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ABSTRACT

Context. In recent years, several numerical studies have been done in the field of the stability limit. Although, many of them included
the analysis of asteroids or planets, is not possible to find in the literature any work on how the presence of a binary star could affect
other possible configurations in a three-body problem. In order to develop this subject we consider other structures like Oort Clouds in
wide binary systems. Regarding the existence of Oort Clouds in extrasolar systems there are recent works that do not reject its possible
existence.
Aims. The aim of this work is to obtain the stability limit for Oort Cloud objects considering different masses of the secondary star
and zero and non-zero inclinations of the particles. We improve our numerical treatment getting a mathematical fit that allows us to
find the limit and compare our results with other previous works in the field.
Methods. We use a symplectic integrator to integrate binary systems where the primary star is m1 = 1 M� and the secondary, m2,
takes 0.25 M� and 0.66 M� in two sets of simulations S 1 and S 2. The orbital parameters of the secondary star were varied in order to
study different scenarios. We also used two different integration times (one shorter than the other) and included the presence of 1000
to 10 000 massless particles in circular orbits to form the Oort Cloud. The particles were disposed in four different inclination planes
to investigate how the presence of the binary companion could affect the stability limit.
Results. Using the Maximum Eccentricity Method, emax, together with the critical semimajor axis acrit we found that the emax criteria
could reduce the integration times to find the limit. For those cases where the particles were in inclined orbits we found that there are
particle groups that survive the integration time with a high eccentricity. These particle groups are found for our two sets of simulations,
meaning that they are independent of the secondary mass. We also find for the co-planar case that the numerical value of the stability
limit for retrograde orbits is higher than those found for prograde orbits. These results are in agreement with several published studies.
Finally, the results obtained in this work allow us to build a numerical expression depending of the mass ratio, e2 and ip to find acrit,
which can be compared with other recent works in the field.

Key words. methods: numerical – Oort Cloud – binaries: general – planets and satellites: dynamical evolution and stability

1. Introduction

Since the discovery of the first exoplanetary system, 51 Peg b by
Mayor & Queloz (1995), it is evident that planets do not form
only around single stars, but can also be present in multiple-
stars systems in a variety of different configurations (Roell et al.
2012). One simple but important question related to the exopla-
netary systems is in regards to the locations in which planets can
be found if the star is binary. A detailed study of the stability of
the planetary orbits could reveal these locations.

The stability criteria have been studied by many authors. For
example, Szebehely (1967) and Henon (1970) used analytical
models to analyze coplanar systems, finding that the most sta-
ble orbits were retrograde. Later, Innanen (1979, 1980) improved
on this by considering arbitrary inclinations. Nevertheless, all
these works were analytical approaches to the stability limit and
it was necessary to wait until a decade later when several numer-
ical studies of the stability limit were carried out (Hamilton
& Burns 1991; Wiegert & Holman 1997; Holman & Wiegert
1999) and showed significant differences with the previous ana-
lytical results. While the analytical work of Innanen (1979,
1980) found that the radius is an increasing function of the
inclination, Hamilton & Burns (1991) showed numerically that

the radius starts to decreases at ∼60◦ and increases at higher
inclinations.

This discrepancy between analytical and numerical results
was recently studied by Grishin et al. (2017) in the framework of
the three-body problem. They used the Hill-stability criteria cou-
pled with a Lidov-Kozai mechanism (Lidov 1962; Kozai 1962)
for the inclined case. It is worth mentioning that in the work of
Grishin et al. (2017), a mass hierarchical system is used, where
the more distant object is also the more massive. They also found
a polynomial fit for their results, as many other authors have done
in the past.

On the other hand, considering the amount of planets found
in binary configurations and the recent concern about harboring
extrasolar Oort Clouds (Nordlander et al. 2017), the formation of
such structures in binary systems seems possible. Hence, it could
be interesting to extend the study of the stability limit to wide
binaries (those systems with separations >1000 au) harboring
Oort Clouds.

