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This article focuses on the formalization of the structured operational semantics approach 
for languages with primitives that introduce probabilistic and non-deterministic behavior. 
We define a general theoretic framework and present the ntμfθ/ntμxθ rule format that 
guarantees that bisimulation equivalence (in the probabilistic setting) is a congruence for 
any operator defined in this format. We show that the bisimulation is fully abstract w.r.t. 
the ntμfθ/ntμxθ format and (possibilistic) trace equivalence in the sense that bisimulation 
is the coarsest congruence included in trace equivalence for any operator definable within 
the ntμfθ/ntμxθ format (in other words, bisimulation is the smallest congruence relation 
guaranteed by the format). We also provide a conservative extension theorem and show 
that languages that include primitives for exponentially distributed time behavior (such as 
IMC and Markov automata based language) fit naturally within our framework.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Structural operational semantics (SOS for short) [1] is a powerful tool to provide semantics to programming languages. 
In SOS, process behavior is described using transition systems and the behavior of a composite process is given in terms of 
the behavior of its components. SOS has been formalized using an algebraic framework as Transition Systems Specifications 
(TSS) [2–6, etc.]. Basically, a TSS contains a signature, a set of actions or labels, and a set of rules. The signature defines 
the terms in the language. The set of actions represents all possible activities that a process (i.e., a term over the signature) 
can perform. The rules define how a process should behave (i.e., perform certain activities) in terms of the behavior of 
its subprocesses, that is, the rules define compositionally the transition system associated to each term of the language. 
A particular focus of these formalizations was to provide a meta-theory that ensures a diversity of semantic properties 
by simple inspection on the form of the rules. Thus, there are results on congruences and full abstraction, conservative 
extension, security, etc. (See [7,6,8] for overviews and references therein.)

In this article we focus on congruence and full abstraction. A congruence theorem guarantees that whenever the rules 
of a TSS are in a particular format, then a designated equivalence relation is preserved by every context in the signature of 
such TSS. Thus, for instance, strong bisimulation equivalence [9] is a congruence on any TSS in the ntyft/ntyxt format [4]. 
Full abstraction is a somewhat dual result. An equivalence relation is fully abstract with respect to a language and a given 
equivalence relation ≡ if it is the largest relation included in ≡ that is a congruence for all operators in the language [10]. 
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This notion can be straightforwardly extended to a TSS format by considering all definable languages in such format: an 
equivalence relation is fully abstract with respect to a particular format and an equivalence relation ≡ if it is the largest 
relation included in ≡ that is a congruence for all operators whose semantics is defined by a TSS in that format [10]. For 
example, strong bisimilarity is fully abstract w.r.t. the ntyft/ntyxt format [4] but not w.r.t. the tyft/tyxt format [2] or the GSOS 
format [3].

The introduction of probabilistic process algebras [11–13, etc.] motivated the need for a theory of structural opera-
tional semantics to define probabilistic transition systems. Previous to the introduction of our format [14], few results have 
appeared in this direction [15–18] presenting congruence theorems for (probabilistic) bisimilarity [19,20], but no full ab-

straction result. All previously mentioned studies consider transitions in the form of a quadruple denoted by t
a,q−−→ t′ , where 

t and t′ are terms in the language, a is an action or label, and q ∈ (0, 1] is a probability value. A transition of that form 
denotes that term t can perform an action a and with probability q continue with the execution of t′ . Moreover, it is re-
quired that πt,a , defined by πt,a(t′) =∑

t
a,q−→t′ q, is a probability distribution. (This interpretation corresponds to the reactive 

view, it varies under the generative view [12].) This notation introduces several problems. The first one is that the transition 
relation cannot be treated as a set because two different derivations may yield the same quadruple. This requires artifacts 
like multisets or bookkeeping indexes. The second problem is that formats need to be defined jointly on a set of rules rather 
than a single rule to ensure that πt,a is a probability distribution. (Notice that πt,a depends on a set of transitions which 
are obtained using different rules.)

