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An Artifi cial Neural Network Approach for 
Predicting Soil Carbon Budget in Agroecosystems

Soil Fertility & Plant Nutrition

Organic matter is a key factor in the determination of soil productivity (Sanchez 
et al., 2004) because it is the main reservoir of some nutrients like N for crops 

(Körschens et al., 1998). Additionally, it has benefi cial eff ects on some physical prop-
erties that may impact crop growth (Gomez et al., 2001) and reduce erodibility, main-
taining productivity in the long term (Nowak et al., 1985). Positive relationships have 
been detected between organic matter and yield at the regional scale (Alvarez, 2009) 
and estimations of yield decline due to the loss of organic matter have been made for 
some crops and areas of the world (Lal, 2004). Organic C and N have been consid-
ered as critical indicators of soil quality and included in soil quality indices (Bastida 
et al., 2008), not only due to their eff ects on productivity, but also because they act as 
substrate and an energy source for microorganisms, regulating the capacity of soils to 
degrade biological and chemical contaminants (Andrews et al., 2004).

Th e mass of C sequestered in soils is greater than the C mass in vegetation and 
atmospheric C together (Schimel et al., 2001). Agriculture has determined about one-
third of the net fl ux of C from terrestrial ecosystems to the atmosphere during the last 
century due to soil C depletion and biomass destruction (Janzen, 2004), which repre-
sents a loss of 30 to 40 Mg soil C ha−1 contributing to global warming (Lal et al., 2007). 
Carbon sequestered in the soil depends on the climate (Alvarez and Lavado, 1998), 
vegetation (Jobbagy and Jackson, 2000), and soil texture (Buschiazzo et al., 1991). In 
wet climates, net primary productivity is greater than in dry climates, increasing the 
residue returned to the soil and the soil organic matter content. As ecosystem tem-
perature increases, soil C decreases as a consequence of greater microbial activity and 
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Soil quality has been associated with its organic matter content. Additionally, much eff ort has gone into understand-
ing the C cycle and generating models suitable for C fl ux prediction. We used published data from long-term tillage 
experiments performed in the Pampas of Argentina, where CO2–C emissions from organic C pools were deter-
mined in the fi eld, for developing empirical models suitable for C fl ux emission prediction. We also performed 113 
fi eld experiments with corn (Zea mays L.), wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.] to 
determine crop C inputs to the soil. Two empirical modeling techniques were tested: polynomial regression and arti-
fi cial neural networks. Both methodologies generated good models with R2 ranging from 0.70 to 0.86. Nevertheless, 
neural networks performed better than regressions, with signifi cantly lower RMSE values for both CO2–C emis-
sions and C input prediction. Daily CO2–C emissions could be predicted by the neural network (R2 = 0.86) using 
soil C content, temperature, and moisture level as independent variables. Crop C inputs (R2 = 0.85) were estimated 
using crop type, yield, and rainfall during the growing cycle. Th e models were used for evaluating of the impact of 
soybean introduction in rotations during the 1970 to 1980 decade. Despite soybean C inputs to the soil being lower 
than those of wheat and corn, which were replaced in rotations, soil C budgets are similar compared with the 1970 to 
1980 period, or changed from negative to positive at the present. Th ese changes were associated with yield increases 
ascribed to technological improvement that resulted in greater C inputs from graminaceous crops.

Abbreviations: SR, sensitivity ratio.
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organic matter mineralization. Grasslands have greater C content 
than woodlands under similar climatic scenarios and fi ne-textured 
soils sequester more organic C than coarse soils. Cultural manage-
ment also impacts the soil C sequestration potential. Strategies 
that lead to higher biomass production and C inputs to the soil, 
like rotation intensifi cation (Hutchinson et al., 2007), fertilization 
(Alvarez, 2005), and irrigation (Lal et al., 2003) have a C sequestra-
tion potential in cropped soils. Strategies that reduce erosion and 
soil temperature, like conservation tillage systems, also produce an 
increase in soil C levels (Alvarez, 2005). Under adequate manage-
ment practices, soils can recover between 50 and 70% of the C lost 
due to agricultural use, representing 0.4 to 0.8 Pg C yr−1 during the 
next 50 to 100 yr at the global scale (Lal, 2004), which can aff ect 
continental C balances.

Changes in soil C content are slow and diffi  cult to detect 
(VandenBygaart and Angers, 2006), and long-term experiments 
are usually needed for studying its dynamics, with durations that 
may vary between 20 and 100 yr (Malhi et al., 2003; McGill et 
al., 1986). In some cases, aft er a period of 5 to 10 yr, the soil C 
changes produced by management can be detected (Grignani et 
al., 2007, Schjonning et al., 2007). Cropping use impact on C 
reservoirs cannot be determined for possible practices not tested 
in these long-term experiments and the results cannot be extrap-
olated to the future or at the regional scale (VandenBygaart and 
Angers, 2006). Process-based models are suitable tools for these 
purposes but their application is usually restricted by the informa-
tion available for model parameterization and validation (Haefner, 
2005). Simplistic models of soil organic C dynamics, like Roth-C 
(Jenkinson and Rayner, 1977), need information about crop yield 
and residue production, while the use of more sophisticated mod-
els that can simulate C dynamics at the ecosystem level, such as 
Century (Parton et al., 1993), may be restricted in developing 
countries by the lack of availability of quality information for the 
parameterization–validation process. An alternative for this infor-
mation problem is the C budget technique, which has been ap-
plied to diff erent ecosystems to study soil C dynamics (Andrén et 

al., 2001). Considering that C fl uxes entering or leaving the soil 
are much greater than changes in the soil organic C content, this 
methodology allows determination of whether the soil is gaining 
or losing C in short time periods (Falgae et al., 2002; Rees et al., 
2005). Changes in the soil C level between some tens of kilograms 
to megagrams per hectare may be detected in yearly time periods 
(Baker and Griffi  s, 2005; Verna et al., 2005). For soil C budget cal-
culation, inputs and outputs of C to the soil are usually experimen-
tally determined. When interest is focused on estimating changes 
in the soil C content under scenarios for which there are no avail-
able data on C fl uxes, methods of predicting C inputs and outputs 
from the ecosystem must be developed by empirical modeling.

