig
0Þ. If
hv1; ai ¼ 0 and hv1; vji > 0; j ¼ 2; . . . ; n ð7Þ
or if

hv1; ai < 0 and hv1; vji P 0; j ¼ 2; . . . ; n ð8Þ
then p ¼ P ðaj

Tn
i¼2fvig

0Þ.

Proof. If p = a then the conclusion of the theorem is clearly satisfies regardless

of the signs of the products hvi,vji, i, j = 1, . . .,n. Suppose now that p 5 a. By

part 1 of Theorem 3.3 we only need to see that hv1,pi < 0. Since p 5 a, by

Theorem 3.2, p ¼ a

Pn

i¼1kivi with ki P 0, i = 1, . . .,n, and at least one of the

ki is no null. Thus, from (7) or (8), hv1; pi ¼ hv1; ai 

Pn

i¼1kihv1; vji < 0. h

Remark 3.6

1. Consider the vectors a = (
1,
1,
2), v1 = (1,
1,
1), v2 = (
1,1,
1) and

v3 = (
1,
1,1). We have hv1,v2i = hv1,v3i = hv2,v3i = 
1, hv3,ai = 0,

hv1,ai = hv2,ai = 2. Since, a ¼ 3
2
v1 þ 3

2
v2 þ v3, by Theorem 3.2, then

P(aj{v1}
0 \ {v2}

0 \ {v3}
0) = (0,0,0). On the other hand, since hv1,

P(aj{v2}
0)i = hv2,P(aj{v1}

0)i = 8/3, by Theorem 3.7, P(aj{v1}
0 \ {v2}

0) =

P(aj{v1}
? \ {v2}

?) = (
1,
1,0). Let now a = (0,1,1), v1 = (1,0,0),



640 P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649
v2 = (0,1,0) and v3 = (
1,1,1). We have hv1,v2i = 0, hv1,v3i = 
1,

hv2,v3i = 1, hv1,ai = 0, hv2,ai = 1, hv3,ai = 2. Since a = v1 + v3, by Theorem

3.2, P(aj{v1}
0 \ {v2}

0 \ {v3}
0) = (0,0,0). On the other hand, by Theorem

3.7, Pðajfv2g0 \ fv3g0Þ ¼ 1
2
; 0; 1

2

� �
. These two examples show that we cannot

omit the condition on the vectors vi in (7).

2. To see that we cannot omit the condition on the vectors vi in (8), consider
the vectors a = (1,2), v1 = (0,1) and v2 = (1,
1). Then hv1,v2i = 
1 < 0,

hv1,ai = 2, hv2,ai = 
 1, P(aj{v1}
0 \ {v2}

0) = (0,0) and P(aj{v1}
0) = (1,0).

The following theorem is about the projection onto the intersection of two

halfspaces.

Theorem 3.7. Let a; v1; v2 2 H, with v1 5 0 and v2 5 0. Then P(aj{v1}
0\{v2}

0)

is characterized as follows:

1. If a 2 {v1}
0 \ {v2}

0 then P(aj{v1}
0 \ {v2}

0) = a.

2. If hv1,ai > 0 and P(aj{v1}
?) 2 {v2}

0 then P(aj{v1}
0 \ {v2}

0) = P(aj{v1}
?).

3. If hv2,ai > 0 and P(aj{v2}
?) 2 {v1}

0 then P(aj{v1}
0 \ {v2}

0) = P(aj{v2}
?).

4. If P(aj{v1}
?) 62 {v2}

0 and P(aj{v2}
?) 62 {v1}

0 then P(aj{v1}
0 \ {v2}

0) =

P(aj{v1}
? \ {v2}

?).
Proof. Without loose of generality, suppose that kv1k2 = kv2k2 = 1. Set

p ¼ P ajfv1g0 \ fv2g0
� �

; ð9Þ

p1 ¼ P ajfv1g?
� �

¼ a
 hv1; aiv1; ð10Þ

p2 ¼ P ajfv1g?
� �

¼ a
 hv2; aiv2: ð11Þ

Therefore

hv2; p1i ¼ hv2; ai 
 hv1; aihv1; v2i; ð12Þ

hv1; p2i ¼ hv1; ai 
 hv2; aihv1; v2i: ð13Þ

If a 62 {v1}
0 \ {v2}

0, then one and only one of the following cases hold:

hv1; pi ¼ hv2; pi ¼ 0; ð14Þ

hv1; pi ¼ 0 and hv2; pi < 0; ð15Þ

hv1; pi < 0 and hv2; pi ¼ 0: ð16Þ



P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649 641
We are going to prove first each implication. Statement 1 is trivial.

