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The general basis for accurate calculations of k-mer lattice gases’ configurational entropy is presented.
The method relies on the definition of an artificial Hamiltonian from the system of interest. By Monte Carlo
calculation of mean total energy followed by thermodynamic integration from a reference state of the
artificial Hamiltonian, the entropy of a state of interest can be obtained for the physical system under
consideration. Entropy of interacting dimers (k ) 2) and linear trimers (k ) 3) on one- and two-dimensional
regular lattices are shown. The entropy of bended (L-shaped) trimers is investigated as well. Interesting
characteristics of the coverage and temperature dependence of entropy in these systems are displayed and
discussed.

1. Introduction

The importance of achieving very accurate calculations
of free energy and entropy for elaborated lattice gases is
major. Such accuracy would allow us to develop a
computationally exact thermodynamics of generalized
lattice gases. By computationally exact, we mean results
obtained from rigorous thermodynamics within the sta-
tistical uncertainty of the simulation and the numerical
methods that aid the calculations. The advantages of using
Monte Carlo simulation to calculate thermal averages of
thermodynamic observables are well-known.1 The calcu-
lation of the total energy, energy fluctuations, correlation
functions, etc., is rather straightforward; it is accomplished
by averaging over a large number of microscopic configu-
rations of the system. However, free energy and entropy
are much more difficult to evaluate, and they cannot be
directly computed. To calculate free energy and entropy,
various methods have been developed.2-8 Among them,
the thermodynamic integration method is one of the most
widely used and practically applicable.9-12 The method
relies upon integration of the total energy on temperature
along a reversible path between an arbitrary reference
state and the desired state of the system. Thus, for a system
made of N particles on M lattice sites, from the thermo-
dynamic relationship

it follows that

This calculation requires the knowledge of the entropy
in a reference state, S(N,T0). In practice, the calculation
of S in a reference state can be rigorously accomplished
by analytical methods in only a very few cases. Although
the entropy of some particular states is trivially known
(for example, SNf0 f 0), this knowledge is often compu-
tationally inconvenient in that it would require the
simulation of a thermodynamically open system to obtain
the entropy of a state at finite density. Alternatively,
integration can be carried out through a thermodynamic
path of a closed (mechanically isolated) system along a
constant density path, if a proper reference state is defined
for which S(N,T0) can be directly computed. Because the
knowledge of S in a reference state represents the major
limitation to the use of thermodynamic integration, we
present here the basis for the calculation of entropy, S,
and free energy, F, in discrete systems of interacting
particles, for which no exact values of S or F in a reference
state are known (section 2). We apply the methodology to
k-mer adsorption on homogeneous lattices.

k-mers, assumed as either rigid or flexible chains
containing k identical units (beds) with a bond length equal
to the lattice constant, provide a simple model of poly-
atomic adsorbata such as n-alkenes, polymers, etc. The
knowledge of thermodynamic properties and phase be-
havior of interacting polyatomic lattice gases is still
limited, and it is a developing field of research in gas-
solid interface science.13-17 The coverage and temperature
dependence of S for attractive and repulsive dimers and
trimers adsorbed on one- and two-dimensional lattices
are given in section 3. Effects of k-mer structure on the
configurational entropy are studied by analyzing two
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trimer species (straight and bended trimers). Comparisons
between numerical results from the method presented
here and the analytical ones recently reported17 are carried
out and discussed. Novel behavior of S on coverage and
temperature for interacting dimers and trimers is shown.

2. General Definition of Artificial Hamiltonians
in Discrete Systems

The advantage of eq 2 is that it allows us to define
integration paths through intermediate states of artificial
systems whose Hamiltonians can differ from the one of
the system under consideration. Hence, we define an
artificial system whose Hamiltonian, HA, is such that
limTf0 SA(N,T) equals zero, SA(N,T) being its entropy.
Because limTf∞ SA(N,T) ) limTf∞ S(N,T) (as will be shown
later), the entropy of a state of interest of our original
system can be computed from eq 2 by integration through
the high-temperature region of the thermodynamic space,
starting from a reference state of the artificial system for
which SA(N,T) ) 0.

