On the Iterated Biclique Operator

Marina Groshaus and Leandro P. Montero

DEPARTAMENTO DE COMPUTACIóN UNIVERSIDAD DE BUENOS AIRES BUENOS AIRES, ARGENTINA
E-mail: Imontero@dc.uba.ar

Received February 15, 2010; Revised March 29, 2012
Published online in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt. 21666

Abstract

A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by $K B(G)$, is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever $\lim _{k \rightarrow \infty}\left|V\left(F^{k}(G)\right)\right|=$ $\infty\left(\lim _{k \rightarrow \infty} F^{k}(G)=F^{m}(G)\right.$ for some m, or $F^{k}(G)=F^{k+s}(G)$ for some k and $s \geq 2$, respectively). Given a graph G, the iterated biclique graph of G, denoted by $K B^{k}(G)$, is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of $K B^{k}(G)$ when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable.

 (C) 2012 Wiley Periodicals, Inc. J. Graph Theory XX: 1-10, 2012Contract grant sponsors: Prosul-Cnpq; UBACyT; PICT ANPCyT; PID Conicet Grant (Argentina); Contract grant numbers: 490333/04-4; X184; X212; 11-09112 (to M. G.); Contract grant sponsor: Conicet Grant (Argentina) (to L. P. M.).

Keywords: bicliques; biclique graphs; clique graphs; divergent graphs; iterated graph operators; graph dynamics

1. INTRODUCTION

Intersection graphs of certain special subgraphs of a general graph have been studied extensively. Let us mention, for example, the case of line graphs (which are the intersection graphs of the edges of a graph), interval graphs (defined as the intersection graphs of intervals of the real line), and, in particular, clique graphs (defined below) [3, 4, 8, 11, 12, 22, 23].

The clique graph of G, denoted by $K(G)$, is the intersection graph of the family of all maximal cliques of G.

Clique graphs were introduced by Hamelink in [15] and characterized by Roberts and Spencer in [26]. It was proved in [1] that the clique graph recognition problem is NP-complete.

As the clique graph construct can be thought of as an operator between graphs, the iterated clique graph $K^{k}(G)$ is the graph obtained by applying the clique operator k successive times. It was introduced by Hedetniemi and Slater in [16]. Much work has been done on the scope of the clique operator, looking at the different possible behaviors. The associated problem is deciding whether an input graph converges, diverges, or is periodic under the clique operator, when k grows to infinity. In general, it is not clear that the problem is decidable. However, partial characterizations have been given for convergent, divergent, and periodic graphs, restricted to some classes of graphs. Some of these lead to polynomial time recognition algorithms. For the clique-Helly graph class, graphs which converge to the trivial graph have been characterized in [2]. Cographs, $P_{4}-$ tidy graphs, and circular-arc graphs are examples of classes where the different behaviors are characterized [5, 17]. Divergent graphs were also considered. For example, in [24], families of divergent graphs are shown. Periodic graphs were studied in [8, 21]. In particular, it is proved that for every integer i, there exist graphs with period i and convergent graphs which converge in i steps. More results about iterated clique graph can be found in $[9,10,18,19,20,25]$.

The biclique graph of a graph G, denoted by $K B(G)$, is the intersection graph of the family of all maximal bicliques of G. It was defined and characterized in [13]. However, no polynomial time algorithm is known for recognizing biclique graphs. As for clique graphs, the biclique graph construct can be viewed as an operator $K B$ between graphs.

In this article, we introduce the iterated biclique graph $K B^{k}(G)$, i.e., the graph obtained by applying iteratively the biclique operator $K B k$ times to G. We are interested in the possible behavior of a graph under the biclique operator. Indeed, we prove that a graph G is either divergent or convergent, but it is never periodic (with period bigger than 1). In addition, we give general characterizations for convergent and divergent graphs. These results are based on the fact that if a graph G contains a clique of size at least 5, then $K B(G)$ contains a clique of larger size. Therefore, G diverges. Similarly, if G contains the so-called gem or rocket as an induced subgraph, then $K B(G)$ contains a clique of size 5 , and again, G diverges. Otherwise, it is shown that, after removing false twin vertices of $K B(G)$, the resulting graph is a clique on at most four vertices, in which case, G converges. Moreover, we prove that if a graph G converges, it converges to the graphs K_{1}
or K_{3}, and it does so in at most three steps. These results are very different from the ones known for the clique operator. Our characterizations lead to an $O\left(n^{4}\right)$ time algorithm for deciding if a given graph converges or diverges under the biclique operator.

