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GEODESIC NEIGHBORHOODS IN UNITARY ORBITS OF SELF-ADJOINT

OPERATORS OF K ` C

TAMARA BOTTAZZI 1 AND ALEJANDRO VARELA2,3

Abstract. In the present paper, we study the unitary orbit of a compact Hermitian diagonal operator
with spectral multiplicity one under the action of the unitary group UK`C of the unitization of the
compact operators KpHq ` C , or equivalently, the quotient UK`C{UDpK`Cq. We relate this and the
action of different unitary subgroups to describe metric geodesics (using a natural distance) which join
end points. As a consequence we obtain a local Hopf-Rinow theorem. We also explore cases about
the uniqueness of short curves and prove that there exist some of these that cannot be parameterized
using minimal anti-Hermitian operators of KpHq ` C.

1. Introduction

Let A be a C˚-algebra, B a von Neumann subalgebra of A, and UA, UB its respective unitary
groups. Theorem II of [7] or Theorem I-2 of [8] (and the Remark that follows it) imply that for every
element ρ P UA{UB, and every tangent vector x P Tρ pUA{UBq, there exist a minimal lift Z P Aah of
x (x “ Zρ ´ ρZ and }Z} ď }Z ` D} for all D P B) such that the curves

(1.1) γptq “ etZρe´tZ

are all the possible short curves (under a natural distance) starting at ρ with fixed initial velocity x.
In this context, we will call this Z a minimal operator.
Moreover in [8] local and global Hopf-Rinow theorems were proved in this context with additional

hypothesis on the unitary groups involved.
If the assumption of B being a von Neumann algebra is relaxed, Theorem I of [7] proves that every

minimal lift Z still produces a short curve if B is only required to be a C˚-algebra. Nevertheless, in
this case such a Z may not exist for every tangent vector x (see for example the discussion following
Proposition 18 in [3] or the properties of Z2 defined in (4.2) in this paper). Therefore, if A and B

are C˚-algebras the parameterization of minimal curves with arbitrary initial velocity is not known
in general nor the existence of geodesic neighborhoods. The main objective of this work is the study
of short curves of a particular example where the subalgebra B is not a von Neumann algebra.
Denote with K`C the C˚-algebra obtained after the unitization of the compact operators in BpHq,

that is tX P BpHq : X “ K ` θI,K P K, θ P Cu. H will be a separable Hilbert space, and UK`C

will denote the unitary operators of KpHq ` C. If we fix an orthonormal basis teiuiPN in H, we can
consider matricial characterizations in BpHq an diagonal operators. Let b be a compact diagonal
self-adjoint operator with spectral multiplicity one, and Ob the orbit

(1.2) Ob “ O
UK`C

b “ tubu˚ : u P UK`Cu

This orbit has a structure of a smooth homogeneous space under the action of UK`C with the iden-
tification Ob » UK`C{UDpK`Cq (see for example Lemma 1 of [4] and the discussion that follows it).
As we comment in Remark 3.2 the homogeneous space Ob coincides with the orbit of b under the

action of several other unitary subgroups. Moreover, a natural Finsler metric defined on the tangent
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spaces (see 3.1) and a distance (see 3.6) in Ob is also preserved if we consider those different unitary
subgroups.
In this context, we analyze geodesic neighborhoods of Ob and cases of short curves satisfying

initial conditions or connecting given endpoints that cannot obtained using minimal operators V P
pKpHq ` Cqah. In Theorem 4.1 it is shown that short curves in Ob of the form (1.1) can be constructed

using minimal operators Z P pKpHq ` DpBpHqqqah. These geodesics and a result from [7] allows us to
prove in 5.4 a Hopf-Rinow local theorem for Ob. We also consider certain types of minimal operators
with diagonal belonging to DpBpHqqzDpKpHq ` Cq and construct with them short curves γ in Ob

(for the distance (3.6)) such that in a fixed neighborhood, there is not any curve δ of the form
δptq “ etV be´tV with V a minimal vector in pK`Cqah that starts in b and ends in γptq (see 5.9). This
means that there exist geodesics that cannot be obtained using minimal vectors V in pK ` Cqah.
In the general context mentioned at the beginning of this section the previous results imply that if

B is only required to be a C˚-algebra then, even when Hopf-Rinow type theorems can be obtained,
there exist short curves in UA{UB that cannot be described using minimal elements of A.

2. Preliminaries

Let BpHq be the algebra of bounded operators on a separable Hilbert space H, and KpHq and
UpHq the compact and unitary operators respectively. If an orthonormal basis teiuiPN is fixed we
can consider matricial representations of each A P BpHq, that is A “ pAi,jqi,jPN “ pxAei, ejyqi,jPN and
diagonal operators which we denote with D pB pHqq. Any D P D pB pHqq fulfills xDei, ejy “ 0 for
every i ‰ j.
With the preceding notation, we define columns (and similarly, rows) of any operator A P BpHq

as cjpAq “
ř8

i“1 xAei, ejy ej “ pA1j , A2j , ...q Ă ℓ2, for each j P N.
We call Uk the Fredholm subgroup of UpHq, defined as

Uk “ tu P UpHq : u ´ I P KpHqu

“ tu P UpHq : D K P KpHqah, u “ eKu,
(2.1)

and the subgroup studied in [5]:

Uk,d “ tu P UpHq : u ´ eD P KpHq for D P pD pB pHqqqahu

“ tu P UpHq : D K P KpHqah and pD pB pHqqqah , such that u “ eKeDu,
(2.2)

where I is the identity in BpHq and the superscript ah means anti-Hermitian as well as h means
Hermitian.
Consider the unitization of KpHq

K ` C “ KpHq ` tλI : λ P Cu Ă BpHq,

endowed with the norm

||K ` λI}K`C “ supt}KC ` λC} : C P KpHq, }C} “ 1u,

for any K ` λI P K ` C (here } ¨ } is the usual operator norm in BpHq). The } }K`C norm coincides
with the operator norm in BpHq:

||K ` λI||K`C “ }K ` λI}

(this follows after considering the multiplication pK ` λIqC for C “ h b h P KpHq, with h P H and
}h} “ 1).
The space pK ` C, || ¨ ||K`Cq is a unital C˚-algebra with unit IK`C “ 0 ` 1.I “ I.
Let D pK pHqq “ D pB pHqq XKpHq and define the subspace of diagonal operators of K `C, given

by
DpK ` Cq “ D pK pHqq ` tλI : λ P Cu.
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It is apparent that DpK ` Cq is a unital C˚-subalgebra of K ` C and IK`C P DpK ` Cq.
If u “ K ` λI P pK ` Cq is a unitary operator, direct computations show that KK˚ “ K˚K and

|λ| “ 1. Therefore, there exists θ P R (λ “ eiθ) such that u verifies that u ´ eiθI P KpHq. Then
u P Uk,d (see (2.2)) and therefore there exists K0 P KpHqah such that u “ eK0eiθI for the same θ (as
seen in the proof of Proposition 3.3 in [5]). Moreover, it is apparent that if u “ eKeiθI , with θ P R

and K P KpHqah, then u “ eiθI `
`ř

ně1
Kn

n!
eiθI

˘
P UK`C, the unitary group of K ` C.