In the case of the solar system, the Oort Cloud was studied
by several authors (for a more detailed review of the Oort Cloud
formation we refer the reader to Dones et al. 2015). Some works
included galactic perturbations (Heisler & Tremaine 1986), flyby
of passing stars (Oort 1950), encounters with molecular clouds
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(e.g., Hut & Tremaine 1985; Jakubík & Neslušan 2009) and for-
mation in clusters (e.g., Fernández & Brunini 2000; Brasser et al.
2006; Kaib & Quinn 2008; Brasser & Morbidelli 2013), How-
ever, we do not find in the literature any work that explores the
possibility of finding this kind of particle system in binaries or
anyone that has studied its stability limit.

In this paper we study the stability limit for an Oort Cloud
in a wide binary system, using massless particles with orbits in
different planes and not only in the plane of the binary. We also
used a range of masses for the binary components and a range of
eccentricities for their orbits to decipher whether or not the pres-
ence of a binary companion could affect the cloud. We describe
the method used to make the simulations in Sect. 2. In Sect. 3 we
discuss the results and we summarize the conclusions in Sect. 4.

2. Methods

To carry out the study of the stability limit of test particles in
binary systems we used a symplectic integrator based on the
code proposed by Chambers et al. (2002). We simulate a spher-
ical Oort Cloud surrounding the primary star of the binary with
mass m1 = 1M�. To test different configurations, we change the
eccentricity of the orbit and the mass ratio µ = m2/(m1 + m2),
where m2 is the secondary mass. This choice was motivated
by the fact that the vast majority of exoplanets found in wide
binaries are orbiting the most massive star 1.

We carry out two sets of simulations (thereafter S 1 and S 2),
with four values of the binary eccentricity, 0.2, 0.4, 0.6 and
0.8. The inclinations are taken from the plane of the binary,
considered as the reference plane.

In our S 1 simulation we integrate 1000 binary periods, and
the value of the secondary mass was m2 = 0.25 M�, or µ = 0.2.
On the other hand, in the S 2 simulation we integrate 10 000
binary periods for m2 = 0.66 M�, or µ = 0.4. For each set of sim-
ulations we used two different values for the semimajor axis of
the binary, but we rescale the unit length in order to compare our
results with other authors. For that purpose we state our results
using α = ap/a2 so that α < 1.

The initial orbit for all the particles was circular and different
inclinations were considered, thus we checked the stability limit
for those cases where the particles are in the orbital plane of the
stars, that is ib = 0◦, and also for inclinations of 60◦, 120◦ and
180◦. The rest of the orbital elements of the binary and parti-
cles were chosen randomly. All the relevant orbital parameters
are listed in Table 1. Then, we follow the temporal evolution
of 10 000 particles (set S 1) and 1000 particles (set S 2) for each
combination of e2 and ip, which leads to a total of 160 000 and
16 000 particles for the first and second sets, respectively. It is
worth noting that the most internal particles complete more than
106 orbits around m1 in the total time of the integration.

Because we are using a symplectic integrator, we defined a
fixed integration step of one tenth of the period of the most inner
particle. In the case where a particle approaches the central star
(m1) at a distance of less than a half of the initial distance of the
inner particle, it is discarded.

To determine the stability limit, we follow the criteria of
Holman & Wiegert (1999), which are based on the evolution life
time of the test particles. However, we use the emax method to
reduce the integration time and improve the computing capacity.
The Maximum Eccentricity Method (MEM; Dvorak et al. 2004
looks for the maximum value of eccentricity (emax) attained by a

1 See http://exoplanets.org/

Table 1. Initial conditions for the two sets of simulations performed.