This work is organized as follows. In Section 2, we give the required definitions. In Section 3, we present known and new results about biclique graphs. Also, we give characterizations for convergent and divergent graphs under the biclique operator. Finally, we give a polynomial time algorithm for deciding the behavior of a general graph under the biclique operator. The study of the convergence and divergence of the trees is presented in Section 4. Section 5 contains some concluding remarks.

2. PRELIMINARIES

We will assume that all graphs discussed are connected (clearly, this is no lose of generality for the problems at hand). Let G be a graph with vertex set $V(G)$ and edge set $E(G)$, and let $n=|V(G)|$ and $m=|E(G)|$. A clique of G is a maximal complete induced subgraph, while a biclique is a maximal complete bipartite induced subgraph of G with no empty bipartition. The open neighborhood of a vertex $v \in V(G)$, denoted $N(v)$, is the set of vertices adjacent to v. A vertex $v \in V(G)$ is universal if it is adjacent to all of the other vertices in $V(G)$. A path with k vertices is denoted by P_{k} and a cycle with k vertices is denoted by C_{k}.

A diamond is a complete graph with four vertices minus an edge. A gem is an induced path with four vertices plus an universal vertex. A rocket is a complete graph with four vertices and a vertex adjacent to two of them. The graph O_{3} is the complement of the union of three copies of K_{2}.

Given a family of sets \mathcal{A}, the intersection graph of \mathcal{A} has as vertices the set of \mathcal{A} and the edges correspond to the pairs of sets from \mathcal{A} with a nonempty intersection. We remark that any graph is an intersection graph [27].

Let F be any graph operator. Given a graph G, the iterated graph under the operator F^{k} is defined iteratively as follows: $F^{0}(G)=G$ and for $k \geq 1, F^{k}(G)=F^{k-1}(F(G))$. We say that a graph G diverges under the operator F whenever $\lim _{k \rightarrow \infty}\left|V\left(F^{k}(G)\right)\right|=\infty$. We say that a graph G converges under the operator F whenever $\lim _{k \rightarrow \infty} F^{k}(G)=F^{m}(G)$ for some m. We say that a graph G is periodic under the operator F whenever $F^{k}(G)=$ $F^{k+s}(G)$ for some $k, s, s \geq 2$. The associated problem is to decide whether G converges, diverges, or is periodic under F.

In the article, we will use the terms convergent or divergent meaning convergent or divergent under the biclique operator $K B$.

By convention, we arbitrarily say that the trivial graph K_{1} is convergent under the biclique operator (observe that this remark is needed, since the graph K_{1} does not contain bicliques).

FIGURE 1. The graphs diamond, gem, rocket, K_{5}, and O_{3}.

3. CONVERGENCE AND DIVERGENCE OF THE ITERATED BICLIQUE GRAPH

In this section, we classify the behavior of a graph under the operator $K B$. We remark that if G is connected, then $\operatorname{KB}(G)$ is connected too. Our main result is the following theorem.

Theorem 3.1. If $K B(G)$ contains either K_{5} or the gem or the rocket as an induced subgraph, then G is divergent. Otherwise, G converges to K_{1} or K_{3} in at most three steps.

For the proof of Theorem 3.1, we shall use the following results.
Observation 3.2. If G is an induced subgraph of H, then $K B(G)$ is a subgraph (not necessarily induced) of $K B(H)$.

Proof. Let $b_{1}, b_{2}, \ldots, b_{k}$ be the bicliques of G. Each biclique b_{i}, either is a biclique of H, or it is contained in a biclique B_{i} of H. Remark that if B_{i} contains b_{i}, it cannot contain $b_{j}, j \neq i$. Then, if $b_{i} \cap b_{j} \neq \emptyset$ in $G, B_{i} \cap B_{j} \neq \emptyset$ in $H \forall i, j=1, \ldots, k$. Then $K B(G)$ is a subgraph of $K B(H)$.