Similar considerations can be made with the unitaries of DpK`Cq. If v P UDpK`Cq then v “ d`eiθI

with d P D pK pHqq and θ P R. This implies that |dj,j ` eiθ| “ 1 for all j P N and therefore
pd`eiθIq “ eiR with R a real diagonal matrix such that Rj,j Ñ θ when j Ñ 8. Conversely, if v “ eiR

with Rj,j P R and limjÑ8 Rj,j “ θ, then v “ eipR´θIqeiθI P UDpK`Cq because limjÑ8pRj,j ´ θq “ 0 and
therefore ipR ´ θIq P KpHqah.
Then the unitary groups of K ` C and DpK ` Cq can be described as follows:

UK`C “ Uk.te
iθI : θ P Ru “ teKeiθI : K P KpHqah and θ P Ru

“ teK`iθI : K P KpHqah and θ P Ru
(2.3)

and

UDpK`Cq “ td ` eiθI : d P D pK pHqq , θ P R such that |dj,j ` eiθI | “ 1u

“ ted0`iθI : d0 P D pK pHqqah and θ P Ru

“ teL0 : L0 P D pB pHqqah such that lim
jÑ8

pL0qj,j “ iθ with θ P Ru.

3. The homogeneous unitary orbit of a self-adjoint compact operator

Given a subgroup U Ă UpHq we will denote with OU
b the orbit of self-adjoint element b P KpHqh

by a subgroup U Ă UpHq, that is

O
U

b “ tubu˚ : u P Uu

Let b “ Diag ptbiuiPNq P DpKpHqhq denote the diagonal operator with the sequence tbiuiPN in its
diagonal. We study the unitary orbit of b P KpHq Ă K ` C with bi ‰ bj for each i ‰ j under the
action of UK`C:

(3.1) Ob “ O
UK`C

b “ tubu˚ : u P UK`Cu.

Observe that it is apparent that the following inclusions hold for these subgroups of UpHq:

Uk ( UK`C ( Uk,d.

Nevertheless the orbit of b under the three subgroups is the same set Ob because

(3.2) eKbe´K “ eKeitIbe´itIe´K “ eK`itIbe´K´itI

for t P R and then O
Uk

b “ O
Uk,d

b (see for example Remark 4.4 in [5]). Moreover, we will show further
that the three of them share the same natural Finsler metric on the tangent spaces (as seen in Remark

4.5 in [5] for the cases of OUk

b and O
Uk,d

b ).
Ob has a smooth structure as described in Lemma 1 in [4] and the comments that follow it.

The isotropy at any c P Ob “ O
UK`C

b is Ic “ tu P UK`C : ucu˚ “ cu. In particular,

Ib “ tu P UK`C : ru, bs “ 0u “ UDpK`Cq.

Remark 3.1. If c P Ob, the following identification can be made:

TcOb – pTUK`Cq1{pTIbq1 “ pK ` Cqah{pDpK ` Cqqah.
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Observe that

pK ` Cqah{DpK ` Cqah “
 

rXs : X “ K0 ` iθ0I, K0 P KpHqah and θ0 P R
(
.

where rXs is the class defined as Y P rXs iff Y “ X ` d ` iθI for d P DpKpHqahq and θ P R. This
quotient space is endowed with the usual quotient norm, that in this case for X “ K0 ` iθ0I is

}rXs} “ }rK0 ` iθ0Is} “ inf
θPR; dPDpKpHqahq

}K0 ` iθ0I ` d ` iθI}K`C

“ inf
θPR; dPDpKpHqahq

}K0 ` d ` iθI}K`C.

In this context, a natural Finsler metric for any x P TbOb, x “ Xb ´ bX , with X P pK ` Cqah is

}x}b “ inft}Y } : Y P pK ` Cqah, Y b ´ bY “ Xb ´ bXu

“ inf
dPDpKpHqahq

θPR

}X ` d ` iθI}K`C “ inf
dPDpKpHqahq

θPR

}X ` d ` iθI}(3.3)

where X ` d ` iθI is any element of the class rXs “ tY P pK ` Cqah : Y “ X ` d ` iθI, for θ P
R and d P DpKpHqahqu in pK ` Cqah{DpK ` Cqah.
An element Y P BpHqah such that Y b ´ bY “ x and }Y }

K`C “ }Y } “ }rXs} “ }x}b will be called
a minimal lifting for x, and its diagonal will be a minimal diagonal approximant (or minimizing
diagonal) for Y . This operator Y may not be compact nor unique (see [3]), and it will be called a
minimal operator.
Given any c “ eK`itIbe´K´itI “ eKbe´K P Ob (K P KpHqah, t P R) we can define the norm in its

tangent space TcOb using that z “ Zc´ cZ P TcOb for Z “ eKXe´K P KpHqah and Xb´ bX P TbOb.
Then the Finsler norm in TcOb is }z}c “ }rZs} “ inft}Y } : Y P pK ` Cqah, Y c ´ cY “ Zc ´ cZu “
}rXs}. Note that this norm is invariant under the action of UK`C.

Remark 3.2. As it was mentioned before in (3.2), the following orbits are equal

O
UK`C

b “ O
Uk

b “ O
Uk,d

b

for Uk ( UK`C ( Uk,d defined in (2.1), (2.3) and (2.2) respectively (see Proposition 4.1, 4.4 and
Remark 4.7 in [5]).
Let X P pK ` Cqah, X “ K ` itI with K P KpHqah and t P R, then

inf
DPDpBpHqahq

}K ` D} “ inf
DPDpBpHqahq

}

Xhkkkikkkj
K ` itI ` D} ď inf

dPDpKpHqahq

θPR

}X ` iθI ` d}

“ inf
dPDpKpHqahq

θPR

}K ` iθI ` d} ď inf
dPDpKpHqahq

}K ` d}.