Suppose now that hv1,ai > 0 and p1 2 {v2}
0. We have p1 2 {v1}

? � {v1}
0.

Thus p1 2 {v1}
0 \ {v2}

0. We also have ha 
 p1,p1i = 0 and ha 
 p1,xi = hv1,ai
hv1,xi 6 0 for all x 2 {v1}

0 \ {v2}
0. Then, by Lemma 3.1, p1 = p. This proves 2

and in a similar manner it can be proved 3.

Suppose now that p1 62 {v2}
0 and p2 62 {v1}

0. We have ha 
 p,pi = 0 and

ha 
 p,xi 6 0 for all x 2 {v1}
0 \ {v2}

0. Then ha 
 p,xi 6 0 for all x 2 {v1}
? \

{v2}
?. So, by Lemma 3.1, to prove that p = P(aj{v1}

? \ {v2}
?) it is sufficient to

see that p 2 {v1}
? \ {v2}

?, i.e., that (14) holds. Suppose that (14) does not

hold. For example, suppose that (16) holds. Consider p(t) = (1 
 t)p + t p2,

t 2 [0,1]. The function g(t) = hv1,p(t)ifrom [0,1] to R is continuous. We also

have, g(0) < 0 and g(1) > 0. Then, there exists t0 2 (0,1) such that g(t0) = 0.

Therefore hv1,p(t0)i = hv2,p(t0)i = 0, i.e., p(t0) 2 {v1}
? \ {v2}

? � {v1}
0 \ {v2}

0.

Since p 2 {v2}
?, then kp(t0) 
 ak2 6 (1 
 t0)kp 
 ak2 + t0kp2 
 ak2 6 kp 
 ak2.

Since p is the projection onto {v1}
0 \ {v2}

0 and p(t0) 2 {v1}
0 \ {v2}

0, then

p = p(t0). But then hv1,pi = 0 which contradicts (16). In a similar manner it can

be seen that (15) does not hold. So (14) must holds.

Now we are going to see that at least one of the cases 1, 2, 3 or 4 always

holds. If hv1,ai 6 0 and hv2,ai 6 0, then 1 holds. Suppose now that hv1,ai > 0

and hv2,ai 6 0 (the case hv1,ai 6 0 and hv2,ai > 0 is similar). If hv2,p1i 6 0 then
2 holds. If hv2,p1i > 0 and hv1,p2i > 0 then 4 holds. If hv2,p1i > 0 and

hv1,p2i 6 0, by (12) and (13)

hv2; ai > hv1; aihv1; v2i; ð17Þ

hv1; ai 6 hv2; aihv1; v2i: ð18Þ
By (17), hv1,v2i < 0. Since hv1,v2i < 0, by (18), hv1,ai/hv1,v2i P hv2,ai. Then,

by (17), hv1,ai/hv1,v2i > hv1,aihv1,v2i. Since hv1,ai > 0, from the last inequality

1 < hv1,v2iwhich is absurd since kv1k2 = kv2k2 = 1.

Suppose now that hv1,ai > 0 and hv2,ai > 0. If hv2,p1i 6 0 then 2 holds. If

hv1,p2i 6 0 then 3 holds. If hv1,p2i > 0 and hv2,p1i > 0 then 4 holds.

Now we are going to see that 1, 2, 3 and 4 are mutually exclusive or coincide.