Artifi cial neural networks are empirical modeling techniques 
that have become popular in the biological sciences because they 
are more simple than process-based models and have a great pre-
dictive potential ( Jørgensen and Bendoricchio, 2001; Özesmi et 
al., 2006). Th eir architecture and operation have been summarized 
previously (Alvarez, 2009). Th ey have a structure and processing 
similar to the neural architecture and functioning of the brain, be-
ing data-driven tools capable of extracting information, like pat-
terns or relationships, from data ( Jørgensen and Bendoricchio, 
2001). Th ey do not assume an a priori structure for the data, are 
well suited for fi tting nonlinear relationships and complex interac-
tions, and can expose hidden relationships among input variables 
(Batchelor et al., 1997), but, as with other empirical models, they 
cannot extrapolate outside the range of data inputs. Th e most com-
mon artifi cial neural network structure is the multilayer perceptor 
with three neuronal layers: an input layer in which each neuron 
corresponds to an input variable, a hidden layer with a complex-
ity that is empirically determined during the neural network fi t-
ting, and an output layer in which each neuron corresponds to an 
output variable (Fig. 1). Information fl ows from the input layer 
through the hidden layer and fi nally to the output layer, and the 
learning process, which is an iterative process, consists in fi tting the 
weights associated with the transfer functions that couple neurons 
by comparing model outputs with experimental data ( Jørgensen 

Fig. 1. Representation of a feed-forward artifi cial neural network showing neuronal layers and connections.
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and Bendoricchio, 2001). Th e most common algorithm used to 
perform the learning process is back-propagation, which fi ts the 
weights from the output layer through the input layer (Kaul et al., 
2005). Usually, a linear function is used to transfer information 
from the input layer to the hidden layer and a sigmoid function 
to transfer information from the hidden layer to the output layer 
(Kaul et al., 2005). Good results have been obtained using artifi cial 
neural networks as a modeling technique in soil science in areas as 
diff erent as environmental correlation (Park and Vlek, 2002), soil 
organic C content prediction (Somaratne et al., 2005), fertilizer 
recommendation (Broner and Comstock 1997), and estimation 
of soil hydraulic properties (Nemes et al., 2003). Th ese techniques 
have not yet been tested for soil C budget estimation.

Th e Pampas is considered to be one of the most suitable ar-
eas for grain crop production in the world (Satorre and Slafer, 
1999). Wheat, corn, and soybean are the main crops (Ministerio 
de Agricultura, Ganadería y Pesca, 2010). During the 1970 to 
1980 decade, soybean was introduced in pampean agroecosystems 
and now occupies around 60% of the cropped area (Ministerio 
de Agricultura, Ganadería y Pesca, 2010). Concern has increased 
in recent years about possible degradation eff ects of soybean on 
soils because of its low C input to the soil. Simulation models like 
Century have been used successfully for modeling the C dynamics 
of grassland soils (Alvarez, 2001; Piñeiro et al., 2006), but, at pres-
ent, constraints encountered for model parameterization and vali-
dation in cropped soils have not yet been overcome, mainly because 
of the scarce information available on the soil cropping history in 
many pampean areas. Th erefore, the use of empirical modeling 
techniques, like artifi cial neural networks, may be a suitable tool for 
soil C balance estimation in the region. Our objectives were (i) to 
test the ability of artifi cial neural networks for predicting the soil C 
budget by estimating CO2–C emissions and crop C inputs to the 
soil, and (ii) to evaluate the impacts of the increase of soybean as a 
rotation component on the soil C budget of pampean soils.

MATERIALS AND METHODS
We tested the performance of regression methods and arti-

fi cial neural networks for modeling soil C emission as CO2–C 
and residue C inputs to the soil. Published results from seven 
fi eld experiments in which soil respiration was assessed were 
used for CO2–C emission modeling and 113 fi eld experiments 
were performed, with wheat, corn, and soybean crops, to gener-
ate residue production and C input data. Th e best fi tted models 
were then used for evaluating the soil C budget under the most 
common production scenarios found in the Pampas.

Study Area
Th e Pampas is a vast plain of around 50 Mha that runs from 

28 to 40° S in Argentina. Th e relief is fl at or slightly rolling, with 
Mollisols formed on loess-like materials as the predominant soils 
(Alvarez and Lavado, 1998). Its natural vegetation consists of grass-
lands in which graminaceous vegetation species are dominant. 
Around 60% of the area is devoted to agriculture. In the cropped 
portion of the region, the mean annual rainfall ranges from 600 

mm in the west to 1200 mm in the east and the mean annual tem-
perature from 14°C in the south to 20°C in the north. Agriculture 
is performed on well-drained soils, and areas with hydromorphic 
soils are devoted to pasture (Hall et al., 1992). Two important pro-
duction subregions of the Pampas are the Rolling Pampa and the 
West Pampa. In the former, annual rainfall ranges between 900 and 
1000 mm, the relief is slightly rolling, and the predominant soils 
are fi ne-textured, deep Argiudolls, with medium to high organic 
C contents. In the latter, rainfall varies between 700 and 900 mm, 
the relief is fl at, and the most common soils are deep Hapludolls 
of coarse texture and low to medium organic C levels (Hall et al., 
1992). In each subregion, four to fi ve representatives counties were 
selected for the analysis: Arrecifes, Carmen de Areco, Chacabuco, 
Rojas, and Salto in the Rolling Pampa, and Carlos Tejedor, Gral 
Pinto, Rivadavia, and Gral Villegas in the West Pampa.