Next, we examine the bicliques of $K B\left(K_{n}\right)$, for $n \geq 4$. (Note that since the bicliques of K_{n} are precisely its single edges, $K B\left(K_{n}\right)$ is just the line graph of K_{n}.)
Lemma 3.3. Let $n \geq 4$. All bicliques of $K B\left(K_{n}\right)$ are isomorphic to C_{4} and each vertex of $K B(G)$ belongs to exactly $(n-2)(n-3)$ different bicliques.

Proof. It is clear that K_{n} contains $\frac{n(n-1)}{2}$ bicliques. Consider an edge $e \in E\left(K_{n}\right)$, $e=v w$. The edge e is not adjacent in K_{n} to any edge that belongs to a complete subgraph of $n-2$ vertices. Let $e^{\prime}=v^{\prime} w^{\prime}$ be an edge of G not adjacent to e. Consider edges $e_{1}=v v^{\prime}$, $e_{2}=v w^{\prime}, e_{3}=v^{\prime} w$, and $e_{4}=w w^{\prime}$ as vertices in $K B(G)$. Then, $B_{1}=\left\{e, e^{\prime}\right\} \cup\left\{e_{1}, e_{4}\right\}$ and $B_{2}=\left\{e, e^{\prime}\right\} \cup\left\{e_{2}, e_{3}\right\}$ induce complete bipartite subgraphs in $K B\left(K_{n}\right)$ isomorphic to C_{4}. Since three not adjacent edges cannot be adjacent to a common edge, B_{1} and B_{2} are indeed bicliques in $K B\left(K_{n}\right)$. Next, we show that each vertex of $K B\left(K_{n}\right)$ belongs to $(n-2)(n-3)$ bicliques. As before, each edge e of K_{n} is not adjacent to $\frac{(n-2)(n-3)}{2}$ other edges of K_{n}, therefore each one of these along with e induce two different bicliques in $K B\left(K_{n}\right)$. Then, each vertex of $K B\left(K_{n}\right)$ belongs to $(n-2)(n-3)$ different bicliques of $K B\left(K_{n}\right)$.

As a consequence, since $K B(G)$ has $\frac{n(n-1)}{2}$ vertices and each vertex belongs to ($n-$ 2) $(n-3)$ bicliques isomorphic to C_{4}, we conclude that $K B(G)$ has $\frac{n(n-1)(n-2)(n-3)}{8}$ bicliques.

Proposition 3.4. Let G be a graph that contains K_{n} as a subgraph, for some $n \geq 4$. Then, $K_{2 n-4} \subseteq K B(G)$ or $K_{(n-2)(n-3)} \subseteq K B^{2}(G)$.

Proof. If $G=K_{n}$, then by Lemma 3.3, each vertex of $K B(G)$ belongs to ($n-$ 2) ($n-3$) different bicliques and then $K_{(n-2)(n-3)} \subseteq K B^{2}(G)$. Otherwise, $G \neq K_{n}$ and let v be a vertex in $G-K_{n}$ adjacent to some k_{v} vertices of K_{n}. Consider first the case $1<k_{v}<n-1$. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{k_{v}}\right\}$ be the vertices of K_{n} adjacent to v and let $B=$ $\left\{v_{k_{v}+1}, v_{k_{v}+2}, \ldots, v_{n}\right\}$ be the vertices of K_{n} not adjacent to v. Therefore, there are $k_{v}\left(n-k_{v}\right)$ edges with endpoints in A and B. Let $e_{i j}=v_{i} v_{j}, 1 \leq i \leq k_{v}, k_{v}+1 \leq j \leq n$, be those
edges. Since v is adjacent to each vertex of A, then for each i and j, v and $e_{i j}$ are contained in a biclique $B_{i j}$ of G. Clearly, $B_{i j} \neq B_{i^{\prime} j^{\prime}}$ if $i \neq i^{\prime}$ or $j \neq j^{\prime}$. Finally, there are $k_{v}\left(n-k_{v}\right)$ different bicliques in G that contain v. It follows that $K_{k_{v}\left(n-k_{v}\right)} \subseteq K B(G)$. Now, let $F:[2, n-2] \subseteq \mathbb{N} \rightarrow \mathbb{N}$ be a function defined by $F\left(k_{v}\right)=k_{v}\left(n-k_{v}\right)$. It is easy to see that F reaches its minima in the extremes of the interval, i.e., for $k_{v}=2$ and $k_{v}=n-2$. Then, $K_{2(n-2)}=K_{2 n-4} \subseteq K_{k_{v}\left(n-k_{v}\right)} \subseteq K B(G)$.