Clearly, it is sufficient to see that 1 and 4 cannot simultaneously hold, neither 2

and 3; because the other possibilities are trivial.
If 1 and 4 hold, i.e., using (12) and (13)

hv1; ai 6 0 and hv2; ai 6 0; ð19Þ

hv2; ai > hv1; aihv1; v2i; ð20Þ

hv1; ai > hv2; aihv1; v2i: ð21Þ
If hv1,ai = 0, by (20), hv2,ai > 0, which contradicts (19). Analogously it can

be seen that hv2,ai 5 0. Therefore we can replace (19) by



642 P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649
hv1; ai < 0 and hv2; ai < 0: ð22Þ

By (22) and (20)

hv2; ai=hv1; ai < hv1; v2i ð23Þ
and by (22) and (21)

hv1; ai=hv2; ai < hv1; v2i: ð24Þ

If hv2,ai 6 hv1,aiby (23), 1 < hv1,v2i. If hv1,ai 6 hv2,ai, by (24), then

1 < hv1,v2i. Thus (20)–(22) cannot hold. This shows that 1 and 4 cannot

simultaneously hold.

If v1 = v2 then {v2}
0 = {v1}

0. Thus 2 and 3 coincide. If v1 = 
v2 then

{v2}
? = {v1}

? and {v1}
0 \ {v2}

0 = {v1}
?. Thus 2 and 3 are mutually exclusive.

Now suppose that v1 5 ±v2. If 2 and 3 hold then, using (12) and (13)

0 < hv2; ai 6 hv1; aihv1; v2i; ð25Þ

0 < hv1; ai 6 hv2; aihv1; v2i: ð26Þ
By (25) and (26), 1 6 hv1,v2i. Since kv1k2 = kv2k2 = 1 then hv1,v2i = 1, which

is absurd since v1 5 ±v2. Consequently 2 and 3 cannot simultaneously

hold. h
4. Algorithms

To find the projection onto
Tn

i¼1fvig
0
, we use the following version of Dyk-

stra�s algorithm.

Algorithm 4.1. Given x0 2 H set x0
n ¼ x0; I0

i ¼ 0, i = 1, . . .,n

For k = 1,2, . . ., until convergence

Set xk0 ¼ xk
1
n

For i = 1, . . .,n

Set xki ¼ P ðxki
1 
 Ik
1

i jfvig0Þ
Set Iki ¼ xki 
 ðxki
1 
 Ik
1

i Þ
End For

End For

Here for a 2 H, P(aj{vi}0) is given by

P ajfvig0
� �

¼
a if ha; vii 6 0;

a
 ha;vii vi if ha; vii > 0:

(

hvi ;vii



P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649 643
In Algorithm 4.1 we project cyclically onto the n convex sets {vi}
0, to find

the projection onto
Tn

i¼1fvig
0
. We now describe and motivate strategies with

the aim to reduce the number of cycles and the execution time. In the sequel

we are going to suppose that hvi,vji > 0, i, j = 1, . . .,n.

S1. Previous discarding: Based on Theorem 3.5, this strategy consists in

forming the set {i: hx0,vii > 0} that contains the indexes of the sets {vi}
0 on

which projections will be performed.

S2. To project cyclically onto the intersection of two halfspaces: If n is even

then \n
i¼1

fvig0 ¼
\½n=2


i¼1

fv2i
1þcðnÞg0 \ fv2iþcðnÞg0
� �

;

and if n is odd then\n
i¼1

fvig0 ¼ fv1g0 \
\½n=2


i¼1

fv2i
1þcðnÞg0 \ fv2iþcðnÞg0
� �

;

where

cðnÞ ¼ n
 2
n
2

h i
and ½n

2

 is the greater integer less or equal to n

2
. Hence this strategy consists in

projecting cyclically onto the sets {v2i
1+c(n)}
0 \ {v2i+c(n)}

0 for i ¼ 1; . . . ; ½n
2

 (if

n is odd we also project onto {v1}
0). To compute P(x0j{v2i
1+c(n)}

0 \ {v2i+c(n)}
0)

we use Theorem 3.7. It is easy to see that case 4 of Theorem 3.7 can be pre-

sented only if v2i
1+c(n) and v2i+c(n) are linearly independent. In this case, if each
vi 2 Rd for some integer d P 2 and Ri is the matrix which rows are v2i
1+c(n) and

v2i+c(n), then P ðx0jfv2i
1þcðnÞg? \ fv2iþcðnÞg?Þ ¼ x0 
 Rt
iðRiRt

iÞ

1Rix0. Note that

RiRt
i is a 2 · 2 symmetric matrix, and then its inverse is very easy to compute.