S 1 S 2

Binary
a2 = 1000 au a2 = 10000 au
e2 = 0.2 − 0.8 e2 = 0.2 − 0.8
m2 = 0.25 M� m2 = 0.66 M�

Particles
ap = 1 − 700 au ap = 5 − 5500 au
ip = 0◦ − 180◦ ip = 0◦ − 180◦

Notes. Subscript 2 refers to the binary and subscript p to the massless
particles. The remaining orbital elements of the system were chosen
randomly.

test particle during the numerical simulation and becomes a use-
ful tool to predict the instability of the orbits. In this method a
massless particle that reaches emax ≥ 1 is discarded because we
consider that it has escaped the gravitational potential of the pri-
mary star m1. Therefore, we consider the stability limit to be the
smallest value of α for which the particles achieve emax = 1.

We apply the MEM method to our two sets S 1 and S 2. In the
case of S 2 we use our simulation to numerically test the method,
although previous works (for example Ramos et al. 2015) have
shown that this method is effective in stability studies for the
restricted three-body problem (see Sect. 3.1). It is worth noting
that surviving test particles with emax < 1 could be found beyond
the stability limit (specially in the case S 1), but the MEM pre-
dicts that such particles become unstable, which is confirmed in
our numerical test, as we show in Sect. 3.1.

3. Results

We separate the results into two cases: “zero inclination” and
“non-zero inclination”. For both cases, we plot emax against α,
which depends on the initial semimajor axis of the particle. We
use α to compare our results with Holman & Wiegert (1999) who
define the value of acrit as the initial semimajor axis at which the
test particles at any longitude survive the full integration time.
The results from this and analyses from the following section are
listed in Table 2.

3.1. Zero-inclination results

Figure 1 shows our results for ip = 0◦. In each panel we plot our
two sets of simulations for the intervals of eccentricities con-
sidered. It is possible to see that the behavior of the particles
is similar for the two sets and in the case of µ = 0.4 the parti-
cles become unstable at smaller values of α. To obtain the value
of the stability limit in this case, we used the same criteria of
Holman & Wiegert (1999), implying that the behavior of the par-
ticles is independent of the binary eccentricity and the secondary
mass.

The values obtained for the zero-inclination case (listed in
Table 2) are very similar to those found by Holman & Wiegert
(1999). To see how similar they are we compare them in
Figs. 2 and 3. The error bars were calculated from the ∆a
of the simulated particles, which is the same criteria used by
Holman & Wiegert (1999). It can be seen that our results are sim-
ilar to those found previously by these authors, although the error
bars in our work are much smaller, even considering that we used
the same procedure. However, the main difference between our

A73, page 2 of 8

http://exoplanets.org/


M. F. Calandra et al.: Stability criteria for wide binary stars harboring Oort Clouds

Fig. 1. Comparison between the results found in the “Zero inclination case” for different values of e2. We compare our two sets of simulations S 1
and S 2 for µ = 0.2 (red plot) and µ = 0.4 (black plot), respectively. Top-left, top-right, bottom-left and bottom-right panels correspond to the values
of e2 = 0.2, 0.4, 0.6 and 0.8, respectively.

Fig. 2. Comparison between the results found in this work and
Holman & Wiegert (1999) for µ = 0.2. The red plot corresponds to this
work and the blue one was taken from Holman & Wiegert (1999) for
different eccentricities of the binary (e2).

work and that of Holman & Wiegert (1999) is the longer integra-
tion time used. Holman & Wiegert (1999) compared their results
with that of Rabl & Dvorak (1988) who used only 300 binary
periods, concluding that a number of 10 000 binary periods is a
short time to find the stability limit. Then, taking into account
the ages of binary systems they infer that it is important to con-
sider much longer integration times to see if other instabilities

Fig. 3. Comparison between the results found in this work and
Holman & Wiegert (1999) for µ = 0.4. The red plot corresponds to this
work and the blue one was taken from Holman & Wiegert (1999) for
different eccentricities of the binary (e2).

appear. In a recent paper, Ramos et al. (2015) proposed even
longer integration times such as 105 binary periods.