Data
Published results from long-term fi eld experiments per-

formed in the Pampas, in which CO2–C emissions from soil or-
ganic reservoirs to the atmosphere were determined, were used for 
modeling (Table 1). Climate, soil, and management conditions 
varied widely between experiments, representing some common 
scenarios found in the region. All experiments had three to four 
plots for each management treatment where CO2–C fl uxes were 
determined by the inverted box method (Alvarez et al., 1998), usu-
ally at monthly intervals. In periods where intense crop root respi-
ration was expected, respirometers that excluded crop roots from 
the inner soil were used (Alvarez et al., 1996). Th ree to six respi-
rometers were installed in each plot and the results were averaged, 
generating one CO2–C result for each treatment and sampling 
time, and generating an overall set of 188 data. Th e CO2–C emit-
ted by the soil was evaluated by titration (Alvarez et al., 1995a). 
Th e soil temperature at the 10-cm depth was determined by ther-
mometers, and the soil water content in the 0- to 30-cm layer was 
determined gravimetrically at each respiration measurement date.

During 8 yr, 113 experiments were performed in the central 
portion of the Pampas in which biomass production and the yield of 
wheat, corn, and soybean were determined (Table 2). Experiments 
were installed within production fi elds and managed as commercial 
crops. Wheat experiments and methods of aboveground biomass 
and root collection in the 0- to 30-cm soil layer have been described 
in detail previously (Alvarez et al., 2004). Dried (70°C) plant mate-
rial was ground and C determined by wet digestion (Amato, 1983). 
In the corn experiments, two treatments were contrasted, control 
and N fertilized, harvesting 10 microplots of 0.15 m2 by treatment 
plot. Soybean experiments consisted in combinations of P and S 
rates, with diff erent cultivars and three replicates for each treatment. 
Two 1-m2 microplots were harvested by plot. Th e methods applied 
for corn and soybean were similar to those used for wheat, with the 
exception that soybean was harvested at two growing stages, R6.5 
and R8. At the R6.5 stage, the maximum biomass is attained, be-
fore leaves drop but grains are not totally fi lled (Ritchie et al., 1989). 
At R8, all leaves have dropped and the crop is completely mature. 
Soybean aboveground total biomass was estimated as the sum of the 
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biomass at R8 and the diff erence between the biomass at R8 and at 
R6.5. Th is diff erence was assumed to be mainly due to the fallen leaf 
biomass. Plot size ranged between 400 and 600 m2. Th e results from 
plots under the same management treatment were averaged. Th e C 
input data set from all three crops had a size of 210. Rainfall was re-
corded during the crop growing cycles at all sites. Total root biomass 
to the 100-cm depth was estimated assuming that roots in the 0- to 
30-cm layer accounted for 70% of the total belowground biomass 
(Jackson et al., 1996). Rhizodeposition, defi ned as root-derived C 
remaining in the soil at harvest by crops, originating from decompo-
sition of dead roots, exudates, and sloughed root cells, was estimated 
to be 5% of the plant biomass (Swinnen et al., 1994; Kisselle et al., 
2001). Th e total belowground C input was calculated as the sum 
of C in roots and rhizodeposition. Th e sum of above- and below-
ground C inputs were taken as the observed inputs for the analysis. 
Weed biomass and C content were also determined, when present, 
by methodologies similar to those described for the crops.

Modeling Techniques
Two modeling techniques were contrasted, polynomial re-

gression and artifi cial neural networks. Data were randomly par-
titioned into two sets, 70% for training and 30% for validation; 
models were fi tted using the training set and then tested on the 
validation set to determine their generalization ability. Training 
and validation sets used for regression fi tting were also used for 
network models development.

A quadratic polynomial response model was tested that incor-
porated linear and quadratic terms for assessing linear and nonlin-
ear eff ects of independent variables on the dependent variable and 
interaction terms between independent variables (Colwell, 1994). 
Fitting methods were applied as described elsewhere (Alvarez, 
2009). Briefl y, forward stepwise selection of independent variables 
was performed, testing co-linearity by the variance infl ation factor 
(Neter et al., 1990). Categorical variables were encoded (0 or 1) 
testing only linear and interaction terms. Terms were maintained 
in the fi nal models only if they were signifi cant at P = 0.05. Feed-
forward artifi cial neural networks developed by a supervised learn-
ing procedure, using the back-propagation algorithm for weight 

fi tting, were tested for modeling (Rogers and Dowla, 1994). 
Network architecture defi nition, transfer functions, scaling meth-
ods, learning rate, and epoch size were similar to those described in 
Alvarez (2009). Maximum simplifi cation of the network architec-
ture was determined by using as few input variables and neurons 
in the hidden layers as possible without reducing the coeffi  cients 
of determination (R2). Input selection was performed by the clas-
sical stepwise procedure because of its simplicity compared with 
other possible techniques (Gevrey et al., 2003). Data for training 
were at least fi ve times the connections in the networks to prevent 
overlearning (Gupta et al., 2003). Cross-validation was also used 
to avoid overlearning (Özesmi et al., 2006); the weight adjustment 
was stopped when R2 from the validation set became lower than 
from the training set (Park and Vlek, 2002).