S3. Previous arrangement: When we use the above strategy, we can expect to

reduce the execution time if we can reduce the cases that must be considered to

project onto {v2i
1+c(n)}
0 \ {v2i+c(n)}

0 (see Theorem 3.7). If

hv2iþcðnÞ; x0i 6 hv2i
1þcðnÞ; x0i=hv2i
1þcðnÞ; v2i
1þcðnÞi
� �

hv2i
1þcðnÞ; v2iþcðnÞi ð27Þ

and hv2i
1+c(n),x0i > 0, by Theorem 3.7, part 2, then

P x0jfv2i
1þcðnÞg0 \ fv0
2iþcðnÞ

� �
¼ P x0jfv2i
1þcðnÞg?

� �
: ð28Þ

In order (27) to be valid and if hvi,x0i > 0, i = 1, . . .,n, this strategy consists

in arranging the indexes of the sets {vi}
0 in such a way that

hvi; x0i P hviþ1; x0i for i ¼ 1; . . . ; n
 1: ð29Þ
Here we suppose that the successive projections minus the respective

increments that generate Dykstra�s algorithm, could have a similar behavior

than x0.



644 P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649
S4. Previous arrangement with intercalation: If hv2i
1+c(n),v2i+c(n)i/
hv2i
1+c(n),v2i
1+c(n)i P 1, then (29) implies (27). If hv2i
1+c(n),v2i+c(n)i/
hv2i
1+c(n),v2i
1+c(n)i < 1, we need to increment the difference between

hv2i+c(n),x0i and hv2i
1+c(n),x0i to try to obtain (27). Thus, if hvi,x0i > 0,

i = 1, . . .,n, this strategy consists in arranging the indexes of the sets {vi}
0 in

such a way that (29) is verified and then project cyclically onto
fvig0 \ fviþ½m

2

g0

for i ¼ 1 þ cðmÞ; . . . ; ½m
2

 þ cðmÞ (if n is odd we also project onto

{v1}
0).

The previous strategies can be combined in different manners for fitting

into distinct algorithms. Here we only present one of these algorithms, which

combines strategies S1, S2 and S4, because it produces the most efficient

results. The rest of the algorithms and additional numerical experiments that

permit us to study the behavior of each strategy individually, can be seen in

[14].

Algorithm 4.2. Given x0 2 H

Step 1: Build the set {i: hx ,v i > 0} = {i , . . ., i }.
0 i 1 m

Step 2: Build the order set (j1, . . ., jm) arranging {i1, . . ., im} in such a manner that

(29) hold.

Step 3: Projecting

Set x0
m
2

� �
þ cðmÞ

¼ x0, I0
i ¼ 0, i ¼ 1; . . . ; ½m

2

 þ cðmÞ

For k = 1,2, . . ., until convergence

Set xk0 ¼ xk
1
m
2

� �
þ cðmÞ

If c(m) = 1 then

Set xk1 ¼ P ðxk0 
 Ik
1

1 jfvj1g
0Þ

End If

For i ¼ 1 þ cðmÞ; . . . ; ½m
2

 þ cðmÞ

Set xki ¼ Pðxki
1 
 Ik
1
i jfvjig

0 \ fvjiþ½m
2

 g

0Þ
Set Iki ¼ xki 
 ðxki
1 
 Ik
1

i Þ
End For

End For

It is important to note that both algorithms converge to the projection ontoTn
i¼1fvig

0
. When convergence is attained the process is stopped and the solution

is given by xk. In practice, the algorithms are usually stopped whenever the dis-

tance between two consecutive projections onto the same convex set, reaches a
pre-established tolerance. For example, the process might be stopped when

kxkþ1
0 
 xk0k 6 TOL.



P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649 645
5. Numerical results

We compare Algorithm 4.1 with Algorithm 4.2. These algorithms were

implemented in MATLAB Version 6.0.0.88 Release 12 and ran in a Pentium

4 processor at 1.5GHz. When using Algorithm 4.1, we report the CPU time

in seconds (CPU), the number of iterations (ITER), and the elapsed time for
iteration (CPU/ITER). For Algorithm 4.2 we report the CPU time in seconds

(CPU), the number of iterations (ITER), the elapsed time for iteration (CPU/

ITER) and the percentage of saved iterations (SAVED ITER %).