Before considering the remaining cases, we make the following observation:
Observation 3.5. Let G be a graph that contains K_{n} as a subgraph for some $n \geq 4$, and let e and e^{\prime} be two edges of K_{n} that are not adjacent. Let B and B^{\prime} be two different bicliques of G such that e belongs to B and e^{\prime} belongs to B^{\prime}. If $B \cap B^{\prime} \neq \emptyset$, then there exists a vertex $v \in B \cap B^{\prime}$ such that v is adjacent to exactly one endpoint of e and one endpoint of e^{\prime} see Figure 2.

Now, suppose for every $v \in G-K_{n}$, either $k_{v}=1$ or $k_{v}=n-1$ or $k_{v}=n$. We prove that in any case, $K_{(n-2)(n-3)} \subseteq K B^{2}(G)$. Consider $B_{1}, B_{2}, \ldots, B_{s}$ the bicliques of G such that each B_{i} contains an edge of the K_{n} and no two of them contain the same edge of K_{n}. Clearly, $s=\frac{n(n-1)}{2}$. Let $H \subseteq K B(G)$ be the subgraph induced by the vertices of $K B(G)$ corresponding to the bicliques $B_{1}, B_{2}, \ldots, B_{s}$. We show that H is isomorphic to $K B\left(K_{n}\right)$ and then by Observation 3.2 and Lemma 3.3, $K_{(n-2)(n-3)} \subseteq K B(H) \subseteq K B^{2}(G)$. Suppose that it is not true, then there exist two adjacent vertices of H that are not adjacent in $K B\left(K_{n}\right)$. By Observation, if B_{i} and B_{j} are different bicliques in G that contain the

FIGURE 2. The P_{3} in bold edges is contained in an induced diamond and in an induced gem, respectively.
nonadjacent edges e_{i} and e_{j} of K_{n}, respectively, and $B_{i} \cap B_{j} \neq \emptyset$, then there exists a vertex v in $B_{i} \cap B_{j}, v \notin K_{n}, v$ adjacent to exactly one endpoint of each edge and therefore not adjacent to the others. This contradicts cases $k_{v}=1, k_{v}=n-1$, and $k_{v}=n$. Then H is isomorphic to $K B\left(K_{n}\right)$ and therefore $K_{(n-2)(n-3)} \subseteq K B(H) \subseteq K B^{2}(G)$.

Two vertices u, v are false twins if $N(u)=N(v)$. Consider all maximal sets of false twin vertices $Z_{1}, \ldots Z_{k}$ and let $\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ be the set of respresentative vertices such that $z_{i} \in Z_{i}$. We call $T w(G)$ to the graph obtained by the deletion of all vertices of $Z_{i} \backslash\left\{z_{i}\right\}$, for $i=1 \ldots k$. Observe that $T w(G)$ has no false twin vertices.

Proposition 3.6. For any graph G, we have $K B(G)=K B(T w(G))$.
Proof. Let v, w be false twin vertices of G. It will suffice to prove that $K B(G)=$ $K B(G-\{v\})$. It is clear that every biclique of G either contains both v and w, or does not contain either of them. Let $B_{1}, B_{2}, \ldots, B_{k}$ be bicliques of G that do not contain v and w. Clearly, they are bicliques of $G-\{\nu\}$. Consider B a biclique of G containing vertices v and w. Consider $\widetilde{B}=B-\{v\}$. If \widetilde{B} is not a biclique, there is a vertex adjacent to w and not to v or there is a vertex adjacent to v and not to w, contradicting the hypothesis. Then \widetilde{B} is a biclique of $G-\{v\}$, and any two bicliques of G containing v are bicliques in $G-\{v\}$ containing w and they are adjacent vertices of $K B(G-\{v\})$. Then, $K B(G)=K B(G-\{v\})$ and clearly $K B(G)=K B(T w(G))$ since we can repeat the same argument for all false twin vertices in G.

It is shown in $[13,14]$ that a graph G such that $G=K B(H)$ for some H has the following property. Every induced P_{3} of G is contained in an induced diamond or in an induced gem of G (Fig. 3). We now show that this property holds when we consider $T w(G)$.