Available independent-input variables tested for modeling the 
CO2–C fl ux were soil temperature, soil water content, clay, silt, or-
ganic C, and tillage treatment as a categorical variable. Th is informa-
tion was extracted from the studies listed in Table 1. Th e C input 
from the crops was modeled as a function of crop type, attained 
yield, and rainfall during diff erent periods in the growth cycle; this 
information was available for all the experiments. Crop type was 
taken as a nominal variable and encoded (1.0.0, 0.1.0, or 0.0.1) for 
neural network fi tting (Brouwer, 2004). During the development of 
regression models, the average harvest index of each crop was used 
instead of a categorical variable strategy because it allowed better fi ts. 
Sensitivity analysis was performed to weight the eff ect of diff erent 
inputs on CO2–C emissions and crop C inputs by calculating a sen-
sitivity ratio (SR) (Miao et al., 2006). Th e highest SR ratio implies 
the greatest impact of the analyzed input on the output. Neural net-
works were fi tted using Statistica (Statsoft  Inc., Tulsa, OK).

Th e R2 values of the training and validation data sets were 
compared by a specifi c test using Fisher´s Z transformation 
(Kleinbaum and Kupper, 1979), while RMSEs of the models de-
veloped by regression techniques and neural networks were con-
trasted by an F test (Snedecor and Cochran, 1967). Intercepts 
and slopes of the observed data regressed against the estimated 
data were contrasted with zero and one, respectively, using 
IRENE (Fila et al., 2003). In all cases, P was 0.05.

Table 1. Main characteristic of experiments in which soil respiration was determined.

Reference Site Soil† Rotation‡
Tillage 

treatment§
Months 

with data Plots
Data 
(n)

Clay 
+ silt¶

Organic 
C¶

Soil 
temperature# Rainfall††

————— no. ————— ——— % ——— °C mm yr−1

Alvarez et al. (1991) Pergamino TA W/S- C MP and NT 14 8 17 80.8 1.2– 1.4 20.0 780

Alvarez et al. (1995a) Pergamino TA W/S MP and DT 12 8 21 82.5 1.9– 2.0 18.4 1080

Alvarez et al. 1995b) Pergamino TA W/S MP and DT 12 8 24 82.5 1.9– 2.0 18.3 1220

Alvarez et al. (1996) Pergamino TA W/S DT and NT 12 6 26 80.3 1.0– 1.5 16.5 1240

Alvarez et al. (1998) Pergamino TA W/S- C MP and NT 12 8 24 84.0 2.0– 2.1 16.0 1100

Alvarez et al. (2001) Junín TH W/S MP and NT 2 6 14 41.4 2.1 16.7 1020
Bono et al. (2008) Anguil EH O+HV-W-C-O DP and NT 36 6 62 47.0 1.0– 1.1 16.4 830
† TA, Typic Argiudoll; TH, Typic Hapludoll; EH, Entic Haplustoll.
‡ W/S, double cropped wheat and soybean; C, corn; O+HV, oat + hairy vetch; W, wheat; O, oat.
§ MP, moldboard plow; DT, disk tillage with a harrow disk; DP, disk plow; NT, no-till.
¶ 0–20 cm.
# Annual average at 10-cm depth during the period of soil respiration evaluation except for Alvarez et al. (2001), for which historic average is reported.
†† During the period of soil respiration evaluation except for Alvarez et al. (2001), for which historic average is reported.
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Soil Carbon Budget

Th e soil C budget was calculated on an annual basis as the 
diff erence between C inputs and CO2–C fl uxes from the soil. 
Carbon inputs were the sum of crop inputs and other inputs 
produced by wild vegetation. Both CO2–C fl uxes and crop C 
inputs were estimated using the best models fi tted previously. 
Inputs from wild vegetation were estimated by an independent 
approach outlined below. Carbon budgets were estimated for 
soils of the Rolling Pampa and West Pampa, where the majority 
of the experiments reported here were performed.

For CO2–C fl ux estimation at an areal scale, we averaged val-
ues of organic C, using soil maps (Instituto Nacional de Tecnología 
Agropecuaria, 1989) and a procedure previously described (Alvarez 
and Lavado, 1998). Briefl y, soil C concentrations reported in soil 
surveys were averaged, taking into account their corresponding areas 
and bulk densities, to obtain a weighted mean representative of each 
pampean subregion. Daily evolution of soil temperature and water 
content were estimated by splines (Bono et al., 2008), using available 
data from fi eld experiments in which diff erent rotations, fertilization 
strategies, and tillage systems were contrasted (data not presented). 
Annual C fl uxes were estimated by integrating daily fl uxes.

Estimations of C inputs from crops with time were per-
formed on the basis of historic statistics of the seeded area 
and yield of corn, wheat, and soybean at the county level 
(Ministerio de Agricultura, Ganadería y Pesca, 2010). Using 
yearly seeded crop areas, the composition of the main rota-
tions was established between the 1970 to 1980 decade and the 
present. Rainfall during the crop growing cycles was estimated 
by climatic records available from the Servicio Meteorológico 
Nacional (www.smn.gov.ar; verified 13 Mar. 2011). 
Estimations before 1970 were not performed because the 
crop harvest index changed, especially for wheat (Calderini 
et al., 1999), which might have affected the quality of the es-
timations. Rotations applied, yields, and rainfall information 
were used for biomass prediction by modeling C inputs with 
the developed empirical models.