We use no null cut semimetrics as vectors vi. Since the number of cut semi-

metrics is 2n
1 and increases considerably with n, we only consider values of n

such that 3 6 n 6 12. The test vectors were obtained from cutn and from vec-

torized symmetric matrices with zero diagonal. In this last case, we distinguish

between the dense and the sparse cases, and between the non-negative entries
and the distinct sign entries cases. Note that when the entries of the test vectors

are non-negative no halfspace is discarded.

For each n we generate a set of representative vectors. The tabulated results,

for a given n, is the average of the obtained results for each of these vectors.

The algorithms used the distance between the two last projection as a stopping

criterion when it reaches a pre-established tolerance. For each algorithm the

tolerance was 10
7.

Tables 1–5 show the results of the first five experiments, and show that Algo-
rithm 4.2 outperforms Algorithm 4.1 in number of cycles and CPU time. We

note that in these experiments, the greater percentage of saved iterations is ob-

served for vectors in cutn. We also observe that the percentage of saved itera-

tions is greater for the dense case than for the sparse case. The percentage of

saved iterations for the non-negative and distinct sign cases is similar.
Table 1

Results for experiment 1: vectors in cutn

n Algorithm 4.1 Algorithm 4.2

CPU ITER CPU/ITER CPU ITER CPU/ITER SAVED ITER (%)

3 0 20 0.00E+00 0.01 19 5.26E
04 5.00

4 0.02 73 2.74E
04 0.02 57 3.51E
04 21.92

5 0.13 209 6.22E
04 0.06 70 8.57E
04 66.51

6 0.35 286 1.22E
03 0.18 106 1.70E
03 62.94

7 1.43 420 3.40E
03 0.56 114 4.91E
03 72.86

8 4.64 494 9.39E
03 2.03 180 1.13E
02 63.56

9 14.53 583 2.49E
02 3.2 118 2.71E
02 79.76

10 34.79 663 5.25E
02 12.39 257 4.82E
02 61.24

11 80.99 770 1.05E
01 20.81 188 1.11E
01 75.58

12 213.44 891 2.40E
01 79.88 360 2.22E
01 59.60



Table 2

Results for experiment 2: vectorized symmetric dense matrices with zero diagonal and non-negative

entries

n Algorithm 4.1 Algorithm 4.2

CPU ITER CPU/ITER CPU ITER CPU/ITER SAVED ITER (%)

3 0 16 0.00E+00 0 16 0.00E+00 0.00

4 0.01 36 2.78E
04 0.02 33 6.06E
04 8.33

5 0.05 77 6.49E
04 0.04 65 6.15E
04 15.58

6 0.15 139 1.08E
03 0.14 118 1.19E
03 15.11

7 0.81 193 4.20E
03 0.66 157 4.20E
03 18.65

8 2.57 297 8.65E
03 1.88 230 8.17E
03 22.56

9 9.59 417 2.30E
02 7.43 387 1.92E
02 7.19

10 27.83 565 4.93E
02 20.44 504 4.06E
02 10.80

11 68.67 723 9.50E
02 54.41 621 8.76E
02 14.11

12 189.83 930 2.04E
01 152.82 752 2.03E
01 19.14

Table 3

Results for experiment 3: vectorized symmetric dense matrices with zero diagonal and distinct sign

entries

n Algorithm 4.1 Algorithm 4.2

CPU ITER CPU/ITER CPU ITER CPU/ITER SAVED ITER (%)

3 0 5 0.00E+00 0 3 0.00E+00 40.00

4 0 9 0.00E+00 0 8 0.00E+00 11.11

5 0.01 19 5.26E
04 0.01 16 6.25E
04 15.79

6 0.04 35 1.14E
03 0.03 32 9.38E
04 8.57

7 0.1 46 2.17E
03 0.07 40 1.75E
03 13.04

8 0.3 51 5.88E
03 0.24 48 5.00E
03 5.88

9 1.91 85 2.25E
02 1.36 78 1.74E
02 8.24

10 4.17 87 4.79E
02 2.64 73 3.62E
02 16.09

11 13 132 9.85E
02 9.84 112 8.79E
02 15.15

12 41.65 200 2.08E
01 29.11 156 1.87E
01 22.00

646 P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649
It is worth noticing that Dykstra�s algorithm converge faster when the num-

ber of active constrains is smaller. Therefore, for both algorithm, the number

of cycles required for the sparse case is less than the number of cycles required

for the dense case. We also have that the previous discarding does not reduce

the number of cycles. It can only reduce the number of projections per cycle

and then the CPU time.

