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Abstract: A biclique of a graph G is a maximal induced complete bipartite
subgraph of G. The biclique graph of G, denoted by KB(G), is the intersec-
tion graph of the bicliques of G. We say that a graph G diverges (or con-
verges or is periodic) under an operator F whenever limk→∞ |V (F k (G))| =
∞ (limk→∞ F k (G) = F m(G) for some m, or F k (G) = F k+s(G) for some k
and s ≥ 2, respectively). Given a graph G, the iterated biclique graph of G,
denoted by KBk (G), is the graph obtained by applying the biclique operator
k successive times to G. In this article, we study the iterated biclique graph
of G. In particular, we classify the different behaviors of KBk (G) when the
number of iterations k grows to infinity. That is, we prove that a graph ei-
ther diverges or converges under the biclique operator. We give a forbidden
structure characterization of convergent graphs, which yield a polynomial
time algorithm to decide if a given graph diverges or converges. This is
in sharp contrast with the situsation for the better known clique operator,
where it is not even known if the corresponding problem is decidable.
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1. INTRODUCTION

Intersection graphs of certain special subgraphs of a general graph have been studied
extensively. Let us mention, for example, the case of line graphs (which are the intersec-
tion graphs of the edges of a graph), interval graphs (defined as the intersection graphs
of intervals of the real line), and, in particular, clique graphs (defined below) [3, 4, 8, 11,
12, 22, 23].

The clique graph of G, denoted by K(G), is the intersection graph of the family of all
maximal cliques of G.

Clique graphs were introduced by Hamelink in [15] and characterized by Roberts
and Spencer in [26]. It was proved in [1] that the clique graph recognition problem is
NP-complete.

As the clique graph construct can be thought of as an operator between graphs, the
iterated clique graph Kk(G) is the graph obtained by applying the clique operator k
successive times. It was introduced by Hedetniemi and Slater in [16]. Much work has
been done on the scope of the clique operator, looking at the different possible behaviors.
The associated problem is deciding whether an input graph converges, diverges, or is
periodic under the clique operator, when k grows to infinity. In general, it is not clear
that the problem is decidable. However, partial characterizations have been given for
convergent, divergent, and periodic graphs, restricted to some classes of graphs. Some of
these lead to polynomial time recognition algorithms. For the clique-Helly graph class,
graphs which converge to the trivial graph have been characterized in [2]. Cographs, P4-
tidy graphs, and circular-arc graphs are examples of classes where the different behaviors
are characterized [5, 17]. Divergent graphs were also considered. For example, in [24],
families of divergent graphs are shown. Periodic graphs were studied in [8, 21]. In
particular, it is proved that for every integer i, there exist graphs with period i and
convergent graphs which converge in i steps. More results about iterated clique graph
can be found in [9, 10, 18, 19, 20, 25].

The biclique graph of a graph G, denoted by KB(G), is the intersection graph of the
family of all maximal bicliques of G. It was defined and characterized in [13]. However,
no polynomial time algorithm is known for recognizing biclique graphs. As for clique
graphs, the biclique graph construct can be viewed as an operator KB between graphs.

In this article, we introduce the iterated biclique graph KBk(G), i.e., the graph obtained
by applying iteratively the biclique operator KB k times to G. We are interested in the
possible behavior of a graph under the biclique operator. Indeed, we prove that a graph
G is either divergent or convergent, but it is never periodic (with period bigger than 1). In
addition, we give general characterizations for convergent and divergent graphs. These
results are based on the fact that if a graph G contains a clique of size at least 5, then
KB(G) contains a clique of larger size. Therefore, G diverges. Similarly, if G contains
the so-called gem or rocket as an induced subgraph, then KB(G) contains a clique of size
5, and again, G diverges. Otherwise, it is shown that, after removing false twin vertices
of KB(G), the resulting graph is a clique on at most four vertices, in which case, G
converges. Moreover, we prove that if a graph G converges, it converges to the graphs K1
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or K3, and it does so in at most three steps. These results are very different from the ones
known for the clique operator. Our characterizations lead to an O(n4) time algorithm for
deciding if a given graph converges or diverges under the biclique operator.

This work is organized as follows. In Section 2, we give the required definitions.
In Section 3, we present known and new results about biclique graphs. Also, we give
characterizations for convergent and divergent graphs under the biclique operator. Finally,
we give a polynomial time algorithm for deciding the behavior of a general graph under
the biclique operator. The study of the convergence and divergence of the trees is presented
in Section 4. Section 5 contains some concluding remarks.