As mentioned above, the emax criteria is useful for finding the
value of the critical semimajor axis. We use the simulations of
our set S 2 to numerically test the MEM. The 1000 test particles
of the 16 simulations are evolved by the total integration time
(i.e., 10 000 binary periods), and we also save the maximum
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Fig. 4. Value of α against emax for three different binary periods for the
same mass and binary eccentricity. In this case ip = 0◦ and the param-
eters of the secondary are e2 = 0.6 and m2 = 0.66. It can be seen that
the difference between the critical semimajor axis when the particles
become unstable is not significantly different between 300 (red plot),
1000 (black plot) and 10 000 binary periods (blue plot).

Table 2. Numerical results for the two sets of simulations performed.

ip e2 µ = 0.2 µ = 0.4

0◦ 0.2 0.28 0.23
0◦ 0.4 0.22 0.18
0◦ 0.6 0.12 0.10
0◦ 0.8 0.05 0.04

60◦ 0.2 0.19 0.17
60◦ 0.4 0.08 0.08
60◦ 0.6 0.05 0.04
60◦ 0.8 0.02 0.01

120◦ 0.2 0.14 0.11
120◦ 0.4 0.08 0.05
120◦ 0.6 0.05 0.03
120◦ 0.8 0.02 0.01
180◦ 0.2 0.48 0.29
180◦ 0.4 0.34 0.27
180◦ 0.6 0.20 0.16
180◦ 0.8 0.08 0.07

Notes. Here we show the values of the critical semimajor axis found in
this work for the different values of ip, e2 and µ considered.

value of the eccentricity for each particle in each output of our
simulation. To show how the emax method could help to reduce
the integration times, in Fig. 4 we plot the results of one planar
case for the set S 2. We show the output for three different binary
periods for e2 = 0.6. It is possible to see that in 300 binary orbits
those particles with α greater than that of the first particle to
achieve an eccentricity value of 1 become unstable at the end of
the simulation. The same happens for 1000 binary orbits, but the
first particle with emax = 1 is next to the surviving stability limit
defined for 10 000 binary orbits. As we will show in the next sec-
tion we found the same result for the retrograde and non-planar
cases. Therefore, this led us to deduce that it is possible to work
with just 1000 binary orbits and put the limit in the minimum
value of α for which the particles reach emax = 1. We apply this
criteria for our set S 1.

In addition to Fig. 4 we plot in Fig. 5 the percentage of par-
ticles that reach a stable or unstable orbit for the same set used

Fig. 5. Stability percentage for ip = 0◦, e2 = 0.6 and m2 = 0.66 from 0
to 1000 binary periods. The red and black histograms correspond to the
stable and unstable particles, respectively.

in Fig. 4. We included only the first 1000 binary periods because
the variation in the percentage from 1000 to 10 000 periods is
very small (∼ 1%) and does not have a strong influence on the
stability limit. In this case, the most important change in the
number of the surviving particles is produced between 100 and
300 periods where it decreases by 1.6%, while for the period
between 300 and 1000 binary periods the variation is even lower
(1.4%).

Applying the emax criteria to our set S 1 we found similar
results to those found by Holman & Wiegert (1999), as we show
in Fig. 2. Then, we can conclude that using the emax criteria we
can significantly reduce the integration time needed to determine
the stability limits of the system.

3.2. Non-zero inclination results

In Figs. 6 to 8, emax is plotted against α for the other inclina-
tion planes (ip = 60◦, ip = 120◦ and ip = 180◦), in which the
two cases S 1 and S 2 are shown in red and black, respectively.
For retrograde orbits (Fig. 8) we found a result similar to that
of ip = 0◦ (Fig. 1), where the maximum of eccentricity increases
slowly with the increase of α and we can see the presence of
some mean motion resonances of high order.