Table 6 shows the results of an experiment in which Algorithm 4.1 outper-
forms Algorithm 4.2. In this experiment, Algorithm 4.1 requires a number of

cycles that is more or less the half of the number of cycles that requires Algo-

rithm 4.2. It is important to note that in this case, Algorithm 4.1 in each cycle

project first onto the halfspaces corresponding to the active constrains, whereas

Algorithm 4.2 project onto the halfspaces corresponding to the active



Table 4

Results for experiment 4: vectorized symmetric sparse matrices with zero diagonal and non–

negative entries

n Algorithm 4.1 Algorithm 4.2

CPU ITER CPU/ITER CPU ITER CPU/ITER SAVED ITER (%)

3 0 14 0.00E+00 0 9 0.00E+00 35.71

4 0 20 0.00E+00 0 19 0.00E+00 5.00

5 0.02 32 6.25E
04 0.02 29 6.90E
04 9.38

6 0.05 48 1.04E
03 0.04 44 9.09E
04 8.33

7 0.14 66 2.12E
03 0.12 60 2.00E
03 9.09

8 0.53 90 5.89E
03 0.39 76 5.13E
03 15.56

9 2.57 112 2.29E
02 1.92 102 1.88E
02 8.93

10 7.1 142 5.00E
02 5.64 135 4.18E
02 4.93

11 18.87 184 1.03E
01 15.59 161 9.68E
02 12.50

12 43.3 204 2.12E
01 39.71 196 2.03E
01 3.92

Table 5

Results for experiment 5: vectorized symmetric sparse matrices with zero diagonal and distinct sign

entries

n Algorithm 4.1 Algorithm 4.2

CPU ITER CPU/ITER CPU ITER CPU/ITER SAVE ITER (%)

3 0 3 0.00E+00 0 1 0.00E+00 66.67

4 0 10 0.00E+00 0 8 0.00E+00 20.00

5 0.01 14 7.14E
04 0 12 0.00E+00 14.29

6 0.03 27 1.11E
03 0.02 24 8.33E
04 11.11

7 0.06 30 2.00E
03 0.04 27 1.48E
03 10.00

8 0.17 41 4.15E
03 0.11 38 2.89E
03 7.32

9 0.83 50 1.66E
02 0.51 47 1.09E
02 6.00

10 2.46 51 4.82E
02 1.49 47 3.17E
02 7.84

11 7.26 72 1.01E
01 4.56 66 6.91E
02 8.33

12 19.38 86 2.25E
01 11.07 78 1.42E
01 9.30

Table 6

Results for experiment 6: x0 = ad{n} + be with a + (n 
 1)b P 0 and 2a + b 6 0

n Algorithm 4.1 Algorithm 4.2

CPU ITER CPU/ITER CPU ITER CPU/ITER

3 0.01 12 8.33E
04 0 6 0.00E+00

4 0.01 15 6.67E
04 0.01 17 5.88E
04

5 0.01 22 4.55E
04 0.02 30 6.67E
04

6 0.03 28 1.07E
03 0.06 42 1.43E
03

7 0.1 40 2.50E
03 0.16 73 2.19E
03

8 0.26 59 4.41E
03 0.47 107 4.39E
03

9 1.06 90 1.18E
02 2.1 210 1.00E
02

10 3.27 133 2.46E
02 6.05 284 2.13E
02

11 19.05 191 9.97E
02 36.37 390 9.33E
02

12 55.96 265 2.11E
01 101.27 504 2.01E
01

P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649 647



648 P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649
constrains at the end of each cycle (see [14] for more details). This fact probably

explains the behavior of the algorithms.

Note that in all experiments the required CPU time per cycle is more or less

the same for each algorithm when n is fixed. Indeed, except for experiment 1, it

is slightly smaller for Algorithm 4.2.