2. PRELIMINARIES

We will assume that all graphs discussed are connected (clearly, this is no lose of
generality for the problems at hand). Let G be a graph with vertex set V (G) and edge set
E(G), and let n = |V (G)| and m = |E(G)|. A clique of G is a maximal complete induced
subgraph, while a biclique is a maximal complete bipartite induced subgraph of G with
no empty bipartition. The open neighborhood of a vertex v ∈ V (G), denoted N(v), is the
set of vertices adjacent to v. A vertex v ∈ V (G) is universal if it is adjacent to all of the
other vertices in V (G). A path with k vertices is denoted by Pk and a cycle with k vertices
is denoted by Ck.

A diamond is a complete graph with four vertices minus an edge. A gem is an induced
path with four vertices plus an universal vertex. A rocket is a complete graph with four
vertices and a vertex adjacent to two of them. The graph O3 is the complement of the
union of three copies of K2.

Given a family of sets A, the intersection graph of A has as vertices the set of A and
the edges correspond to the pairs of sets from A with a nonempty intersection. We remark
that any graph is an intersection graph [27].

Let F be any graph operator. Given a graph G, the iterated graph under the operator Fk

is defined iteratively as follows: F0(G) = G and for k ≥ 1, Fk(G) = Fk−1(F(G)). We
say that a graph G diverges under the operator F whenever limk→∞ |V (Fk(G))| = ∞. We
say that a graph G converges under the operator F whenever limk→∞ Fk(G) = Fm(G)

for some m. We say that a graph G is periodic under the operator F whenever Fk(G) =
Fk+s(G) for some k, s, s ≥ 2. The associated problem is to decide whether G converges,
diverges, or is periodic under F .

In the article, we will use the terms convergent or divergent meaning convergent or
divergent under the biclique operator KB.

By convention, we arbitrarily say that the trivial graph K1 is convergent under the
biclique operator (observe that this remark is needed, since the graph K1 does not contain
bicliques).

FIGURE 1. The graphs diamond , gem, rocket , K5, and O3.
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3. CONVERGENCE AND DIVERGENCE OF THE ITERATED BICLIQUE

GRAPH

In this section, we classify the behavior of a graph under the operator KB. We remark
that if G is connected, then KB(G) is connected too. Our main result is the following
theorem.

Theorem 3.1. If KB(G) contains either K5 or the gem or the rocket as an induced
subgraph, then G is divergent. Otherwise, G converges to K1 or K3 in at most three steps.

For the proof of Theorem 3.1, we shall use the following results.

Observation 3.2. If G is an induced subgraph of H, then KB(G) is a subgraph (not
necessarily induced) of KB(H).

Proof. Let b1, b2, ..., bk be the bicliques of G. Each biclique bi, either is a biclique of
H, or it is contained in a biclique Bi of H. Remark that if Bi contains bi, it cannot contain
b j, j �= i. Then, if bi ∩ b j �= ∅ in G, Bi ∩ Bj �= ∅ in H ∀i, j = 1, ..., k. Then KB(G) is a
subgraph of KB(H). �

Next, we examine the bicliques of KB(Kn), for n ≥ 4. (Note that since the bicliques
of Kn are precisely its single edges, KB(Kn) is just the line graph of Kn.)

Lemma 3.3. Let n ≥ 4. All bicliques of KB(Kn) are isomorphic to C4 and each vertex
of KB(G) belongs to exactly (n − 2)(n − 3) different bicliques.

Proof. It is clear that Kn contains n(n−1)

2 bicliques. Consider an edge e ∈ E(Kn),
e = vw. The edge e is not adjacent in Kn to any edge that belongs to a complete subgraph
of n − 2 vertices. Let e′ = v′w′ be an edge of G not adjacent to e. Consider edges e1 = vv′,
e2 = vw′, e3 = v′w, and e4 = ww′ as vertices in KB(G). Then, B1 = {e, e′} ∪ {e1, e4} and
B2 = {e, e′} ∪ {e2, e3} induce complete bipartite subgraphs in KB(Kn) isomorphic to C4.
Since three not adjacent edges cannot be adjacent to a common edge, B1 and B2 are
indeed bicliques in KB(Kn). Next, we show that each vertex of KB(Kn) belongs to
(n − 2)(n − 3) bicliques. As before, each edge e of Kn is not adjacent to (n−2)(n−3)

2 other
edges of Kn, therefore each one of these along with e induce two different bicliques in
KB(Kn). Then, each vertex of KB(Kn) belongs to (n − 2)(n − 3) different bicliques of
KB(Kn). �

As a consequence, since KB(G) has n(n−1)

2 vertices and each vertex belongs to (n −
2)(n − 3) bicliques isomorphic to C4, we conclude that KB(G) has n(n−1)(n−2)(n−3)

8
bicliques.