In Figs. 6 and 7 it is possible to see a region of high eccen-
tricity where all the massless particles have emax ≥ 0.75. The
dynamical behavior that produces this increase in eccentricity
is the Lidov-Kozai mechanism (LK) studied by Lidov (1962)
and Kozai (1962) in the framework of the restricted three-body
problem (RTBP). The LK mechanism has been described in
the literature in great detail and the reader is referred to Naoz
(2016) for a review of the mechanism, recent developments and
its applications.

In the Lidov-Kozai mechanism, there is a time scale associ-
ated to the oscillations of the eccentricity and inclination, which
has been explored by Grishin et al. (2017) for the case of a gen-
eral three-body problem. The approximation of the LK cycle for
the case of a restricted three-body problem is:

TLK ≈

√
1 − µ
µ

1 − e2
2

α

3/2 P2, (1)

with P2 being the binary period.

A73, page 4 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731502&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731502&pdf_id=0


M. F. Calandra et al.: Stability criteria for wide binary stars harboring Oort Clouds

Fig. 6. Comparison between the results found for ip = 60◦. We compare our two sets of simulations S 1 and S 2 for µ = 0.2 (red plot) and µ = 0.4
(black plot), respectively. Each panel corresponds to a different value of e2. Top-left, top-right, bottom-left and bottom-right panels correspond to
the values of e2 = 0.2, 0.4, 0.6 and 0.8, respectively.

As we set TKL as a function of the binary period P2, we can
compare this expression with the criteria of Holman & Wiegert
(1999). It is possible to see that the LK time scale is inversely
proportional to α and consequently to the semimajor axis of the
massless particle, therefore we can estimate for our numerical
results the limit for the initial conditions that complete a LK
cycle. Then, for the S 1 simulation which has a total integra-
tion time of 1000P2, the limit in α for the complete LK cycle
is between 0.025 and 0.009, being e2 = 0.2 and e2 = 0.8, respec-
tively. For the S 2 simulation (in this case the total integration
time is 10 000P2) the limit of α is 0.0032 considering e2 = 0.2,
and 0.0012 for e2 = 0.8.

For massless particles with initial circular orbits, the max-
imum eccentricity attained during a LK cycle could be found
from the conservation of the component z of the angular momen-
tum; considering a minimum inclination of 39.2◦ (Grishin et al.
2017) we find:

emax =

√
1 −

5
3

cos2 i0, (2)

where i0 is the initial value of inclination. This value is inde-
pendent of the masses of the binary system and the orbit of m2,
thus for massless particles out of the plane (i.e., ip = 60◦ and

120◦) we obtain an emax ∼ 0.76. It is worth mentioning that, as
Grishin et al. (2017) shows, the minimum inclination depends on
the semimajor axis (see Eq. (14) of Grishin et al. (2017)). There-
fore, in our results we obtain a value for maximum eccentricity
that is not constant, but it also depends on the semimajor axis.

From Figs. 6 and 7 it is possible to confirm the theoreti-
cal predictions of the LK mechanism in our numerical results.
There is a group of massless particles with small values of α and
emax, which correspond to the case of particles that do not com-
plete the LK cycle during the simulation. Moreover, in all cases,
the maximum eccentricity of the stable particles depends on the
semimajor axis. An increase of emax is seen with the increase of
a , confirming the results of Grishin et al. (2017) that we mention
above.

As a comparison with Fig. 5 for the ip = 0◦ case, the percent-
age of particles that reach a stable or unstable orbit with ip = 60◦
in the first 1000 binary periods is shown in Fig. 9, where it is
also possible to observe a 3.2% change in the number of the sur-
vivor particles produced between 100 and 300 periods, while for
the period between 300 and 1000 binary periods the variation is
2.6%. Although the comparison between inclinations shows that
more particles became unstable at the beginning of the integra-
tion for ip = 0◦, the general behavior for both groups is the same:
in the first 300 binary periods there are more particles becoming
unstable than in the rest of the integration.
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Fig. 7. Comparison between the results found for ip = 120◦. We compare our two sets of simulations S 1 and S 2 for µ = 0.2 (red plot) and µ = 0.4
(black plot), respectively. Each panel corresponds to a different value of e2. Top-left, top-right, bottom-left and bottom-right panels correspond to
the values of e2 = 0.2, 0.4, 0.6 and 0.8, respectively.