(3.4)

But since inf
dPDpKpHqahq

}K `d} “ inf
DPDpBpHqahq

}K `D}, [Prop. 5,[3]], the previous inequalities imply that

all those infimums are equal.
This means that also the Finsler metric defined for TcOb in (3.3) coincides if we consider any of

the quotients KpHqah{DpKpHqahq, pK ` Cqah{DpK ` Cqah or pKpHqah ` D pB pHqqahq{D pB pHqqah

(see also Remark 4.5 in [5]).

Remark 3.3. Observe that nevertheless Ob ( O
UpHq
b . This follows because if we suppose that for

every X P BpHqah holds that eXbe´X “ eKbe´K for K P KpHqah, then e´KeX must be a diagonal

unitary. Therefore, for all X P BpHqah we could write that eX “ eKeD for D P D pB pHqqah which is
known to be false (see for example Remark 3.7 in [5]).
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Consider piecewise smooth curves β : ra, bs Ñ O
UK`C

b . We define

(3.5) Lpβq “

ż b

a

}β 1ptq}βptq dt , and

(3.6) distpc1, c2q “ inf tLpβq : β is smooth, βpaq “ c1, βpbq “ c2u

as the rectifiable length of β and distance between two points c1, c2 P O
UK`C

b , respectively.

4. A short curve in Ob obtained acting with a minimal operator not belonging to
pK ` Cqah{DpK ` Cqah

Consider the following operator described as an infinite matrix:

Zδ,γ “ i

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0 ´δ γ ´δ2 γ2 ´δ3 γ3 ¨ ¨ ¨
´δ 0 γ ´δ2 γ2 ´δ3 γ3 ¨ ¨ ¨
γ γ 0 ´δ2 γ2 ´δ3 γ3 ¨ ¨ ¨

´δ2 ´δ2 ´δ2 0 γ2 ´δ3 γ3 ¨ ¨ ¨
γ2 γ2 γ2 γ2 0 ´δ3 γ3 ¨ ¨ ¨

´δ3 ´δ3 ´δ3 ´δ3 ´δ3 0 γ3 ¨ ¨ ¨
γ3 γ3 γ3 γ3 γ3 γ3 0 ¨ ¨ ¨
...

...
...

...
...

...
...

. . .

˛
‹‹‹‹‹‹‹‹‹‹‚

, with γ, δ P p0, 1q.

Zδ,γ is a Hilbert-Schmidt operator which has been studied in [4] in its self-adjoint version. We recall
here some of its properties.

Let γ2 “ δ and δ2 ă γ (for example γ “ 1{2 and δ “ 1{4), and denote with Z
r1s
δ,γ the operator

defined by the matrix of Zδ,γ with zeros in the first column and row, with c1pZδ,γq the first column
of Zδ,γ, and with D0 the (uniquely determined) diagonal matrix such that every pD0qi,i is chosen to
satisfy cipZδ,γq K c1pZδ,γq for all i ‰ 1. Then

(4.1) Zo “
}Z

r1s
δ,γ ` D0}

}c1pZδ,γq}
pZδ,γ ´ Z

r1s
δ,γq ` Z

r1s
δ,γ

is also a Hilbert-Schmidt operator with the property that D0 (constructed as mentioned before) is
a minimal diagonal for Zo (see (5.1) in [4] for a detailed proof of these statements and the follow-
ing comments). Moreover, it has been proved that D0 P DpBpHqahq is the unique bounded best
approximant anti-Hermitian diagonal of Zo. D0 has the particular property that limkÑ8pD0q2k,2k ‰
limkÑ8pD0q2k`1,2k`1 and both limits are not null. Therefore D0 is not compact and we call it an
oscillant diagonal. We will write with

(4.2) Z2 “ Zo ` D0

to denote the minimal operator constructed as above.
Then

(4.3) distpZo,DpKpHqahqq “ }rZos}KpHqah{DpKpHqahq “ }Z2} “ }c1pZ2q} “ }c1pZoq}.

Theorem 4.1. Let b “ Diag ptbiuiPNq P DpKpHqhq with bi ‰ bj for each i ‰ j. Consider the unitary

orbit O
UK`C

b defined in (3.1) and x “ Zb ´ bZ P TbOb, for Z a minimal operator in KpHqah `

D pB pHqqah. Then the uniparametric group curve γptq “ etZbe´tZ has minimal length in the class of

all curves in O
UK`C

b joining γp0q and γptq for each t P
”
´ π

2}Z}
, π
2}Z}

ı
.
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Proof. This proof is a direct consequence of mentioned previous results, but we include here the
citations and reasonings for the sake of clarity.

By Theorem 4.2 in [5], γptq P O
Uk

b for any t P R. Using Remark 3.2, we obtain that γptq P O
UK`C

b “
Ob, @ t. Moreover,

}x}b “ }Zb ´ bZ}b “ }rZs} “ inf
θPR; dPDpKpHqahq

}Z ` d ` iθI} “ }Z},

where the minimality of Z implies the last equality.
Consider Pb “ tubu˚ : u P UpHqu, then by Theorem II in [7], since Z is minimal, the curve γ has

minimal length over all the smooth curves in Pb that join γp0q “ b and γptq, with |t| ď π
2}Z}

. Since

clearly O
UK`C

b Ď Pb, then for each t0 P
”
´ π

2}Z}
, π
2}Z}

ı
follows that γ is a short curve in O

UK`C

b , that is

L
´
γ
ˇ̌
r0,t0s

¯
“ distpb, γpt0qq,

where distpb, γpt0qq is the rectifiable distance between b and γpt0q defined in (3.6). �

Corollary 4.2. Let b “ Diag ptbiuiPNq P DpKpHqhq with bi ‰ bj for each i ‰ j. Consider the unitary

orbit O
UK`C

b defined in (3.1), x “ Zob ´ bZo P TbOb, for Zo defined in (4.1), with D0 its unique
minimizing diagonal, and Z2 “ Zo ` D0 defined in (4.2).
Then the uniparametric group curve γptq “ etZ2be´tZ2 has minimal length in the class of all curves

in O
UK`C

b joining γp0q and γptq for each t P
”
´ π

2}Z2}
, π
2}Z2}

ı
.