Rather than following this approach, we directly represent transitions as a triple t a−→ πt,a . Thus, a single triple contains 
the complete information of the probabilistic jump. Moreover, this representation also allows for non-determinism in the 
sense that if t a−→ π and t a−→ π ′ not necessarily π = π ′ as requested by reactive systems. Hence, our probabilistic transition 
system specifications (PTSS) define objects very much like Segala’s probabilistic automata [21]. More precisely we represent 
transitions using two different sorts, one that represent states and the other distributions. Thus a labeled transition t a−→ θ

goes from one state term t to a distribution term θ . If θ is a closed term, then its interpretations �θ � is a probability distri-
bution on state terms. By having a two-sorted signature, operations can be parameterized on distributions, and moreover, 
we can neatly express open terms in the rules of the PTSS. So, each (probabilistic) transition t

a−→ θ is obtained as a con-
sequence of a single derivation in our PTSSs, and hence formats focus on single rules (as it is the case for non-probabilistic 
TSSs). This significantly eases the inspection of the format. In addition, a byproduct of this choice is that the proof strategies 
for the majority of the lemmas and theorems of this article are much the same as those for their non-probabilistic relatives. 
We observe that this way of representing transitions in rules for process algebra has already appeared in [22], it is also used 
in the Segala-GSOS format [16] and it is pretty much related to bialgebraic approaches to SOS [16,23].

More precisely, the contributions on this article are:

1. We introduce PTSS with negative and quantitative premises and the possibility of lookahead (Section 3). It uses a 
two-sorted term algebra to represent the language, where the distribution sort is aimed to be interpreted as a probability 
distribution on the state sort. (Section 2.)

2. We use here the most general method to give meaning to PTSSs: we adapt the definition of least 3-valued stable 
models [5,24] to our setting and only limit to complete PTSSs when a 2-valued model is required. (Section 3.)

3. We introduce the ntμfθ/ntμxθ format in Section 4 and show through carefully crafted examples that each of the restric-
tions of the format is effectively needed to ensure that bisimulation is a congruence. Moreover, we present a shorthand 
notation that significantly simplifies the verification of the restrictions, making the format almost as easy to check as 
the ntyft/ntyxt format [4,5].

4. We give a detailed proof that bisimulation is a congruence for any operator defined within the ntμfθ/ntμxθ format as 
long as every rule is well-founded. (Section 5.)

5. We adapt the concept of conservative extension [2,8] to our probabilistic setting. Conservative extensions allow to modu-
larly extend a language preserving all the behavioral properties of the original terms. We also provide a general theorem 
that guarantees that an extension is conservative. This is presented in Section 6.

6. We show that bisimulation equivalence is fully abstract with respect to the ntμfθ/ntμxθ format and trace equivalence, 
that is, it is the coarsest congruence w.r.t. any operator definable in (complete) ntμfθ/ntμxθ PTSSs (Section 7).

7. Finally, we discuss some expressiveness issues. Notably, we show that the theory extends immediately to IMCs [25]
and Markov automata [26]. We also provide a format that guarantees that the model of the PTSS is indeed a Markov 
automaton. (Section 8.)

Besides reporting the full proofs, this article extends, improves and correct the work already presented in [14]. In fact, 
several mistakes were inadvertently introduced there. Some modifications have already been introduced in [27] but also 
there we have introduced some error. That is why we briefly report the differences and corrections in Appendix A.

2. Preliminaries

Let S = {s, d} be a set denoting two sorts. Elements of sort s ∈ S are intended to represent states in the transition system, 
while elements of sort d ∈ S will represent distributions over states. We let σ range over S .
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An S-sorted signature is a structure (F , ar), where (i) F is a set of function names, and (ii) ar : F → ((S∗ ∪ Sω) × S) is 
the arity function. The rank of f ∈ F is the number of arguments of f , defined by rk( f ) = n if ar( f ) = σ1 . . . σn → σ , and 
rk( f ) = ω if ar( f ) ∈ (Sω × S). (We write “σ1 . . . σn → σ ” instead of “(σ1 . . . σn, σ)” to highlight that function f maps to 
sort σ .) In particular, function f is a constant if rk( f ) = 0. Moreover, we denote with Fσ the subset of functions names in F
that map into sort σ . To simplify the presentation we will write an S-sorted signature (F , ar) as a pair of disjoint signatures 
(�s, �d) where �s is the set of operations that map to s and �d is the set of operations that map to d.