3.3. Polynomial fit

Using the stability limits found for the different cases considered,
we made a least-squares fit to obtain an expression that gives
the value of acrit as a function of e2, µ and θ = cos ip. We used
a polynomial of third degree in these variables and the best fit
found is:

acrit = [c0 + c1e2 + c2µ + c3θ + c4e2
2 + c5µ

2 + c6θ
2

+c7e2µ + c8e2θ + c9µθ + c10e3
2 + c11µ

3 + c12θ
3

+c13e2
2µ + c14e2

2θ + c15µ
2e2 + c16µ

2θ

+c17θ
2e2 + c18θ

2µ + c19e2µθ]a2 , (3)

where each one of the coefficients ci is listed in Table 3.
The polynomial fit found is indicated with a black solid line

in Figs. 2 and 3 for comparison . It is possible to see that the
black line fits the points very accurately, not only for our results,
but also for those obtained by Holman & Wiegert (1999). As an
example of a case with an inclination different from zero, we plot
the best fit for ip = 180◦ in Fig. 10; however, we find a very good
agreement for all the other values of ip considered.

One important result arising from the comparison of the sta-
bility limit found for ip = 60◦ and ip = 120◦ is that the value
in the last case is slightly lower than that of the first one, which
does not contradict the results found by other authors since the
most stable orbits are those that are retrograde (Szebehely 1967;

Henon 1970; Gayon & Bois 2008; Morais & Giuppone 2012).
To explain this behavior we plot in Fig. 11 the intersection of
the polynomial fit and the plane i vs. acrit for e2 = 0.4, where
the results for µ = 0.2 and 0.4 are indicated with blue stars and
black boxes, respectively. In this Figure the value of the stability
limit can be seen to change as a function of the inclination: the
critical semimajor axis reduces its value to a minimum and then
it increases to reach a maximum value. Comparing the cases of
ip = 0◦ and ip = 180◦, the higher value for acrit is obtained for the
retrograde orbit, but this is not necessarily fulfilled when other
pairs of prograde-retrograde orbits are compared (for example
ip = 60◦ and ip = 120◦). It is also important to note that this
behavior of the inclination is also seen for other values of e2.

Figure 11 shows us that the lowest critical semimajor axis is
found when the inclination is close to ip = 90◦ and its maximum
value is close to ip = 180◦. This implies that for those particles
with orbits in planes perpendicular to the reference plane, the
critical semimajor axis is lower than for those particles orbiting
near the reference plane. This leads us to propose that the binary
companion in this kind of system could affect the shape of the
particle cloud and that its shape could more closely resemble an
ellipsoidal figure than a sphere.

Moreover, our results are similar to those of Grishin et al.
(2017), who analyzed a generalized Hill stability criteria for hier-
archical three-body systems. If we compare our Fig. 11 with the
circular grid of Grishin (2017; see their Fig. 6), it is possible to
see a similar dependence of the stability limit on the inclination.
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Fig. 8. Comparison between the results found for ip = 180◦. We compare our two sets of simulations S 1 and S 2 for µ = 0.2 (red plot) and µ = 0.4
(black plot), respectively. Each panel corresponds to a different value of e2. Top-left, top-right, bottom-left and bottom-right panels correspond to
the values of e2 = 0.2, 0.4, 0.6 and 0.8, respectively.

Table 3. Coefficients of our numerical fit.