Let us assume the real system to be a discrete system
of N particles with Hamiltonian H(N,i) ) E(N,i) i ∈ γ,
where E(N,i) is the potential energy in the ith configuration
among the total number of accessible configurations γ.
E(N,i) ) finite ∀i ∈ γ.

The real system can access only those configurations
within γ, that amount GT(N). For instance, in a lattice gas
of N monomers with single occupancy of M sites, GT(N)
) M!/[N!(M - N)!)]. Let us now define the artificial system
whose Hamiltonian is given from the following definitions.

Definition 1. The Hamiltonian of the artificial system,
HA, is defined as HA(N,j) ) EA(N,j) ) finite ∀j ∈ γA, where
EA and γA ) γ have analogous meaning to that given above
for E and γ, respectively. The equalities ensure that the
setofaccessible configurations for thereal andtheartificial
systems are equal (although γA ) γ, the energy of the
configurations in the artificial system may be, in general,
different from the ones in the real system).

Definition 2. Values are assigned to the potential
energy of the accessible configurations (j ∈ γA) of the
artificial system in the following way:

Equation 3 means that one configuration, the joth, is
picked up from the set γA and defined as the ground state
of the artificial Hamiltonian. Arbitrary values larger than
zero are assigned to the potential energy of the remaining
configurations in γA (the election of one particular con-
figuration jo out of γA is dictated only by computational
convenience). By following definitions 1 and 2, we find it
is always possible to define an artificial Hamiltonian
associated to a system of interest having a finite number
of accessible states. From definition 2, it is obvious that
limTf0 SA(N,T) ) 0 (nondegenerated ground state).
Furthermore, in the canonical ensemble, it holds that

where Z(N,T) ) ∑i∈γ exp[-âE(N,i)]; U(N,T) ) ∑i∈γ E(N,i)
exp[-âE(N,i)]/Z(N,T); â ) 1/kBT. Provided that limTf∞
Z(N,T) ) GT(N), and γA ) γ, the first term in eq 4 is identical
for the artificial and real systems. From the second term,

it follows that

Although this limit is different in the artificial and real
systems, limTf∞ U(N,T)/T ) 0 for both. Ultimately, limTf∞
S(N,T) ) limTf∞ SA(N,T), and

where the first and second integral are evaluated in the
artificialandreal systems, respectively. In thenextsection,
we analyze the advantages and accuracy of this meth-
odology in calculating adsorption entropy of dimers and
trimers in one- and two-dimensional regular lattices.

3. k-mer Lattice Gas: Entropy of Interacting
Dimers and Trimers

The simplest model of adsorption of a polyatomic species
is that of homonuclear dimers on a one-dimensional
regular lattice.16 Here we deal with attractive as well as
repulsive dimers. Only nearest-neighbor units of different
k-mers interact, through an interaction energy w. Re-
pulsive dimers show the richer phase behavior in one and
more dimensions. The temperature dependence of UA(T)
and U(T) was calculated by Monte Carlo simulation in
the canonical ensemble. A typical curve U(T) is depicted
in Figure 1 for repulsive dimers on a square lattice, where
a smooth temperature dependence is observed as result
of the large number of averaged configurations (≈106).
Integration through eq 6 was carried out by standard
methods after spline-fitting UA and U versus T, respec-
tively.

Given N dimers on a lattice of M sites, the surface
coverage is defined by θ ) 2N/M. The election of the
configuration jo and the Hamiltonian of the artificial
system is rather straightforward (for instance, in one
dimension, site energy equal to zero is assigned to the
leftmost 2N lattice sites, site energy greater than zero is
given to the M-2N remaining ones on the right, and the
lateral interactions between k-mer units are switched off
(i.e., set to w ) 0). Then, the jo configuration is taken as
one in which N dimers lie on the 2N leftmost sites.). Hence,

EA(N,j) ) 0 j ) jo

EA(N,j) > 0 j * jo j, jo ∈ γA
(3)

S(N,T) ) kB ln Z(N,T) +
U(N,T)

T
(4)

Figure 1. Mean total energy (in units of w) versus w/kBT for
repulsive dimers in a square lattice at θ ) 0.5.
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the coverage dependence of entropy at infinite temper-
ature, SA(θ,T f ∞), can be obtained as in eq 6. SA(θ,∞)
provides the reference state for the calculation of S(θ,T)
for finite T.