Let V and D be two infinite sets of s-sorted and d-sorted variables, respectively, where V , D, F are all mutually disjoint. 
We use x, y, z (with possible sub- or super-scripts) to range over V , μ, ν to range over D and ζ to range over V ∪D .

Definition 1. Let �s and �d be two signatures as before and let V ⊆ V and D ⊆D . We simultaneously define the sets of 
state terms T (�s, V , D) and distribution terms T (�d, V , D) as the smallest sets satisfying:

(i) V ⊆ T (�s, V , D);
(ii) D ⊆ T (�d, V , D);

(iii) f (ξ1, · · · , ξrk( f )) ∈ T (�σ , V , D), if ar( f ) = σ1 . . . σn . . .→ σ and ξi ∈ T (�σi , V , D).

We let T(�) = T (�s, V , D) ∪ T (�d, V , D) denote the set of all open terms and distinguish the sets T(�s) = T (�s, V , D)

of open state terms and T(�d) = T (�d, V , D) of open distribution terms. Similarly, we let T (�) = T (�s, ∅, ∅) ∪ T (�d, ∅, ∅)
denote the set of all closed terms and distinguish the sets T (�s) = T (�s, ∅, ∅) of closed state terms and T (�d) = T (�d, ∅, ∅)
of closed distribution terms. We let t , t′, t1, . . . range over state terms, θ , θ ′ , θ1, . . . range over distribution terms, and ξ , ξ ′ , 
ξ1, . . . range over any kind of terms. With Var(ξ) ⊆V ∪D we denote the set of variables occurring in term ξ .

Let 
(T (�s)) denote the set of all (discrete) probability distributions on T (�s). We let π range over 
(T (�s)). For 
each t ∈ T (�s), let δt ∈
(T (�s)) denote the Dirac distribution, i.e., δt(t) = 1 and δt(t′) = 0 if t and t′ are not syntactically 
equal. For X ⊆ T (�s) we define π(X) =∑

t∈X π(t). The convex combination 
∑

i∈I piπi of a family {πi}i∈I of probability 
distributions with pi ∈ (0, 1] and 

∑
i∈I pi = 1 is defined by (

∑
i∈I piπi)(t) =∑

i∈I (piπi(t)).
The type of signatures we consider has a particular construction. We start from a signature �s of finitary functions 

mapping into sort s and construct the signature �d of functions mapping into d as follows. For each f ∈ Fs we include a 
function symbol f ∈ Fd with ar( f ) = d . . .d → d and rk( f ) = rk( f ). We call f the probabilistic lifting of f . (We use boldface 
fonts to indicate that a function in �d is the probabilistic lifting of another in �s .) Moreover �d may include any of the 
following additional operators:

• δ with arity ar(δ) = s → d and
• ⊕

i∈I [pi] with I being a finite or countable infinite index set, 
∑

i∈I pi = 1, pi ∈ (0, 1] for all i ∈ I , and ar
(⊕

i∈I [pi]
)=

d|I| → d.

Notice that if I is countably infinite, 
⊕

i∈I [pi] is an infinitary operator. This is the only class of infinitary operators that we 
allow. We write θ1 ⊕p1 θ2 instead of 

⊕
i∈{1,2}[pi]θi whenever the index set I has exactly two elements.

Operators δ and 
⊕

i∈I [pi] are used to construct discrete probability functions of countable support: δ(t) is interpreted 
as a distribution that assigns probability 1 to the state term t and probability 0 to any other term t′ (syntactically) different 
from t , and 

⊕
i∈I [pi]θi represents a distribution that weights with pi the distribution represented by the term θi . Moreover, 

a probabilistically lifted operator f is interpreted by properly lifting the probabilities of the operands to terms composed 
with the operator f .