Coefficient Value Error

c0 0.1895 ± 0.0006
c1 −0.4897 ± 0.0036
c2 −0.1996 ± 0.0018
c3 −0.0548 ± 0.0003
c4 0.3326 ± 0.0070
c5 −0.1349 ± 0.0011
c6 0.4325 ± 0.0002
c7 0.5785 ± 0.0084
c8 0.1540 ± 0.0009
c9 0.1743 ± 0.0011
c10 −0.0381 ± 0.0044
c11 −0.0649 ± 0.0005
c12 −0.0864 ± 0.0001
c13 −0.3924 ± 0.0112
c14 −0.0041 ± 0.0007
c15 0.3863 ± 0.0052
c16 0.1089 ± 0.0066
c17 0.3915 ± 0.0002
c18 −0.2430 ± 0.0012
c19 −0.2722 ± 0.0026

In their Fig. 6 there is a minimum near to i ∼ 90◦ and a maximum
at i = 180◦, which is also observed in our Fig. 11, but there is also

a difference near i = 60◦, where the stability limit is greater than
i = 0◦. We think that this difference is probably produced by the
inclination sampling, because we only considered four values for
ip, but in general terms the dependence with inclination is well
represented by our fit.

Despite the similarity between our work and Grishin et al.
(2017), an important difference between them is worth noting:
we use a mass ratio m1/m2 > 0.1 while Grishin et al. (2017)
used a m1/m2 ∼ 10−6, which means that there are several orders
of magnitude between these two values, putting each one of
these works in different regimes (Holman & Wiegert 1999). Our
results allow us to make a linear approximation of the depen-
dence of the limit on the mass ratio, while Grishin et al. (2017)
mostly focused on the inclination and not on the mass ratio.

4. Conclusions

In this paper we have developed a stability criteria for an Oort
Cloud around wide binary systems considering the cases of
ip ≥ 0◦.

We used the same approximation of Holman & Wiegert
(1999) to find the stability limit, except that we introduce the
use of emax, which is a chaos indicator that tell us the max-
imum value of e attained by a particle through a numerical
simulation. For the case ip = 0◦ the stability limit obtained with
our method is quite similar to Holman & Wiegert (1999) and the
main difference with our result is the integration time used to
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Fig. 9. Stability percentage for ip = 60◦, e2 = 0.6 and m2 = 0.66 from
0 to 1000 binary periods. The red and black histograms correspond to
the stable and unstable particles, respectively.

Fig. 10. Polynomial fit for ip = 180◦. Black plot corresponds to the fit
for µ = 0.2 and the blue one to the fit for µ = 0.4. The red stars and
the black squares are the results of our work for µ = 0.2 and µ = 0.4,
respectively.

determine the stability limit. We concluded that the emax method
could help us to reduce the integration times used.

From the non-zero inclination cases we find that the particles
inclined by 60◦ and 120◦ show a region of high emax for values of
α near to acrit. This increase of the eccentricity values is present
in all our integrations for ip = 60◦ and ip = 120◦ and different m2
masses, making our results independent of the parameters of the
secondary star. From previous studies (i.e., Grishin et al. 2017)
we determine that the Lidov-Kozai resonance is responsible for
the behavior in this region, and those particles at values of α that
did not reach the theoretical value of emax are the consequence
of not having enough time to evolve and be scattered.

We also make a least squares fit for µ, e2 and ip, finding that
it fits very well to our results and to those of Holman & Wiegert
(1999) for ip = 0◦. Further, we test the fit for ip > 0◦ , also finding
a very good agreement.

Finally, using the variation of acrit for the different values of
ip , it is possible to see that the critical semimajor axis reduces
its value to a minimum for ip = 90◦ and then it increases to a
maximum close to ip = 180◦. This result could imply that the

Fig. 11. Variation of the critical semimajor axis with the ip for e2 = 0.4.
Plotted are the results found in this work for ip = 0◦, 60◦, 120◦ and 180◦
of our two sets of simulations. The black and red lines correspond to the
polynomial fit.

presence of a binary companion could affect the shape of an
Oort Cloud around the main star and such structures could have
shapes more closely resembling an ellipsoidal than a sphere.
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