Proof. If we consider Z “ Z2 “ Zo ` D0 in the statements of Theorem 4.1, then Z2 satisfies the
conditions required and therefore the proof is apparent. �

The previous result will allow us to state that the converse of Theorem I in [7] does not necessary
hold when the subalgebra considered (here DpK`Cq) is not a von Neumann algebra. Let us describe
the context of that article. Let A be a C˚-algebra and B a C˚-subalgebra, then a natural Finsler
metric as the one in (3.3) is defined for the generalized flag P “ UA{UB. If the element X P Aah

is minimal for a tangent vector x P TppUA{UBq » T1pUAq{T1pUBq (that is: x “ Xp ´ pX and
}X} “ inft}Y } : Y P Aah; Y p ´ pY “ xu) then the curve γptq “ LetX ¨ p has minimal length for
|t| ď π

2}X}
(where L is a left action on P) with the distance defined in (3.6).

The following result shows that there might exist some minimal curves γ in these generalized flags
P “ UK`C{UDpK`Cq that are not of the form γptq “ LetZ ¨ p for Z P Aah a minimal lifting of a tangent
vector x P T1pUAq{T1pUBq.

Remark 4.3. Let Z2 be the operator defined in (4.2). As it was mentioned in Corollary 4.2, the

uniparametric curve γptq “ etZ2be´tZ2 has minimal length in the class of all curves in Ob “ O
UK`C

b

joining γp0q and γptq for each t P
”
´ π

2}Z2}
, π
2}Z2}

ı
.

Therefore the curve γ is included in Ob with initial conditions γp0q “ b, γ1p0q “ x “ Zob´bZo even
for velocity vectors x P TbOb that do not have a minimal compact lifting K0 (recall that Zo ` D0 is
not compact and D0 is its unique minimizing diagonal). Thus UK`C is an example of a group whose
action on Ob has short curves that might not be described using minimal vectors Y P pK ` Cqah.
This is not new (for instance, see Remark 4.7 in [5]), but in the present case K ` C and DpK ` Cq,
whose anti-Hermitian elements are the Lie-algebras of UK`C and UDpK`Cq respectively, are unital
C˚-algebras.
We will develop some details of this situation in the next section.
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5. Neighborhoods of short curves defined by minimal vectors in UK`C{UDpK`Cq

In this section we will consider the problem of the existence of a neighborhood around b P
DiagpKpHqqh with bi,i ‰ bj,j for i ‰ j whose elements can be joined with b with a short curve
of the form

γptq “ etZbe´tZ

for some minimal anti-Hermitian element Z P pK ` Cqah and t in some interval.
Recall here Z2 “ Zo ` D0 defined in (4.2) where Zo P KpHqah is the Hilbert-Schmidt operator

defined in (4.1) and D0 is its unique minimizing diagonal with the property that D0 has subsequences
that converge to two different (not null) limits as described in the previous section. Moreover, Z2

satisfies,

(1) }Z2} “ }c1pZ2q},
(2) c1pZ2q1 “ pZ2q1,1 “ 0 and
(3) c1pZ2qj “ pZ2qj,1 ‰ 0 for all j ‰ 1.

Lemma 5.1. Let γptq “ etZbe´tZ Ă Ob with Z P BpHqah a minimal operator with unique minimizing
diagonal, and consider a curve δptq “ etV be´tV , with V P BpHqah another minimal operator such that
δ1p0q “ V b ´ bV “ γ1p0q “ Zb ´ bZ. Then it must be Z “ V .

Proof. Since δ1p0q “ γ1p0q, then

δ1p0q “ V b ´ bV “ γ1p0q “ Zb ´ bZ

and therefore V ´ Z commutes with b. Then V ´ Z P DpBpHqahq which implies that Z and V must
be equal outside their diagonals. Then, since DiagpZq is the only minimizing diagonal for Z and V

is also a minimal operator then DiagpV q “ DiagpZq which implies that V “ Z. �

Remark 5.2. Observe that if we apply the previous lemma to the case where Z “ Z2 defined in
(4.2) and δ and V satisfy the assumptions of the lemma, then in particular V R pK ` Cqah. This is
a direct consequence of the fact that Z2 has two different non zero diagonal limits, something that
V P pK ` Cq cannot satisfy.

Lemma 5.3. Let Z “ KZ ` DiagpZq with KZ P KpHqah, DiagpZq P D pB pHqqah be a minimal
operator and γ : r0, π

2}Z}
s Ñ Ob the short curve defined as γptq “ etZbe´tZ (see Theorem 4.1) and let

δ :
”
0, π

2}V }

ı
Ñ Ob be another short curve defined by δpsq “ esV be´sV for V “ KV `DiagpV q another

minimal operator with KV P KpHqah and DiagpV q P D pB pHqqah. Moreover, suppose that there exists

t1 P
´
0, logp2q{8

}Z}

ı
and s1 P

´
0, π

2}V }

ı
such that γpt1q “ δps1q.

Then
et1Z “ es1V e´Diagps1V q`Diagpt1Zq and }s1V } “ }t1Z}.

Proof. Note that t1 satisfies }t1Z} ă plog 2q{8, and then t1Z is sufficiently close to zero in the sense
of Definition 2.1 of [5].
Now consider the equality γpt1q “ δps1q

es1V be´s1V “ et1Zbe´t1Z .