Biomass production of wild vegetation grown during peri-
ods between crop growing cycles has not been assessed for the 
Pampas. In some rotations, in which these time periods may last 
6 to 8 mo, an important input of C to the soil may be produced 
by this biomass because bare fallow periods are usually short, 
around 2 mo before crop seeding. We used the Century grass-
land model for an estimation of these inputs. A model version 
parameterized for simulating pampean grasslands was used with 
10-d time steps (Alvarez, 2001). Wild vegetation biomass pro-

duction and C input to the soil was estimated with the model for 
time spans between crops under the assumption that fallow peri-
ods were, in all cases, 2 mo. During these 2 mo of fallow, no bio-
mass was produced due to soil clearing by tillage or herbicide use.

RESULTS
A broad range of variation of soil properties and crop yields 

was observed in the experiments (Tables 1 and 2). Soils varied 
from coarse textures, with 47% clay + silt, to fi ner ones, with 
around 80% clay + silt. Organic C content varied accordingly 
from 1% to approximately 2%. Yields diff ered two- or threefold 
between low and high values for all the crops studied, which was 
associated, mainly, with rainfall variability during the growing 
seasons. Management conditions were also diff erent between ex-
periments, with diff erent rotations and tillage systems.

Emission of daily CO2–C from organic soil reservoirs could 
be well predicted by the best models adjusted using the soil C 
mass content in the 0- to 50-cm layer, soil temperature at the 
10-cm depth, and the water content in the 0- to 30-cm layer as 
independent variables or inputs. Both modeling techniques per-
formed a good job for predicting soil CO2–C emissions, but a 
better performance was attained using the neural network model 
(Fig. 2). Th e R2 values ranged from 0.70 to 0.86 without signifi -
cant diff erences between the training and validation sets, showing 
the ability of the fi tted models for generalization to data not used 
in their construction. Th e intercepts and slopes of the predicted 
vs. observed data were not diff erent from zero and one with the 
training or validation sets in all cases. Th e network with the high-
est R2 had fi ve neurons in the hidden layer and had a signifi cantly 
lower RMSE in the training and validation sets than the best re-
gression model. Soil CO2–C fl ux increased as soil C content rose 
and was strongly aff ected by temperature, water content, and their 
positive interaction, so the nature of the process could be better 
described by the network approach than by the linear modeling 
technique. Th e SR indicated that temperature was the input with 
the greatest infl uence on CO2–C emission (SR = 2.61), followed 
by soil C (SR = 2.20) and water content (SR = 1.35).

Carbon inputs from the crops to the soil could be well mod-
eled by the two techniques, attaining R2 from 0.70 to 0.85 (Fig. 3). 
No signifi cant diff erences were detected between the R2 of train-
ing and validation sets, with intercepts and slopes no diff erent 
from zero and one, respectively. Th e best fi tted neural network had 
four neurons in the hidden layer and a signifi cantly lower RMSE, 
both in the training and in the validation data sets, than those of 
the regression, showing a better ability for predicting C inputs. 

Table 2. Some characteristics from experiments in which C inputs were determined.

Crop Variable Years Experiments Data (n) Rainfall† Yield‡ Harvest index§ C input

————— no. ————— mm Mg ha−1 Mg ha−1

Corn Mean range 3 35 70 687 (542–899) 11.17 (5.48–17.26) 0.51 (0.43–0.60) 5.38 (2.89–9.55)

Wheat Mean range 2 58 58 302 (217–507) 4.46 (2.45–7.44) 0.36 (0.22–0.50) 4.02 (1.41–8.09)
Soybean Mean range 2 20 82 534 (385–753) 3.93 (2.58–5.55) 0.43 (0.26–0.60) 2.60 (1.44–4.78)
† During the crop growing cycle.
‡ Yield with 14% water.
§ Grain dry matter/aboveground biomass dry matter.
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Independent variables with signifi cant eff ects on C inputs in the 
regression model were the average harvest index of each crop, yield, 
and rainfall during the entire growing cycle. Th e best network 
developed used as inputs crop type, yield, and rainfall during the 
growing cycle. Sensitivity analysis showed a greater eff ect of yield 
(SR = 2.73) than rainfall (SR = 2.10) and type of crop (SR = 2.04) 
on C inputs. Carbon inputs were linearly related to crop yield but 
with a great scatter of data because the harvest index was very vari-
able, especially for wheat and soybean; these changes in the harvest 
index were aff ected by the interaction between yield and rainfall.

Th e network model developed for CO2–C prediction was 
used for estimating the annual fl uxes of C emitted by representa-
tive soils of the West and Rolling Pampa subregions under average 
climatic conditions. Carbon fl ux from soils of the Rolling Pampa 
was around 60% higher than from soils of the West Pampa, aver-
aging 7.45 and 4.98 Mg C ha−1 yr−1, respectively. Consequently, 
greater C inputs are needed in the Rolling Pampa than in the West 
Pampa to counteract CO2–C losses and maintain soil C levels.

Th e crop sequence during the cropping phase of the rota-
tions varied in the two pampean subregions from scenarios where 
corn and wheat were the predominant crops to the present situ-

ation in which soybean is the main crop (Table 3). Th is process 
was accompanied by a strong increase in crop yield, especially of 
graminaceous crops, which doubled or more in a 30-yr period 
(Table 3). As a consequence of this yield increase, the estimated 
crop C inputs from the entire rotation also increased (Table 4). 
In the West Pampa, estimated C inputs are around 44% higher 
now than in the 1970 decade; meanwhile, in the Rolling Pampa, 
the increase was about 14%. Carbon inputs were not linearly re-
lated to crop yield and were also aff ected by the interaction be-
tween climatic conditions during development and yield.