Results of thermodynamic integration with an artificial
reference system are shown in Figure 2 for attractive
dimers in a one-dimensional lattice. The high accuracy of
this calculation can be asserted by comparison with exact
analytical ones for S(θ,T) recently presented in refs 17
and 18 (shown in full line). The formula for entropy per
site, S̃(θ,T), of interacting k-mers is18

and

A remarkable agreement is obtained as shown in Figure
2. The behavior of repulsive dimers is reproduced through-
out by the calculations of this work (as shown in Figure
3) for all the ratios w/kBT investigated. The local minimum
of the entropy at θ ) 2/3 for strongly repulsive dimers is
very well reproduced. This minimum corresponds to the
developing of an ordered structure of alternating dimers
as temperature decreases (see inset in Figure 3). However,
this minimum does not correspond to a phase transition
as expected for a one-dimensional lattice gas with short-
ranged interactions.

Equilibrium thermodynamics of k-mer lattice gases in
two dimensions is a challenging theoretical problem with
applications to adsorption of polyatomic molecules on
surfaces. In the simplest case of interacting dimers, a very
limited knowledge about its phase behavior is currently

available.19-21 By applying the method presented here,
an accurate thermodynamic description of attractive and
repulsive dimers in two dimensions can be achieved.

For calculations of dimer entropy in a square lattice,
the reference artificial Hamiltonian was set up by choosing
the configuration jo as the one in which all dimers are
packed on one side of the lattice and aligned in the same
direction. Any other configuration has a larger energy.
The results shown in Figures 4 and 5 correspond to a
lattice size M ) 96 × 96. A detailed analysis of finite-size
effects (not shown here for the sake of brevity) concluded
that lattices of this typical size are appropriate to give
results representative of the thermodynamic limit within
one percent of uncertainty. The results shown and
discussed below correspond to dimers and trimers on a
square lattice.

For noninteracting as well as attractive dimers, S̃(θ,T)
has a maximum at θ > 0.5. The overall effect of the
interactions is to decrease the entropy for all coverages.
All these characteristics match the behavior of dimers in
one dimension.18 For repulsive dimers, S̃(θ,T) develops
two local minima at θ ) 1/2 and θ ) 2/3 as T decreases.
In the ground state, S̃(1/2,0) ) S̃(2/3,0) ) 0. These values
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Figure 2. Entropy per site (in units of kB) versus surface
coverage for attractive dimers in one dimension. Curves, from
top to bottom, correspond to the following: w/kBT ) 0; w/kBT
) -2; and w/kBT ) -10. Solid lines represent data from eq 7
(ref 17). Calculations from thermodynamic integration with an
artificial Hamiltonian as described in this work are shown in
filled circles.

S̃(θ,T)
kB

) θ
k

ln θ
k

+ (1 - θ) ln(1 - θ) - 2a ln a -

[θk - a] ln[θk - a] - (1 - θ - a) ln(1 - θ - a) (7)

a )
2θ(1 - θ)

k[1 -
(k - 1)

k
θ + b]

; b ) {[1 -
(k - 1)

k
θ]2

-

4
kA

(θ - θ2)}1/2
(8)

A ) [1 - exp(-w/kBT)]-1 (9)

Figure 3. Entropy per site (in units of kB) versus surface
coverage for repulsive dimers in one dimension. Curves, from
top to bottom, correspond to the following: w/kBT ) 0; w/kBT
) 1.66; w/kBT ) 3.33; w/kBT ) 5.00; and w/kBT ) ∞, respectively.
Lines and symbols are as in Figure 2.