Then
be´s1V et1Z “ e´s1V et1Zb

which implies that b commutes with e´s1V et1Z . Therefore e´s1V et1Z is diagonal and unitary. Then
there exists D P D pB pHqqah such that e´s1V et1Z “ eD.
Observe that since Z is a minimal operator the length of γ restricted to r0, t1s is }t1Z} and if δ

is a short curve then the length of δ must coincide with }t1Z} (see Theorem 4.1 in [7]). Since the
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length of δ restricted to r0, s1s equals }s1V } because V is a minimal operator, then }t1Z} “ }s1V }.
Also t1Z is sufficiently close to zero (thus s1V ), so we can apply Proposition 3.11 and Corollary 3.12
of [5] to obtain

eD “ e´s1V et1Z

“ e´s1V `Diagps1V q´Diagps1V qet1Z´Diagpt1Zq`Diagpt1Zq

“ eK´Diagps1V q`Diagpt1Zq

(5.1)

forK P KpHqah with DiagpKq “ 0. Then, since }t1Z} “ }s1V } ă plog 2q{8, then }D} “ } logpe´s1V et1Zq} ď
´1{2 log

`
2 ´ e2}t1Z}`2}s1V }

˘
ă π (see some of the Baker-Campbell-Hausdorff series bounds in [2] or

[10]). This implies that D “ K ´ Diagps1V q ` Diagpt1Zq because eD “ eK´Diagps1V q`Diagpt1Zq and
both anti-Hermitian exponents have norm less than π (see for example Corollary 4.2 iii) of [6]). But,

since DiagpKq “ 0 and D P D pB pHqqah, then

(5.2) D “ ´Diagps1V q ` Diagpt1Zq.

and K “ 0. �

Theorem 5.4. (Local Hopf-Rinow theorem) There exists Wb Ă Ob “ O
UK`C

b a neighborhood (with
the distance defined in (3.6)) of b P DpKpHqhq with bi,i ‰ bj,j for i ‰ j, such that for every ρ P Wb

there exists a short curve γ in Ob that joins b with ρ, and γ : r0, 1s Ñ Wb Ă Ob,

γptq “ etpKρ`Dρqbe´tpKρ`Dρq,

with Kρ P KpHqah, Dρ P D pB pHqqah, }Kρ}, }Dρ}, }Kρ ` Dρ} ă logp2q
4

, and pKρ ` Dρq a minimal

operator in KpHqah ` D pB pHqqah.

Proof. If we consider the isotropy compact generalized flag manifold P “ UpHq{DpUpHqq then for
ρ0 P P there exists a neighborhood

Vρ0 “ tLuρ0 : u “ eX , for X P BpHqah, }X} ă π{2u

where a local Hopf-Rinow theorem holds (see Theorem II-1 and Example 1 of [8]). That is, for every
ρ P Vρ0 there exist a minimal operator X P BpHqah with }X}ăπ{2 and a minimal uniparametric
group curve γ : r0, 1s Ñ P, γptq “ LetXρ0 joining γp0q “ ρ0 and γp1q “ ρ.
The generalized flag manifold P “ UpHq{DpUpHqq can be identified with the unitary orbit of

b P DpKpHqhq with bi,i ‰ bj,j as well as its tangent spaces as we have done with Ob in Remark 3.1:

Tc O
UpHq
b » T1 UpHq{T1 D pUpHqq “ BpHqah{D pB pHqqah

Since we are using the adjoint action L, then Lub “ ubu˚ in this context. And if we consider ρ0 “ b

we can conclude that for any ρ “ eKbe´K P pOb X Vbq with K P KpHqah (see (3.2)), there exists a
minimal operator Z P BpHqah with }Z} ă π{2, such that

(5.3) γ : r0, 1s Ñ O
UpHq
b , γptq “ etZbe´tZ , with γp0q “ ρ0 “ b and γp1q “ ρ “ eKbe´K “ eZbe´Z .

Note that in this case eZ cannot be any element of UpHq because eKbe´K “ eZbe´Z implies that

eZ “ eKeD for D P D pB pHqqah, and therefore eZ P Uk,d. Moreover, we will show that choosing a

smaller neighborhood Z can be written as Z “ K 1 ` D1, with K 1 P KpHqah, D1 P D pB pHqqah. In
order to obtain this last assertion recall from Lemma 3.14 of [5] that there exists ε0 ą 0 such that if
u P Uk,d satisfies }u ´ 1} ă ε0, then there exist K 1 P KpHqah and D1 P pD pB pHqqqah with u “ eK

1`D1

for }K 1}, }D1}, }K 1 ` D1} ă log 2

4
(see Definition 2.1 and the proof of Lemma 3.14 of [5]).

Then define the neighborhood of b in Ob:

Wb “ tubu˚ : u “ eZ P Uk,d, Z P BpHqah, }Z} ă logp1 ` ε0qu
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with ε0 from Lemma 3.14 of [5]. Note thatWb ( pVbXObq (
´
Vb X O

UpHq
b

¯
. It is apparent that if u “

eZ P Uk,d, with Z P BpHqah, }Z} ă logp1`ε0q, then }eZ ´1} ď e}Z} ´1 ă ε0. Applying the mentioned

lemma, this implies that in this case there exist K 1 P KpHqah and D1 P D pB pHqqah with u “ eK
1`D1

for }K 1}, }D1}, }K 1 ` D1} ă log 2

4
. Following the discussion after (5.3), if γ : r0, 1s Ñ O

UpHq
b is the

short curve γptq “ etZbe´tZ Ă Vb for Z P BpHqah a minimal operator such that γp1q “ eKbe´K P Ob

(for K P KpHqah), then it must be eZ “ eKeD P Uk,d. Moreover, since }eZ ´ 1} ă ε0, there exist

K 1 P KpHqah and D1 P D pB pHqqah satisfying

eZ “ eK
1`D1

, for }K 1 ` D1} ă
log 2

4
ùñ Z “ K 1 ` D1

because Z and K 1 ` D1 have norm smaller than π. Then the entire curve γ : r0, 1s Ñ O
UpHq
b is

included in Ob “ O
UK`C

b . In this case, being Z “ K 1 ` D1, the distance from ρ0 “ b to ρ “ eZbe´Z

is the same either if we consider the Finsler metrics in Ob or in O
UpHq
b (see (3.4)). Then γptq “

etZbe´tZ “ etpK
1`D1qbe´tpK 1`D1q, γ : r0, 1s Ñ Ob defines a short curve between b and ρ “ eKbe´K “

epK 1`D1qbe´pK 1`D1q, with K 1 ` D1 “ Z a minimal operator of KpHqah ` D pB pHqqah. The statement
of the theorem follows after substituting K 1 “ Kρ and D1 “ Dρ.
The element ρ “ eKbe´K P Wb was chosen arbitrarily, so we have proved that Wb is a geodesic

neighborhood of b in Ob. �

Remark 5.5. Observe that the unitary eKρ`Dρ P Uk,d mentioned in the previous theorem might not
belong to K ` C, but γptq “ etpKρ`Dρqbe´tpKρ`Dρq P Ob for every t (see Remark 3.2).