Biomass production from weeds developed during the crop 
growing seasons was null in the wheat and soybean experiments 
but ranged from 0 to 2.5 Mg C ha−1 in the corn experiments, 
with an average input of 0.5 Mg C ha−1 yr−1. It was produced by 
weeds that grew during the last stages of the corn growing cycle, 
mainly Cynodon dactilon L. and Tagetes minuta L.

Biomass production of wild vegetation in the time span 
between crops, estimated by Century, ranged from 0.5 to 
2 Mg C ha−1 yr−1 (Table 4). It was equivalent to 37% of the in-
puts from the crops as a mean. Taking into account the sum of 
inputs from crops, estimated by the neural network model, inputs 

Fig. 2. Observed vs. predicted CO2–C emissions estimated by polynomial regression or an artifi cial neural network approach for training and 
validation data sets. Empty circles: Haplustolls; full circles: Argiudolls and Hapludolls. Lines represent the fi tted regressions.
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from weeds developed during the corn growing season, and in-
puts from wild vegetation developed in time spans between crops, 
estimated by Century, the total C inputs to the soil during the 
rotations were recalculated (Table 4). Total input tended to in-
crease from the 1970 decade to the present, averaging now around 
5 Mg C ha−1 yr−1 in both the West and the Rolling Pampas.

Th e estimated soil C budget was negative in both pampean 
subregions in the 1970 decade (Table 4). As C inputs increased, 
the budget became positive in the West Pampa, but in the Rolling 
Pampa, it is still negative. In spite of the introduction of soybean 
in rotations and its low C inputs, soils are apparently not losing 
more C than 30 yr ago during the cropping phase of rotations as 
the result of the compensation eff ects of crop biomass produc-
tion increases by technological improvements.

DISCUSSION
Th e artifi cial neural networks developed in this research fi t-

ted the data better than linear models, which can be ascribed to 
the nonlinear modality of responses and to the complex interac-
tion between input variables (Gupta et al., 2003). Th e size of the 

data set and complexity of network architecture were adequate 
because cross-validation showed the ability of the models devel-
oped to generalize predictions. When available data for training 
are scarce (Broner and Comstock, 1997), too many input vari-
ables are used (Özesmi et al., 2006), or the number of neurons 
in the hidden layer is very high (Rogers and Dowla, 1994), net-
work models tend to overlearn. Despite complex models possibly 
reaching greater R2 values (Nemes et al., 2003), in some cases 
simpler ones allow better predictions (Lee et al., 2003), and an 
equilibrium must be attained between complexity and predic-
tion capacity (Özesmi et al., 2006). Th e neural networks fi tted 
here were simple models, being the eff ects of input variables in 
accordance with theoretical expectations. Sensitivity analysis 
quantifi ed the impact of each input on the process involved, in-
dicating a strong infl uence of the inputs selected on soil CO2–C 
emissions and crop C inputs to the soil, as the SR were much 
higher than one in all cases (Miao et al., 2006). Despite their bet-
ter prediction ability, neural networks could not be used for as-
sessing the error associated with estimates at new values, which 
can be performed using regression methods.

Fig. 3. Observed vs. predicted C inputs from crops estimated by polynomial regression and an artifi cial neural network approach for training and 
validation data sets. Empty circles: corn; fi lled circles: wheat; asterisks: soybean. Lines represent the fi tted regressions.
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Th e determination of the CO2–C fl ux evolved from the soil 
by microbial respiration is a precise method for quantifi cation 
of C losses when estimating a soil C budget (Nay and Bormann, 
2000). If live plant roots are present in the soil, CO2–C emis-
sions must be partitioned into autotrophic and heterotrophic 
respiration to evaluate only the CO2–C fl ux generated from the 
organic soil reservoirs (Koizumi et al., 1993). Diff erent methods 
have been used for empirical modeling of soil CO2–C emissions. 
Th e results related to the eff ects of temperature and rainfall on 
total soil respiration from many ecosystems worldwide have 
been integrated (Raich and Schlesinger, 1992). Soil respiration 
increases as temperature and rainfall increase, a consequence of 
higher microbiological activity under warmer conditions and 
greater levels of soil residues and organic matter under wetter 
climates and higher C inputs. Modeling soil respiration as a 
function of temperature and water content allowed the devel-
opment of models that can explain between 40 and 90% of its 
variation, depending on the ecosystem (Liu et al., 2008; Wang 
et al., 2008). Including variables in models that are related to 
plant biomass, like foliar area index (Amos et al., 2005) or net 
primary productivity (Han et al., 2007), may improve model 
performance. When total soil respiration is assessed, the inclu-
sion of these types of variables in models may be the consequence 
of the impact of root respiration on CO2–C fl ux (Casadesus et 
al., 2007). Also, variables that quantify the C substrate available 
for microorganisms, and regulate heterotrophic respiration, im-
prove models. Some of these variables are soil organic C content 
(Reichstein and Beer, 2008) and residue mass present or added 
to the soil (Bono et al., 2008). In agroecosystems, excluding root 
respiration, between 40 and 50% of soil CO2–C emission varia-
tion was explained using soil temperature and water content as 
independent variables in models fi tted to respiration data from 

cropped or bare soil (Takata et al., 2008). Our network model 
may explain 86% of the variation of CO2–C emissions from dif-
ferent soils, cropping management conditions, and years using 
only temperature, water content, and soil organic C as inputs. As 
a result of the simplicity of the model, it may be applied to many 
pampean agroecosystems for which this information is available.