Proposition 3.4. Let G be a graph that contains Kn as a subgraph, for some n ≥ 4.
Then, K2n−4 ⊆ KB(G) or K(n−2)(n−3) ⊆ KB2(G).

Proof. If G = Kn, then by Lemma 3.3, each vertex of KB(G) belongs to (n −
2)(n − 3) different bicliques and then K(n−2)(n−3) ⊆ KB2(G). Otherwise, G �= Kn and
let v be a vertex in G − Kn adjacent to some kv vertices of Kn. Consider first the case
1 < kv < n − 1. Let A = {v1, v2, ..., vkv} be the vertices of Kn adjacent to v and let B =
{vkv+1, vkv+2, ..., vn} be the vertices of Kn not adjacent to v. Therefore, there are kv(n − kv)

edges with endpoints in A and B. Let ei j = viv j, 1 ≤ i ≤ kv, kv + 1 ≤ j ≤ n, be those
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edges. Since v is adjacent to each vertex of A, then for each i and j, v and ei j are
contained in a biclique Bi j of G. Clearly, Bi j �= Bi′ j′ if i �= i′ or j �= j′. Finally, there are
kv(n − kv) different bicliques in G that contain v. It follows that Kkv(n−kv) ⊆ KB(G). Now,
let F : [2, n − 2] ⊆ N → N be a function defined by F(kv) = kv(n − kv). It is easy to see
that F reaches its minima in the extremes of the interval, i.e., for kv = 2 and kv = n − 2.
Then, K2(n−2) = K2n−4 ⊆ Kkv(n−kv) ⊆ KB(G).

Before considering the remaining cases, we make the following observation:

Observation 3.5. Let G be a graph that contains Kn as a subgraph for some n ≥ 4,
and let e and e′ be two edges of Kn that are not adjacent. Let B and B′ be two different
bicliques of G such that e belongs to B and e′ belongs to B′. If B ∩ B′ �= ∅, then there
exists a vertex v ∈ B ∩ B′ such that v is adjacent to exactly one endpoint of e and one
endpoint of e′ see Figure 2.

Now, suppose for every v ∈ G − Kn, either kv = 1 or kv = n − 1 or kv = n. We prove
that in any case, K(n−2)(n−3) ⊆ KB2(G). Consider B1, B2, ..., Bs the bicliques of G such
that each Bi contains an edge of the Kn and no two of them contain the same edge
of Kn. Clearly, s = n(n−1)

2 . Let H ⊆ KB(G) be the subgraph induced by the vertices of
KB(G) corresponding to the bicliques B1, B2, ..., Bs. We show that H is isomorphic to
KB(Kn) and then by Observation 3.2 and Lemma 3.3, K(n−2)(n−3) ⊆ KB(H) ⊆ KB2(G).
Suppose that it is not true, then there exist two adjacent vertices of H that are not adjacent
in KB(Kn). By Observation , if Bi and Bj are different bicliques in G that contain the

FIGURE 2. The P3 in bold edges is contained in an induced diamond and in an
induced gem, respectively.
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nonadjacent edges ei and e j of Kn, respectively, and Bi ∩ Bj �= ∅, then there exists a vertex
v in Bi ∩ Bj, v /∈ Kn, v adjacent to exactly one endpoint of each edge and therefore not
adjacent to the others. This contradicts cases kv = 1, kv = n − 1, and kv = n. Then H is
isomorphic to KB(Kn) and therefore K(n−2)(n−3) ⊆ KB(H) ⊆ KB2(G).

Two vertices u, v are false twins if N(u) = N(v). Consider all maximal sets of false
twin vertices Z1, ...Zk and let {z1, z2, ..., zk} be the set of respresentative vertices such that
zi ∈ Zi. We call Tw(G) to the graph obtained by the deletion of all vertices of Zi \ {zi}, for
i = 1...k. Observe that Tw(G) has no false twin vertices.