Remark 5.6. Let c “ eK0be´K0 P Ob, with K0 P KpHqah. The action Lupcq “ ucu˚, for u P UK`C

is invariant for the distance defined in Ob and therefore the previous result also holds in this case.
That is, there exists a geodesic neighborhood Wc of c such that every ρ P Wc is joined with c by short
curves included in Ob of the form LeK0 ˝ γ (for γ the curve described in Theorem 5.4).

Here we recall some results and the notation used in [7] and state its translation to the particular
example we are studying. In the work mentioned, the minimality of a curve γ : r0, π

2}Z}
s Ñ Ob,

γptq “ etZbe´tZ , with Z be a minimal lifting of x P TbOb, was proved using a unitary reflection
r0 in a Hilbert space with certain properties (see Definition 2.4 in [7]), a representation of A in
BpHq with particular properties (in our case the identity representation verifies them) and a map
F : Ob Ñ GrpHq (GrpHq is the Grassmann manifold of H) defined by F pubu˚q “ ur0u

˚. The unitary
reflection r0 used there is

(5.4) r0pxq “

"
x, if x P Sb

´x, if x P SK
b ,

where Sb is the closure of Ω “ tx P H : x “ Uξ, for U a diagonal in UK`Cu and ξ P H certain
vector satisfying Definition 4.1 of [7].
Now, if we consider the particular case in which Z is a minimal operator such that }Z} “ }cj0pZq},

cj0pZqj0 “ Zj0,j0 “ 0 and cj0pZqj “ Zj,j0 ‰ 0 for all j ‰ j0 (see the example of (4.2) and Lemma 6.1)
we can be much more specific about r0 and ξ.
After the corresponding translation to this case

(5.5) ξ “ i ej0, Sb “ gentξu and r0pxq “

"
x , if x P gentξu “ gentej0u

´x , if x P gentξuK “ gentej0uK .

Moreover, ξ fulfills Definition 4.1 in [7], since Z2ξ “ ´}Z}2ξ, r0pξq “ ξ and r0pZξq “ ´Zξ.
Therefore, γptq “ etZbe´tZ minimizes length between the points γp0q “ b and γptq if 0 ď t ď π

2}Z}
.



10 TAMARA BOTTAZZI
1
AND ALEJANDRO VARELA

2,3

In this context, the map Fξ : Ob Ñ S Ă H, Fξpubu
˚q “ ur0u

˚pξq, where S is the unit sphere of
H, reduces length. That is, if δ : r0, t0s Ñ Ob and v : r0, t0s Ñ S , vptq “ Fξpδptqq then (see Corollary
3.4 in [7])

ℓpvq ď Lpδq

with L defined in (3.5) and ℓ the length in S .
The following result is an application of Theorem 4.1 and Lemma 4.2 in [7] to our context.

Proposition 5.7. Let Z and V be minimal operators of pKpHq ` DpHqqah and consider the following
curves in Ob (defined in (3.1))

γptq “ etZbe´tZ and δptq “ etV be´tV , t ą 0.

Suppose additionally that there exists 0 ď t0 ď min
!

π
2}Z2}

; π
2}V }

)
such that γpt0q “ δpt0q.

Then, following the previous notation,

(1) wptq “ Fξpγptqq and vptq “ Fξpδptqq both are geodesics in the sphere S Ă H and

ℓpwq “ Lpγq “ Lpδq “ ℓpvq.

(2) γ and δ minimize length between the points b and γptq and δptq respectively, if 0 ď t ď t0.
(3) vptq “ etV r0e

´tV pξq “ etZr0e
´tZpξq “ wptq, for 0 ď t ď t0 and r0 the unitary reflection defined

in (5.4).

Proof. As it was mentioned before, items (1) and (2) are a direct consequence of Theorem 4.1 and
Lemma 4.2 in [7]. If γpt0q “ δpt0q, wpt0q and vpt0q match. Since geodesics for fixed ending points in
the unit sphere S are unique (maximum circles), then wptq “ vptq, for all 0 ď t ď t0. �

Observe that the assumption of existence of such t0 is possible even if γpt1q “ δpt2q for t1 ‰ t2,

since δptq can be re-scaled defining δ̃ptq “ e
t
t2
t1

V
be

´t
t2
t1

V
, for t P

„
0, π

2
t2
t1

}V }


and then δ̃pt1q “ γpt1q.

Lemma 5.8. Let b P DpKqh with bi,i ‰ bj,j for i ‰ j, Z, V P pKpHq ` DpBpHqqqah be minimal
operators such that for some j0 P N }Z} “ }cj0pZq}, cj0pZqj0 “ Zj0,j0 “ 0 and cj0pZqj “ Zj,j0 ‰ 0 for
all j ‰ j0. Moreover, if there exists t0 with 0 ă t0 ď π

2}Z}
that satisfies et0Zbe´t0Z “ es0V be´s0V , for

s0 P
”
0, π

2}V }

ı
, then

s0cj0pV q “ t0cj0pZq,

that is, the jth0 column of Z is a multiple of the jth0 column of V .

Proof. We can suppose that j0 “ 1. First, consider W “ s0
t0
V ,

γptq “ etZbe´tZ and δ0ptq “ etW be´tW

for t P
”
0, π

2}Z}

ı
. Then γpt0q “ es0V be´s0V “ et0s0{t0V be´t0s0{t0V “ δ0pt0q. Moreover, since also W is a

minimal operator, then γ and δ0 are short curves in the interval r0, t0s and then the length of γ
ˇ̌
r0,t0s

equals that of δ0
ˇ̌
r0,t0s . That is, t0}Z} “ t0}W } (see for example Theorem 4.1 of [7]) and therefore in

particular

(5.6) }Z} “ }W }.

Using the preceding notations of Proposition 5.7, the assumptions made here imply that vptq “
Fξpγptqq “ Fξpδ0ptqq “ wptq, for t P r0, t0s. Then their derivatives coincide for every t P r0, t0s

(5.7) w1ptq “
`
WetW r0e

´tW ´ etW r0e
´tWW

˘
pξq “

`
ZetZr0e

´tZ ´ etZr0e
´tZZ

˘
pξq “ v1ptq.

where ξ “ ie1, η “ c1pZq
}c1pZq}

and the reflection r0 are defined in (5.5) and fulfill r0pξq “ ξ and r0pηq “ ´η.
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Then, if we evaluate (5.7) in t “ 0

w1p0q “ pWr0 ´ r0W q pξq “ pZr0 ´ r0Zq pξq “ v1p0q.