In spite of the results of experiment 6 and taking into in account the results
of the other experiments we can conclude that in general, Algorithm 4.2 is bet-

ter than Algorithm 4.1.
6. Concluding remarks

We have characterized in a simple manner the projection onto the intersec-

tion of two halfspaces. We have also proved that under certain conditions, it is
possible to discard halfspaces when we project onto certain polyhedral cones.

We have used these two results to state strategies for Dykstra�s algorithm with

the aim to reduce the number of cycles and the execution time. These strategies

consist in previous discarding and arrangement, and in projecting cyclically

onto the intersection of two halfspaces. Our preliminary numerical experiments

indicate that Dykstra�s algorithm with these strategies is better.

In the numerical experiments we have projected onto the polar cone of cutn,

and then onto cutn. This projection is a relaxation of the projections onto the
sets of distances and squared distances that are ‘2-embeddable. Both sets play

an important role for determining molecular conformations.
Acknowledgments

I am grateful with Prof. Juan Cesco at Universidad Nacional de San Luis,

San Luis, Argentina; Prof. Marcos Raydan at Universidad Central de Vene-
zuela, Caracas, Venezuela; and Prof. Pablo Tarazaga at Texas A&M Univer-

sity, Texas, USA, for some helpful discussions.
References

[1] R.L. Dykstra, An algorithm for restricted least-squares regression, J. Amer. Stat. Assoc. 78

(1983) 837–842.

[2] J. von Newmann, The geometry of orthogonal spaces, in: Functional operators, vol. II, Annals

of Math. Studies, No. 22, Princeton University Press, 1950. This is a reprint of mimeographed

lecture notes first distributed in 1933.

[3] W. Cheney, A. Goldstein, Proximity maps for convex sets, Proc. Amer. Math. Soc. 10 (1959)

448–450.



P.M. Morillas / Appl. Math. Comput. 167 (2005) 635–649 649
[4] M. Mendoza, M. Raydan, P. Tarazaga, Computing the nearest diagonally dominant matrix,

Numer. Linear Algebra Appl. 5 (1998) 461–474.

[5] M. Raydan, P. Tarazaga, Primal and polar approach for computing the symmetric diagonally

projection, Numer. Linear Algebra Appl. 9 (2002) 333–345.

[6] M. Monsalve, J. Moreno, R. Escalante, M. Raydan, Selective alternating projections to find

the nearest SDD+ matrix, Appl. Math. Comput. 145 (2003) 205–220.

[7] F. Deutsch, The method of alternating orthogonal projections, in: S.P. Singth (Ed.),

Approximation Theory, Spline Functions and Applications, Kluwer Academic Publishers,

Netherlands, 1992, pp. 105–121.

[8] M. Deza, M. Laurent, Geometric of Cuts and Metrics, Springer, 1997.

[9] W. Glunt, T.L. Hayden, M. Raydan, Molecular conformations from distance matrices,

J. Comp. Chem. 14 (1993) 114–120.

[10] D.G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1969.

[11] J.P. Boyle, R.L. Dykstra, A method for finding projections onto the intersections of convex

sets in Hilbert spaces, Lect. Notes Statist. 37 (1986) 28–47.

[12] F. Deutsch, H. Hundal, The rate of convergence of Dykstra�s cyclic projections algorithm: the

polyhedral case, Numer. Funct. Anal. Optim. 15 (1994) 537–565.

[13] J. Stoer, C. Witzgall, Convexity and Optimization in Finite Dimensions I, Springer-Verlag,

Berlin, 1970.

[14] P.M. Morillas, Proyección sobre la relajación CUT para el cono de las matrices de distancia,

Tesis de Maestrı́a, Departamento de Matemática, Facultad de Ciencias Fı́sico, Matemáticas y

Naturales, Universidad Nacional de San Luis, San Luis, Argentina, 2003.


	Dykstra " s algorithm with strategies for projecting onto certain polyhedral cones
	Introduction
	Dykstra rsquo s algorithm
	Some properties of the projection onto polyhedral cones
	Algorithms
	Numerical results
	Concluding remarks
	Acknowledgments
	References