Lemma 3.7. Let $G=T w(K B(H))$. Then every induced P_{3} of G is contained in an induced diamond or an induced gem of G.

Proof. Let $Z_{1}, Z_{2}, \ldots, Z_{k}$ be the maximal sets of false twin vertices in $K B(H)$. Let z_{i}, z_{j}, z_{l} be the representative vertices of an induced P_{3} in G. Then, there exists three vertices v, w, x in $K B(H)$ such that $v \in Z_{i}, w \in Z_{j}$, and $x \in Z_{l}$. The vertices v, w, x induce a P_{3} in $K B(H)$, and therefore by [13,14] it is contained in an induced diamond or gem of $K B(H)$. Suppose that this P_{3} is contained in a diamond. Then there exists a vertex u in $K B(H)$ adjacent to v, w, and x. Let Z_{m} be the set of false twin vertices that contains u, where $m \neq i, j, l$. Then, if z_{m} is the corresponding vertex of the set Z_{m} in $G, z_{i}, z_{j}, z_{l}, z_{m}$ induce a diamond in G that contains the P_{3}. The case in which the P_{3} is contained in a gem is similar, considering two vertices of $K B(H)$ instead of one.

FIGURE 3. The edges e and e^{\prime} are not adjacent and the bicliques B and B^{\prime} that contain them intersect in vertex v.

Now, we are able to prove Theorem 3.1.
Proof of Theorem 3.1. Suppose $K_{n} \subseteq K B(G), n \geq 5$. According to Proposition 3.4, we know that $K_{2 n-4} \subseteq K B(K B(G))$ or $K_{(n-2)(n-3)} \subseteq K B^{2}(K B(G))$. Now, define $f(x)=$ $2 x-4$ and $g(x)=(x-2)(x-3)$. It is clear that $x<f(x)$ and $x<g(x)$ for $x \geq 5$. Therefore, the graph $K B(G)$ grows under the biclique operator, in the worst case, every two iterations. Consequently, $\lim _{s \rightarrow \infty}\left|V\left(K B^{s}(G)\right)\right|=\infty$, i.e., $K B(G)$ is divergent. Now, suppose the gem or the rocket are induced subgraphs of $K B(G)$. Since $K B($ gem $)=K_{5}$ and $K_{5} \subseteq K B$ (rocket), that is, $K_{5} \subseteq K B(K B(G))$ and $K B(G)$ diverges and consequently, G diverges.

Otherwise, $K B(G)$ does not contain K_{5}, the gem or the rocket as induced subgraphs and clearly, $\operatorname{Tw}(\operatorname{KB}(G))$ does not contain them either. We prove that $T w(K B(G))$ is isomorphic to K_{1}, K_{2}, K_{3}, or K_{4}. Suppose that it is false, i.e., $T w(K B(G)) \neq K_{n}$, for any $n=1, \ldots, 4$. Then, $\operatorname{Tw}(K B(G))$ contains an induced P_{3} that is contained in an induced diamond, by Lemma 3.7. Let u, v, w, x be the vertices that induce such a diamond in $T w(K B(G))$, where u, w are not adjacent vertices (Fig. 4).

Since $T w(K B(G))$ has no false twin vertices, there exists a vertex $y \in T w(K B(G))$ adjacent to u, not adjacent to w (Fig. 4A). If y is adjacent to v or x, then u, v, w, x, y induce a gem or a rocket, a contradiction (Fig. 4B). Otherwise, v, u, y induce a P_{3} which, by Lemma 3.7, is included in an induced diamond. Then, there is a vertex z adjacent to y, u, v (Fig. 4C). If z is adjacent to x then u, v, w, x, z induce a rocket, otherwise, they induce a gem, a contradiction (Fig. 4C). We conclude that $T w(K B(G))$ has no P_{3} as induced subgraph, and then, $T w(K B(G))=K_{n}$, for $n=1, \ldots, 4$. Recall that $K B(G)=K B(T w(G))$. Since $K B\left(K_{3}\right)=K_{3}, K B\left(K_{4}\right)=O_{3}$, and $K B\left(O_{3}\right)=K_{3}$, the result follows.