Proposition 3.6. For any graph G, we have KB(G) = KB(Tw(G)).

Proof. Let v, w be false twin vertices of G. It will suffice to prove that KB(G) =
KB(G − {v}). It is clear that every biclique of G either contains both v and w, or does
not contain either of them. Let B1, B2, ..., Bk be bicliques of G that do not contain v
and w. Clearly, they are bicliques of G − {v}. Consider B a biclique of G containing
vertices v and w. Consider ˜B = B − {v}. If ˜B is not a biclique, there is a vertex adjacent
to w and not to v or there is a vertex adjacent to v and not to w, contradicting the
hypothesis. Then ˜B is a biclique of G − {v}, and any two bicliques of G containing v are
bicliques in G − {v} containing w and they are adjacent vertices of KB(G − {v}). Then,
KB(G) = KB(G − {v}) and clearly KB(G) = KB(Tw(G)) since we can repeat the same
argument for all false twin vertices in G. �

It is shown in [13, 14] that a graph G such that G = KB(H) for some H has the
following property. Every induced P3 of G is contained in an induced diamond or in an
induced gem of G (Fig. 3). We now show that this property holds when we consider
Tw(G).

Lemma 3.7. Let G = Tw(KB(H)). Then every induced P3 of G is contained in an
induced diamond or an induced gem of G.

Proof. Let Z1, Z2, ..., Zk be the maximal sets of false twin vertices in KB(H). Let
zi, z j, zl be the representative vertices of an induced P3 in G. Then, there exists three
vertices v, w, x in KB(H) such that v ∈ Zi, w ∈ Zj, and x ∈ Zl . The vertices v, w, x induce
a P3 in KB(H), and therefore by [13, 14] it is contained in an induced diamond or gem
of KB(H). Suppose that this P3 is contained in a diamond. Then there exists a vertex u
in KB(H) adjacent to v, w, and x. Let Zm be the set of false twin vertices that contains u,
where m �= i, j, l. Then, if zm is the corresponding vertex of the set Zm in G, zi, z j, zl, zm

induce a diamond in G that contains the P3. The case in which the P3 is contained in a
gem is similar, considering two vertices of KB(H) instead of one.

FIGURE 3. The edges e and e′ are not adjacent and the bicliques B and B′ that
contain them intersect in vertex v .
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�
Now, we are able to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose Kn ⊆ KB(G), n ≥ 5. According to Proposition 3.4,
we know that K2n−4 ⊆ KB(KB(G)) or K(n−2)(n−3) ⊆ KB2(KB(G)). Now, define f (x) =
2x − 4 and g(x) = (x − 2)(x − 3). It is clear that x < f (x) and x < g(x) for x ≥ 5.
Therefore, the graph KB(G) grows under the biclique operator, in the worst case, every
two iterations. Consequently, lims→∞ |V (KBs(G))| = ∞, i.e., KB(G) is divergent. Now,
suppose the gem or the rocket are induced subgraphs of KB(G). Since KB(gem) = K5

and K5 ⊆ KB(rocket), that is, K5 ⊆ KB(KB(G)) and KB(G) diverges and consequently,
G diverges.

Otherwise, KB(G) does not contain K5, the gem or the rocket as induced subgraphs
and clearly, Tw(KB(G)) does not contain them either. We prove that Tw(KB(G)) is
isomorphic to K1, K2, K3, or K4. Suppose that it is false, i.e., Tw(KB(G)) �= Kn, for any
n = 1, ..., 4. Then, Tw(KB(G)) contains an induced P3 that is contained in an induced
diamond, by Lemma 3.7. Let u, v, w, x be the vertices that induce such a diamond in
Tw(KB(G)), where u, w are not adjacent vertices (Fig. 4).