Annual fl uxes of CO2–C from soils to the atmosphere range 
between 0.6 to 26 Mg C ha−1 depending on the ecosystem (Raich 
and Schlesinger, 1992; Rees et al., 2005). In agroecosystems, values 
usually vary between 4 and 15 Mg C ha−1 yr−1 (Liebig et al., 2005; 
Rees et al., 2005). Th e contribution of root respiration is variable, 
with an average estimation of 24% of the CO2–C evolved from 
the soil (Raich and Schlesinger, 1992). In pampean agroecosys-
tems, CO2–C emissions from microbial respiration ranged from 
4 to 12 Mg C ha−1 yr−1, falling within expected values.

Management practices impact CO2–C emissions from the 
soil. Th e increase in C inputs due to rotation intensifi cation or the 
use of crops with high biomass production leads to increases in soil 
respiration because of greater substrate availability for microorgan-
isms (Amos et al., 2007). Th e tillage system also impacts soil respi-
ration. Usually, greater seasonal or yearly CO2–C fl uxes are found 
under tillage than under no-till (Omonde et al., 2007), which has 
been attributed to higher temperatures in tilled soils (Franzluebers 
et al., 1998) or to faster decomposition of buried residues (Curtin et 
al., 2000). Nevertheless, in some cases respiration is similar (Drury 
et al., 2006) or even greater (Oorts et al., 2007) under no-till, a pos-
sible consequence of the accumulation of organic reservoirs in un-
tilled soils (Oorts et al., 2007). Th e impact of management on the 
CO2–C fl ux has been attributed mainly to the changes produced 
in the soil temperature and water content (Sainju et al., 2008). Th e 
experiments used here for the development of the CO2–C emis-
sions model were designed for testing tillage eff ects on soil respi-

Table 3. Most common rotations used and average yields in the Rolling and West Pampas.

Region
Time 

period Rotation†

Crop yield

Wheat Soybean‡ Corn Soybean§

—————— kg ha−1 ——————

Rolling Pampa 1973–1976 C–C–C–C–W 1800 1530 3530 –

1983–1986 W/S–C 1900 2430 4390 –

1993–1996 W/S–C–S 2600 1670 5500 2390

2003–2006 W/S–C–S–S–S 3640 2500 7960 3570

West Pampa 1973–1976 C–W–W 1790 1270 3050 –

1983–1986 W/S–C–W–C–W 2000 1660 4110 –

1993–1996 W/S–C 2390 1440 4500 –

2003–2006 W/S–C–S–S 3370 2430 8430 3470
† C, corn; W, wheat; W/S, double cropped wheat and soybean; S, soybean.
‡ In the double cropped wheat/soybean sequence.
§ As the only crop in a year.

Table 4. Inputs of C and soil C balance for two subregions of the Pampas during four 4-yr periods.

Parameter

West Pampa Rolling Pampa

1973–1976 1983–1986 1993–1996 2003–2006 1973–1976 1983–1986 1993–1996 2003–2006

Crops carbon input, Mg ha−1 2.16 2.87 3.65 3.67 1.36 3.94 3.62 3.68
Wild vegetation C input, Mg ha−1 1.87 1.32 0.51 1.58 1.53 0.54 1.36 1.20

Total C input, Mg ha−1 4.03 4.19 4.16 5.25 2.89 4.48 4.98 4.88
Soil C balance, Mg ha−1 −0.95 −0.79 −0.82 0.27 −4.56 −2.97 −2.47 −2.57
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ration. Some of them showed signifi cant but small changes in the 
CO2–C fl uxes induced by tillage but others showed no diff erence 
in the CO2–C emissions between tillage treatments. When micro-
bial respiration was modeled and all data integrated, tillage system 
had no signifi cant eff ect on the CO2–C fl ux. Th e possible tillage 
eff ect may be subrogated by other variables included in the network 
model, such as soil temperature and water content.

Previous work has shown that neural networks can make bet-
ter predictions of crop yield at regional (Alvarez, 2009) and plot 
scales (Kaul et al., 2005) than regression techniques. Our results 
show that neural networks can also predict crop C inputs to the soil 
better than linear models, showing the ability to describe complex 
relationships between yield and biomass production. Usually, C 
inputs from crops to the soil have been estimated using fi xed coef-
fi cients applied to yield data (Bolinder et al., 2007). Th e simplicity 
of this approach is counteracted by the problem of a great variabil-
ity in harvest indices, depending on the environmental conditions. 
Th is phenomenon was more important for wheat and soybean 
in our pampean agroecosystems, in which using the average har-
vest index would produce biased estimation of C inputs of about 
40% in many situations. Th e harvest index of wheat and soybean 
were negative and nonlinearly related to rainfall during the grow-
ing cycle so, as rainfall increased, C inputs were greater for a given 
yield. In natural (Del Grosso et al., 2008) and cultivated ecosystems 
(Álvaro-Fuentes et al., 2008), net primary productivity and C in-
puts increase with rainfall. Th is process occurred in our pampean 
agroecosystems as a consequence of greater yields of all three crops 
studied and of a lower harvest index in wheat and soybean.