As a direct corollary of Theorem 3.1, we obtain the following result, which will be the bases of our algorithm.

Corollary 3.8. A graph G is convergent if and only if $T w(K B(G))$ has at most four vertices.

Note that if some vertex lies in five bicliques, then $K B(G)$ contains a K_{5} and then G diverges. Therefore, the Corollary 3.8 gives a polynomial time algorithm to test convergence of G : if some vertex lies in five bicliques, we answer that G is divergent. Else, the

FIGURE 4. Diamond u, v, w, x and the different cases.
computation of $K B(G)$ and $T w(K B(G))$ is polynomial. If $T w(K B(G))$ has at most four vertices, answer that G is convergent, otherwise, we answer that G is divergent.

Constructing $K B(G)$ takes $O\left(n^{4}\right)$ time, since for the case that is done, the input graph G has at most $2 n$ bicliques and generating each biclique is $O\left(n^{3}\right)[6,7]$. To build $T w(K B(G))$ can be done in $O\left(n^{2}\right)$ time. We conclude that the algorithm runs in $O\left(n^{4}\right)$ time.

4. DIVERGENT AND CONVERGENT TREES

In this section, we analyze convergence and divergence for a special class of graphs, namely, the trees.

Lemma 4.1. Let T be a tree with $n \geq 3$ vertices and k leaves. Then T has $n-k$ bicliques.
Proof. Since bicliques in trees are all $K_{1, r}$ (one vertex adjacent to r ones), with $r \geq 1$, each nonleaf vertex represents a unique biclique and the theorem follows.

Lemma 4.2. Let T and T^{\prime} be nontrivial trees. If T is an induced subgraph of T^{\prime}, then $K B(T)$ is an induced subgraph of $K B\left(T^{\prime}\right)$.

Proof. By Observation 3.2, it is clear that $K B(T)$ is a subgraph of $K B\left(T^{\prime}\right)$. We will prove that, in fact, it is an induced subgraph. For a contradiction, suppose that b_{1}, b_{2} are not adjacent in $K B(T)$ but they are in $K B\left(T^{\prime}\right)$. Then, if B_{1}, B_{2} are the associated bicliques of b_{1}, b_{2} in T^{\prime}, there exists some vertex $v \in B_{1} \cap B_{2}$ such that $v \in T^{\prime}$ and $v \notin T$. Now, since bicliques in trees are all $K_{1, r}$, with $r \geq 1$, let t_{1}, t_{2} be the vertices of B_{1}, B_{2}, respectively, that are adjacent to v. Observe that $t_{1}, t_{2} \in T$. Now, since T is connected, there exists a path P between t_{1}, t_{2} in T. Clearly, P is also a path in T^{\prime}, however, there is another path $P^{\prime}=t_{1}, v, t_{2}$ between the vertices t_{1}, t_{2} in T^{\prime} contradicting the fact that T^{\prime} is a tree. Finally, $K B(T)$ is an induced subgraph of $K B\left(T^{\prime}\right)$.

Theorem 4.3. Let T be a tree. Then T diverges if and only if T has at least five bicliques

Proof. Observe that if T has at least five bicliques then it has at least five internal vertices and therefore it contains one of the graphs in Figure 5A as induced subgraphs.

In any case, $K B(T)$ contains the gem, the rocket, or the K_{5} as induced subgraphs (Lemma 4.2), and hence, by Theorem 3.1, T diverges. The converse is straightforward, since if T diverges, then, by Theorem 3.1, $K B(T)$ contains a gem, a rocket, or a K_{5} as induced subgraphs, i.e., T has at least five bicliques.

We remark that for trees, the running time of the algorithm for deciding if a tree either converges or diverges is $O(n)$. This follows from Lemma 4.1.

5. CONCLUSIONS

In this article, we have studied the behavior of a graph under the biclique operator, in particular, we have studied the $\operatorname{limit}^{\lim _{k \rightarrow \infty}\left|V\left(K B^{k}(G)\right)\right| \text {. We proved that the limit is } 1 \text {, }}$ 3 , or infinity. We presented characterizations of convergent and divergent graphs, and gave

FIGURE 5. (A) Minimal nonisomorphic trees with five bicliques. (B) Their biclique graphs.
a polynomial time algorithm for their recognition. It is worth contrasting these results with those for the clique operator. For the clique operator, there is no characterization for divergent, periodic, or convergent graphs, and the computational complexity of the associated decision problem is open.