Since Tw(KB(G)) has no false twin vertices, there exists a vertex y ∈ Tw(KB(G))

adjacent to u, not adjacent to w (Fig. 4A). If y is adjacent to v or x, then u, v, w, x, y in-
duce a gem or a rocket, a contradiction (Fig. 4B). Otherwise, v, u, y induce a P3 which, by
Lemma 3.7, is included in an induced diamond. Then, there is a vertex z adjacent to y, u, v
(Fig. 4C). If z is adjacent to x then u, v, w, x, z induce a rocket, otherwise, they induce a
gem, a contradiction (Fig. 4C). We conclude that Tw(KB(G)) has no P3 as induced sub-
graph, and then, Tw(KB(G)) = Kn, for n = 1, ..., 4. Recall that KB(G)=KB(Tw(G)).
Since KB(K3) = K3, KB(K4) = O3, and KB(O3) = K3, the result follows. �

As a direct corollary of Theorem 3.1, we obtain the following result, which will be the
bases of our algorithm.

Corollary 3.8. A graph G is convergent if and only if Tw(KB(G)) has at most four
vertices.

Note that if some vertex lies in five bicliques, then KB(G) contains a K5 and then G
diverges. Therefore, the Corollary 3.8 gives a polynomial time algorithm to test conver-
gence of G: if some vertex lies in five bicliques, we answer that G is divergent. Else, the

FIGURE 4. Diamond u, v, w, x and the different cases.
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computation of KB(G) and Tw(KB(G)) is polynomial. If Tw(KB(G)) has at most four
vertices, answer that G is convergent, otherwise, we answer that G is divergent.

Constructing KB(G) takes O(n4) time, since for the case that is done, the input graph G
has at most 2n bicliques and generating each biclique is O(n3) [6, 7]. To build Tw(KB(G))

can be done in O(n2) time. We conclude that the algorithm runs in O(n4) time.

4. DIVERGENT AND CONVERGENT TREES

In this section, we analyze convergence and divergence for a special class of graphs,
namely, the trees.

Lemma 4.1. Let T be a tree with n ≥ 3 vertices and k leaves. Then T has n − k bicliques.

Proof. Since bicliques in trees are all K1,r (one vertex adjacent to r ones), with r ≥ 1,
each nonleaf vertex represents a unique biclique and the theorem follows. �

Lemma 4.2. Let T and T ′ be nontrivial trees. If T is an induced subgraph of T ′, then
KB(T ) is an induced subgraph of KB(T ′).

Proof. By Observation 3.2, it is clear that KB(T ) is a subgraph of KB(T ′). We will
prove that, in fact, it is an induced subgraph. For a contradiction, suppose that b1, b2

are not adjacent in KB(T ) but they are in KB(T ′). Then, if B1, B2 are the associated
bicliques of b1, b2 in T ′, there exists some vertex v ∈ B1 ∩ B2 such that v ∈ T ′ and v /∈ T .
Now, since bicliques in trees are all K1,r, with r ≥ 1, let t1, t2 be the vertices of B1, B2,
respectively, that are adjacent to v. Observe that t1, t2 ∈ T . Now, since T is connected,
there exists a path P between t1, t2 in T . Clearly, P is also a path in T ′, however, there is
another path P′ = t1, v, t2 between the vertices t1, t2 in T ′ contradicting the fact that T ′ is
a tree. Finally, KB(T ) is an induced subgraph of KB(T ′). �

Theorem 4.3. Let T be a tree. Then T diverges if and only if T has at least five bicliques
.

Proof. Observe that if T has at least five bicliques then it has at least five internal
vertices and therefore it contains one of the graphs in Figure 5A as induced subgraphs.

In any case, KB(T ) contains the gem, the rocket, or the K5 as induced subgraphs
(Lemma 4.2), and hence, by Theorem 3.1, T diverges. The converse is straightforward,
since if T diverges, then, by Theorem 3.1, KB(T ) contains a gem, a rocket, or a K5 as
induced subgraphs, i.e., T has at least five bicliques. �

We remark that for trees, the running time of the algorithm for deciding if a tree either
converges or diverges is O(n). This follows from Lemma 4.1.

5. CONCLUSIONS

In this article, we have studied the behavior of a graph under the biclique operator, in
particular, we have studied the limit limk→∞ |V (KBk(G))|. We proved that the limit is 1,
3, or infinity. We presented characterizations of convergent and divergent graphs, and gave
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FIGURE 5. (A) Minimal nonisomorphic trees with five bicliques. (B) Their
biclique graphs.

a polynomial time algorithm for their recognition. It is worth contrasting these results
with those for the clique operator. For the clique operator, there is no characterization
for divergent, periodic, or convergent graphs, and the computational complexity of the
associated decision problem is open.
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