Average belowground C inputs from roots and rhizodepo-
sition have been estimated as 0.3 Mg C for each 1 Mg of straw 
input, according to 45 experiments performed with corn (Amos 
and Walters, 2006). Analyzing the results from 23 experiments 
performed with corn, soybean, and small-grain cereals, the mean 
belowground C input was equivalent to 20% of the net primary 
productivity, with an average harvest index of 0.5 for corn and 
0.4 for soybean and small-grain cereals (Bolinder et al., 2007). 
Th is would lead to an input of 0.4 to 0.5 Mg C belowground for 
each 1 Mg of straw C input, depending on the crop. Our data fall 
between these estimations. An average of 0.47 Mg C per 1 Mg 
of straw input was estimated without diff erences among crops.

Soil C budget results from diff erent agroecosystems show a 
wide variation. Usually negative budgets have been estimated, with 
losses from −0.7 to −7 Mg C ha−1 yr−1 (Mu et al., 2008, Takata et al., 
2008). In some cases, soils C levels were near steady state, with only 
very small changes of −0.02 to −0.03 Mg C ha−1 yr−1 (Buyanovsky 
et al., 1987; Duiker and Lal, 2000), and even, in some agro-
ecosystems, budgets were positive, with C gains from 0.1 to 
4 Mg C ha−1 yr−1 (Matsumoto et al., 2008; Mu et al., 2008). We 
estimated, in the pampean soils, C budgets ranging from −4.56 to 
0.3 Mg C ha−1 yr−1 during the crop phase of the common rota-
tions used in the region. Our estimations indicate that budgets were 
negative in the past but C gains may be expected now in some soils 
as a consequence of the increase in crop C inputs and, as in other 
agroecosystems (Matsumoto et al., 2008), because of the biomass 

contributions of weeds and wild vegetation. Overestimation of C 
losses may be produced in our data because soil C contents used 
for C budget prediction in typical soils of the West and Rolling 
Pampas was performed using soil map data. Soil surveys were per-
formed in these areas between 1960 and 1970. Consequently, the 
actual C contents of the soils may be lower than those used for 
CO2–C emissions calculation and C fl uxes.

Diff erent approaches have been used for evaluating soil or eco-
system C budgets at the regional scale. Th e determination of the 
CO2–C fl ux from the soil excluding crop roots has been assessed 
for empirical modeling by regression methods from heterotrophic 
respiration, and C inputs estimated by satellite images, allowing soil 
C budget calculation (Takata et al., 2008). A regression tree meth-
odology was developed that predicted net ecosystem exchange, for 
which the input variables were soil use, time, and some spectral 
refl ectance indices (Xiao et al., 2008). Th is regression tree could 
explain 53% of the net ecosystem exchange from various ecosys-
tems such as croplands, woods, and savannas. Th e net ecosystem ex-
change was fi rst determined in fi eld experiments for regression tree 
model development, and satellite image information was used for 
extrapolating the results to the country scale in the United States. 
Simulation models have also been used for net ecosystem exchange 
estimation by simulating gross primary productivity and ecosystem 
respiration (Ito, 2008). Th ese modeled CO2–C emissions data 
were validated against experimental results and extrapolated to the 
semi-continental scale in East Asia. Our approach for C budget es-
timation by neural network modeling of CO2–C fl ux and crop C 
inputs to the soil was developed for estimation mainly at the eco-
system scale. Th e possibility of applying this methodology at the 
regional scale depends on further research on the validity of extrap-
olating the results using average data of soil characteristics, climate, 
and crop yields. Because the responses of CO2–C fl ux and crop 
C inputs to the soil to independent variables were not linear, and 
complex interactions existed between them, averaging the data of 
soil characteristics, climate, and crop yields for heterogeneous areas 
may introduce serious bias in C budget estimations. Information on 
biomass production of wild vegetation is also needed for validation 
of the Century estimations performed in this study.

Th e Pampas is an area with high net primary productiv-
ity and great potential for C sequestration and climate change 
mitigation (Zomer et al., 2008). Using the normalized diff erence 
vegetation index, it has been estimated recently that the region 
lost around 24 Tg of its net primary productivity during a 23-yr 
period due to soil degradation (Bai et al., 2008). Our results in-
dicated that these losses were not produced by residue C input 
reductions from the introduction of soybean in rotations. Th e 
substitution of pastures for crops, a general phenomenon in the 
region (Ministerio de Agricultura, Ganadería y Pesca, 2010), may 
be the cause of these losses. Using the Century model, increases 
in the soil organic C content have been estimated between 1980 
and 2000 in the soils of the United States (Negra et al., 2008). 
Th e network models developed here estimated a positive C bud-
get in some pampean soils under cropping, which would lead to 
C sequestration, but important losses are still occurring in other 
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soils. Th e magnitude of this process must be studied at the re-
gional scale. Th e possibility of prediction of the soil C budget in 
the future using the fi tted network depends on the magnitude 
of the changes in the harvest index and the shoot/root ratio by 
genetic improvement. As long as these variables do not change 
markedly during the next decades, the models developed here 
would be useful for soil C change forecasting.

CONCLUSIONS
Artifi cial neural networks were better tools than regression 

techniques for estimating the soil C balance in pampean agro-
ecosystems because of a more adjusted prediction of soil CO2–C 
emission and of crop C inputs to the soil. In these agroecosystems, 
the soil C balance may be positive or negative depending on the 
soil C content, environmental conditions, and the rotation used.

A historical analysis of the evolution of the soil C balance 
showed that the introduction of soybean in rotations has had no 
negative eff ects on soil C content because the low C input to the soil 
of this crop was counteracted by greater yields, biomass production, 
and C inputs from other components of the rotation, as estimated 
by the neural network approach. Th e methodology developed here 
may be applied in other regions for C budget prediction.
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