REFERENCES

[1] L. Alcón, L. Faria, C. M. H. de Figueiredo, and M. Gutierrez, Clique graph recognition is NP-complete, Graph Theor Concepts Comput Sci 4271 (2006), 269-277.
[2] H.-J. Bandelt and E. Prisner, Clique graphs and Helly graphs, J Combin Theory Ser B 51(1) (1991), 34-45.
[3] K. Booth and G. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J Comput Syst. Sci 13(3) (1976), 335-379.
[4] A. Brandstädt, V. Le, and J. P. Spinrad, Graph Classes: a Survey, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
[5] C. P. de Mello, A. Morgana, and M. Liverani, The clique operator on graphs with few P_{4} 's, Discrete Appl Math 154(3) (2006), 485-492.
[6] V. M. F. Dias, C. M. H. de Figueiredo, and J. L. Szwarcfiter, Generating bicliques of a graph in lexicographic order, Theor Comput Sci 337(1-3) (2005), 240-248.
[7] V. M. F. Dias, C. M. H. de Figueiredo, and J. L. Szwarcfiter, On the generation of bicliques of a graph, Discrete Appl Math 155(14) (2007), 1826-1832.
[8] F. Escalante, Über iterierte Clique-Graphen, Abh Math Sem Univ Hamburg 39 (1973), 59-68.
[9] L. F., M. A. Pizaña, and R. Villarroel-Flores, Equivariant collapses and the homotopy type of iterated clique graphs, Discrete Math 308 (2008), 31993207.
[10] M. E. Frías-Armenta, V. Neumann-Lara, and M. A. Pizaña, Dismantlings and iterated clique graphs, Discrete Math 282(1-3) (2004), 263-265.
[11] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J Math 15 (1965), 835-855.
[12] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J Combin Theory Ser B 16 (1974), 47-56.
[13] M. Groshaus and J. L. Szwarcfiter, Biclique graphs and biclique matrices, J Graph Theory 63(1) (2010), 1-16.
[14] M. E. Groshaus, Bicliques, cliques, neighborhoods y la propiedad de Helly, Ph.D. Thesis, Universidad de Buenos Aires, 2006.
[15] R. C. Hamelink, A partial characterization of clique graphs, J Combin Theory 5 (1968), 192-197.
[16] S. T. Hedetniemi and P. J. Slater, Line graphs of triangleless graphs and iterated clique graphs, In: Graph Theory and Applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), Lecture Notes in Mathematics, Vol. 303, Springer, Berlin, 1972, pp. 139-147.
[17] F. Larrión, C. P. de Mello, A. Morgana, V. Neumann-Lara, and M. A. Pizaña, The clique operator on cographs and serial graphs, Discrete Math 282(1-3) (2004), 183-191.
[18] F. Larrión and V. Neumann-Lara, A family of clique divergent graphs with linear growth, Graphs Combin 13(3) (1997), 263-266.
[19] F. Larrión and V. Neumann-Lara, Clique divergent graphs with unbounded sequence of diameters, Discrete Math 197/198 (1999), 491-501, 16th British Combinatorial Conference (London, 1997).
[20] F. Larrión and V. Neumann-Lara, Locally C_{6} graphs are clique divergent, Discrete Math 215(1-3) (2000), 159-170.
[21] F. Larrión, V. Neumann-Lara, and M. A. Pizaña, Whitney triangulations, local girth and iterated clique graphs, Discrete Math 258(1-3) (2002), 123-135.
[22] P. G. H. Lehot, An optimal algorithm to detect a line graph and output its root graph, J ACM 21(4) (1974), 569-575.
[23] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
[24] V. Neumann Lara, Clique divergence in graphs, In: Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 1981, pp. 563-569.
[25] M. A. Pizaña, The icosahedron is clique divergent, Discrete Math 262(1-3) (2003), 229-239.
[26] F. S. Roberts and J. H. Spencer, A characterization of clique graphs, J Combin Theory Ser B 10 (1971), 102-108.
[27] E. Szpilrajn-Marczewski, Sur deux propriétés des classes d'ensembles, Fund Math 33 (1945), 303-307.