Figure 4. Entropy per site (in units of kB) versus surface
coverage for repulsive dimers in two dimensions. Curves, from
top to bottom, correspond to the following: w/kBT ) 0; w/kBT
) 2.94; w/kBT ) 3.13; and w/kBT ) ∞, respectively. In this figure,
lines connecting symbols are included for better visualization;
however, they do not correspond to theoretical results as they
do in Figures 2 and 3.
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correspond to c(4 × 2) (see left inset in Figure 4) and zigzag
(see right inset in Figure 4) ordered phases of dimers,
respectively. The critical temperatures corresponding to
the critical coverages θ ) 1/2 and 2/3 were estimated to
be Tc(1/2) ≈ 0.33w/kB and Tc(2/3) ≈ 0.20w/kB, in very good
agreement with the values reported in ref 20 from finite-
size analysis of order parameter cumulants. Our results
confirm that only two out of the multiple minima arising
from the transfer matrix approximation (TMA) for S̃(θ,T)
of Phares et al.19 are relevant. The others are artifacts of
the TMA.

Linear trimers exhibit an intriguing behavior (see
Figure 5 where S̃(θ,T) for noninteracting and repulsive
straight and bended trimers are shown). From the
comparison between noninteracting dimers and straight
trimers in Figures 4 and 5, it arises that the maximum
of S̃(θ,T) slightly approaches θ ) 1/2 from above as the
k-mer size increases. For repulsive straight trimers, two
minima appear. Other than the one at θ ) 1/2 with S̃(1/
2,0) ) 0 corresponding to a c(6×2) ordered phase, it appears

to be a very degenerate state, with S̃(3/4,0) ) finite at θ
) 3/4. This degeneracy remains as the ratio w/kBT f ∞
because trimers at this coverage can locally rearrange
without any energy cost. This rearrangement is not
possible for dimers in the zigzag phase at θ ) 2/3, and it
makes a qualitative difference between the two cases.
Whether this minimum traces to an order-disorder phase
transition is still unknown.

The fact that trimers can have a bended configuration
makes a significant influence on their configurational
entropy. As displayed in Figure 5 for a pure phase of
noninteracting bended trimers, S̃(θ,T) increases up to 20%
at intermediate coverage with respect to a pure phase of
straight trimers. The maximum also shifts appreciably to
a higher coverage. Further analysis of the phase behavior,
nature of phase transitions, and critical parameters is
necessary in this case.

4. Concluding Remarks

A general definition of artificial Hamiltonians for
polyatomic lattice gases, along with the thermodynamic
integration method proposed here, were proven highly
accurate for calculating S̃(θ,T). Comparisons with rigorous
analytical results demonstrate the method’s accuracy. This
level of detail and accuracy cannot be ascertained by
analytical approximations at the present. Novel features
shown for dimer and trimer entropy are in favor of a very
rich phase behavior of larger adsorbed particles. Similar
calculations of free energy (coverage and temperature
dependence) would allow a complete thermodynamic
description of generalized lattice gases. A much more
comprehensive report of the phase behavior of dimers and
trimers will be presented elsewhere. Further applications
to more complex problems in statistical physics, such as
fractional statistics, polyatomic lattice gases, and gen-
eralized statistics, would in principle be feasible.

Acknowledgment. This work was partially supported
by the CONICET (Argentina). The authors are gratefully
indebted to W. Rudzinski, M. Borowko, and A. Patrykiejew
for helpful discussions.

LA000229S

Figure 5. Entropy per site (in units of kB) versus surface
coverage for bended (L-shaped) and straight repulsive trimers
in two dimensions. Curves with filled circles, from top to bottom,
correspond to straight trimers with the following: w/kBT ) 0;
w/kBT ) 0.96; w/kBT ) 1.91; w/kBT ) 2.38; w/kBT ) 2.86; w/kBT
) 3.34; and w/kBT ) ∞, respectively. Open circles correspond
to bended trimers with w/kBT ) 0. Lines and symbols are as
in Figure 4.

Configurational Entropy in k-mer Adsorption Langmuir, Vol. 16, No. 24, 2000 9409