Hence, since r0pξq “ ξ and r0pc1pZqq “ r0p}c1pZq}ηq “ }c1pZq} r0pηq “ ´}c1pZq}η “ ´c1pZq,

Wr0pξq ´ r0W pξq “ Zr0pξq ´ r0Zpξq

W pie1q ´ r0W pie1q “ Zpie1q ´ r0Zpie1q

ic1pW q ´ ir0pc1pW qq “ ic1pZq ` r0 pic1pZqq

ipI ´ r0q pc1pW qq “ i2c1pZq

(5.8)

On the other hand, if we consider the decomposition H “ gentξu ‘ pgentξuqK then the identity
operator I and r0 can be matricially described as

I “

ˆ
1 0
0 1

˙
and r0 “

ˆ
1 0
0 ´1

˙
,

respectively. Then, (5.8) implies that pI ´ r0qpc1pW qq “ 2pc1pW q ´ W1,1e1q “ 2c1pZq and then

(5.9) c1pW q ´ W1,1e1 “ c1pZq

and }c1pZq} “ }Z} “ }W } (see (5.6)). This implies that }c1pW q ´ W1,1e1} “ }W }, and therefore

W1,1 “ 0,

since otherwise }c1pW q} ą }W }, which is a contradiction. Therefore, returning to (5.9) we obtain
that c1pW q “ c1pZq that implies that

c1

ˆ
s0

t0
V

˙
“ c1pZq

which ends the proof. �

Next, we obtain the second main result of this section.

Theorem 5.9. Let b P DpKqh with bi,i ‰ bj,j for i ‰ j, Z P pKpHq ` DpBpHqqqah be a minimal
operator such that for some j0 P N, holds that }Z} “ }cj0pZq}, cj0pZqj0 “ Zj0,j0 “ 0, cj0pZqj “
Zj,j0 ‰ 0 for all j ‰ j0, the sequence tDiagpZqj,jujPN has more that one not null accumulation points,

and γptq “ etZbe´tZ , for t P
´
0, log 2

8}Z}

¯
.

Then there is not any minimal operator V P pK ` Cqah such that δptq “ etV be´tV , t P
”
0, π

2}V }

ı

satisfies γpt0q “ δps0q for t0, s0 in the respective domains.

Proof. As done before, we are going to prove only the case j0 “ 1. Suppose that there exists a minimal

operator V P pK ` Cqah such that δps0q “ es0V be´s0V “ γpt0q, for s0 P
´
0, π

2}V }

ı
and t0 P

´
0, log 2

8}Z}

¯
.

Note that in particular t0 ă log 2

8}Z}
ă π

2}Z}
which implies that γ is a short curve in all its domain.

Applying Lemma 5.3, ´Diagps0V q ` Diagpt0Zq P D pB pHqqah is such that

e´s0V et0Z “ e´Diagps0V q`Diagpt0Zq

and }t0Z} “ }s0V }.
(5.10)

Then, the fact that Z satisfies }Z} “ }c1pZq} (see (4.3)) implies that V must fulfill that

(5.11) }V } “
t0

s0
}c1pZq}

Using Lemma 5.8 follows that t0c1pZq “ s0c1pV q, and therefore (5.11) implies that }V } “ t0
s0

}c1pZq} “

t0
s0

›››s0t0 c1pV q
››› “ }c1pV q}.
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Then Lemma 6.1 implies that c1pV q is orthogonal to every other column of V . This property also

holds for c1pZq and the columns of Z. Recall the notation ξ “ ie1 and η “ c1pZq
}c1pZq|}

“
s0
t0

c1pV q

}
s0
t0

c1pV q}
“ c1pV q

}c1pV q}
,

and consider

ξ ` η “ ie1 `
c1pZq

}c1pZq}
“ ie1 `

c1pV q

}c1pV q}
P H.

A direct computation shows that ξ ` η is an eigenvector of Z and V of the eigenvalue i}Z} “
i}c1pZq} “ is0

t0
}c1pV q} “ is0

t0
}V } (see for example the proof of Theorem 2 in [4] for the self-adjoint

case). The previous comments imply that

eDpξ ` ηq “ e´s0V et0Zpξ ` ηq “ e
´i

s2
0

t0
}V }

eit0}Z}pξ ` ηq “ eipt0´s0q}Z}pξ ` ηq

where in the last equality we used }V } “ t0
s0

}Z} and the series expansion of the exponentials. Then,

using (5.10) we write

(5.12) eDpξ ` ηq “ e´Diagps0V q`Diagpt0Zqpξ ` ηq “ eipt0´s0q}Z}pξ ` ηq.

Therefore, considering the equality in each entry of (5.12) we obtain

ep´s0V `t0Zqj,jpξ ` ηqj “ eipt0´s0q}Z}pξ ` ηqj

for all j P N. The fact that pξ ` ηqj ‰ 0 for all j P N implies that ep´s0V `t0Zqj,j “ eipt0´s0q}Z} for every

j. Since we are supposing that t0 P
´
0, log 2

8}Z}

ı
, then the exponent p´s0V ` t0Zqj,j is small enough and

we can conclude that

p´s0V ` t0Zqj,j “ ´s0Vj,j ` t0pZqj,j “ ipt0 ´ s0q}Z}

for all j P N. But this is a contradiction since we are supposing DiagpV q “ d` iθI, with d P KpHqah,
θ P R, and we know that DiagpZq has more than one (not null) limit. Therefore, a minimal operator
V P pK`Cqah cannot form a curve δptq “ etV be´tV that crosses γ for t ą 0 in a certain small enough
neighborhood of b. �

Corollary 5.10. If we consider Z2 as defined in (4.2) for every neighborhood Xb of b in Ob there
exist elements pet0Z2be´t0Z2q P Xb such that there is not any short curve of the form δptq “ etV be´tV

with V P pK ` Cqah that joins b with et0Z2be´t0Z2. In fact, this is true for etZ2be´tZ2, for every t in
certain interval.

Proof. Observe that the operator Z2 satisfies every assumption needed by the operator Z in Theorem
5.9.Then the proof is a direct application of the previous theorem. �

Remark 5.11. Note that the situation mentioned in the previous corollary applies to the geodesic
neighborhood Wb obtained in Theorem 5.4 even when in that case every element of Wb is reached by
a short curve.

6. Appendix

In this section we include various results concerning minimal anti-Hermitian operators in BpHqah.

Lemma 6.1. For a given fixed orthonormal basis of H, let V P BpHqah be such that there exists
j0 P N that satisfies }V } “ }cj0pV q} (where cjpV q is the jth column of the corresponding matrix
representation of V in the fixed basis). Then

(6.1) cj0pV q K cjpV q, @j ‰ j0.

If pcj0pV qq
j0

“ Vj0,j0 “ 0 then V is a minimal operator.
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Moreover, if cj0pV qj “ Vj,j0 ‰ 0 for all j ‰ j0, then V has a unique minimizing diagonal defined
by

(6.2) Vj,j “ ´

A
cjpV qqj, cj0pV qqj

E

Vj,j0

, for j ‰ j0

where ckpXqql P H a gentelu is the element obtained after taking off the lth entry of ckpXq P H.

Proof. Note that we can suppose that j0 “ 1 to simplify the notation. Similar considerations could
be done for the jth0 column.
In the matrix representation corresponding to the fixed orthonormal basis tejujPN, we can consider

x “ cosptqe1 ` sinptqej, for j ‰ 1.

Observe that }x} “ 1, and then it must hold }V x} ď }V }. Let us consider f : R Ñ R such that

fptq “ }V pcosptqe1 ` sinptqejq}2 “ } cosptqV pe1q ` sinptqV pejq}2

“ } cosptqc1pV q ` sinptqcjpV q}2

“ xcosptqc1pV q ` sinptqcjpV q, cosptqc1pV q ` sinptqcjpV qy

“ cos2ptq}c1pV q}2 ` sin2ptq}cjpV q}2 ` 2 cosptq sinptq Rexc1pV q, cjpV qy.

(6.3)

Then

f 1ptq “ ´ 2 sinptq cosptq}c1pV q}2 ` 2 sinptq cosptq}cjpV q}2`

` 2
`
cosptq2 ´ sinptq2

˘
Rexc1pV q, cjpV qy

“ sinp2tq
`
}cj}

2 ´ }c1}
2
˘

` 2 cosp2tq Rexc1pV q, cjpV qy.

Then, if Rexc1pV q, cjpV qy ą 0

f 1p0q “ 2Rexc1pV q, cjpV qy ą 0 and fp0q “ }c1pV q}2

and then f 1pt1q ą 0 for some t1 ą 0, which implies that fpt1q ą }c1pV q}2, a contradiction.
On the other hand, if Rexc1pV q, cjpV qy ă 0

f 1p0q “ 2Rexc1pV q, cjpV qy ă 0 and fp0q “ }c1pV q}2

and then f 1pt2q ă 0 for some t2 ă 0, which implies that fpt2q ą }c1pV q}2, a contradiction.
Therefore it must be Rexc1pV q, cjpV qy “ 0.
Now consider z “ cosptqe1 ` i sinptqej P H, that also satisfies }z} “ 1. Then following the

steps we used in the case of x “ cosptqe1 ` sinptqej but using z, it can be proved that 0 “
Rep´iqxc1pV q, cjpV qy “ Imxc1pV q, cjpV qy.
In order to prove the last part of the lemma observe that

(1) as proved in the first part of this lemma, c1pV q K cjpV q for all j ‰ 1,
(2) and the assumptions

(a) c1pV q1 “ V1,1 “ 0,
(b) c1pV qj “ Vj,1 ‰ 0 for j ‰ 1
(c) and the equality }V } “ c1pV q

Then the proof of the minimality of V follows applying Theorem 2.2 from [1] substituting A with
BpHq, B with DpBpHqq, ρ with the identity, ξ with i e1 and Z with V . Note that we only need
assumptions (1), (2)(a) and (2)(c) to prove that

V 2pi e1q “ ´}V }2i e1 and that xV pi e1q, Dpi e1qy “ xi c1pV q, i D1,1y “ 0

in order to fulfill the assumptions of Theorem 2.2 from [1].
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The equality (6.2) follows after the condition c1pV q K cjpV q for j ‰ 1 and the fact that c1pV qj “
Vj,1 ‰ 0 for those j.
Moreover, if we consider V ` D, for D ‰ 0, and D1,1 ‰ 0, follows that }c1pV ` Dq} “ }c1pV q `

D1,1e1} ą }c1pV q} “ }V } and therefore V ` D cannot be minimal. Now suppose D1,1 “ 0. Direct
computations show that››››pV ` Dq

c1pV q

}c1pV q}

›››› “
1

}c1pV q}
}V c1pV q ` Dc1pV q} “

1

}c1pV q}

››´}c1pV q}2e1 ` Dc1pV q
››

“

››››´}c1pV q}e1 `
1

}c1pV q}
Dc1pV q

›››› ą }c1pV q} “ }V }.

(6.4)

In the previous strict inequality we have used (2)(a), (2)(b), D ‰ 0 and D1,1 “ 0.
Then }V ` D} ą }V } for D ‰ 0, which implies that the diagonal defined in (6.2) is the only

possible minimizing diagonal of V . �

Another way to prove equation (6.1) of the first part of the previous Lemma 6.1 is using Corollary
6.3 of the following theorem.

Theorem 6.2 (Sain, [9]). Let H1, H2 be Hilbert spaces and T P BpH1,H2q. Given any x P H1,
}Tx} “ }T } if and only if the following two conditions are satisfied:

i) xx, yy “ 0 implies that xTx, Tyy “ 0,
ii) supt}Ty} : }y} “ 1, xx, yy “ 0u ď }Tx}.

Corollary 6.3. Consider H “ H1 “ H2 and V P BpHqah. Then there exists j0 P N such that
}V } “ }V pej0q} “ }cj0pV q}, if and only if

i) xej0, ejy “ 0 implies that xV ej0, V ejy “ xcj0pV q, cjpV qy “ 0 for each j P N, j ‰ j0,
ii) supt}cjpV q} : j P Nu ď }cj0pV q}.

Proof. The proof is a direct consequence of Theorem 6.2 after observing that in item i) of the corollary
is equivalent to say that xej0, yy “ 0 implies that xV ej0 , V yy “ 0 for any y P H. �
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