Formally, the algebra associated with a probabilistically lifted signature � = (�s, �d) is defined as follows. For sort s, 
it is the freely generated algebraic structure T (�s). For sort d, it is defined by the carrier 
(T (�s)) and the interpretation 
� � : T (�d) →
(T (�s)) defined by:

• �δ(t)� = δt for all t ∈ T (�s).
• �

⊕
i∈I [pi] θi � =∑

i∈I pi �θi � for {θi | i ∈ I} ⊆ T (�d),

• � f (θ1, . . . , θrk( f ))�( f (ξ1, . . . , ξrk( f ))) =
{∏

σi=s �θi �(ξi) if for all σ j = d, θ j = ξ j

0 otherwise

Here it is assumed that 
∏∅ = 1. Notice that in the semantics of a lifted function f , the big product only considers the 

distributions related to the s-sorted positions in f , while the distribution terms corresponding to the d-sorted positions in 
f should match exactly to the parameters of f . We remark that if f were infinitary, then the semantics of f (through an 
appropriate definition) would introduce continuous distributions.

A substitution ρ is a map V ∪ D → T(�) such that ρ(x) ∈ T(�s), for all x ∈ V , and ρ(μ) ∈ T(�d), for all μ ∈ D . 
A substitution is closed if it maps each variable to a closed term. A substitution extends to a mapping from terms to terms 
as usual.

Finally, we remark a general property of distribution terms: let f ∈ �s with ar( f ) = σ1 . . . σn → s, and let σ j = s; then 
f ∈�d is distributive w.r.t. ⊕ in the position j, i.e.



P.R. D’Argenio et al. / Information and Computation 249 (2016) 76–109 79
�ρ( f (. . . , ξ j−1,
⊕

i∈I [pi]θi, ξ j+1, . . .))� = �ρ(
⊕

i∈I [pi] f (. . . , ξ j−1, θi, ξ j+1, . . .))�

for any closed substitution ρ . The proof follows straightforwardly from the definition of � � . However, notice that f does 
not distribute w.r.t. ⊕ in a position k such that σk = d.

Example 1. We define a comprehensive signature that sets the framework of our running example. We assume the existence 
of a set A of action labels. Let � = (�s, �d) be a probabilistically lifted signature such that �s is a signature that contains:

• constants 0 (stop process) and ε (skip process) of sort s, i.e., ar(0) = ar(ε) = s;
• a family of unary probabilistic prefix operators a. with a ∈ A and ar(a) = d → s,
• binary operators + (alternative composition or sum), ; (sequential composition), and, for each B ⊆ A, ||B (parallel 

composition) with ar(+) = ar(;) = ar(||B) = ss → s; and
• a family of unary operators fsF ( ) and scF ( ) for each F ⊆ A, with ar(fsF ) = ar(scF ) = s → s, that we call, respectively, 

faulty state and safe controller.

Moreover, �d contains δ, all binary operators ⊕p , and the lifted operators, which are as follows:

• constants, 0 and ε with ar(0) = ar(ε) = d;
• the family of unary operators a. , with a ∈ A and ar(a) = d → d,
• binary operators +, ;, and, for each B ⊆ A, ||B with ar(+) = ar(;) = ar(||B) = dd → d, and
• the unary operators fsF ( ) and scF ( ) with F ⊆ A and ar(fsF ) = ar(scF ) = d → d.

The intended meaning of the probabilistic prefix operator a.θ is that this term can perform action a and move to term t
with probability �θ �(t). Operator t ||B t′ is a CSP-like parallel composition where actions in B are forced to synchronize and 
all other actions should be performed independently. The rest of the operators, with the exception of fsF and scF , have the 
usual meaning.

The set F ⊆ A in fsF and scF contains the set of all actions that are consider a failure. fsF (t) checks if t is a process 
that inevitably ends up executing a failure action in F with some positive probability. This is indicated by letting fsF (t)
successfully terminate. That is, fsF (t) successfully terminates if for any possible resolution of the non-determinism, the 
probability that t eventually reaches a state that executes a failure action in F is greater than 0. Otherwise it behaves as 
the stop process. scF (t) controls the process t so that it never reaches a state in which it will inevitably end up executing 
a failure action in F . It preserves all other behavior. �

Notice that the same Dirac distribution of a closed state term can be written in several ways using the operator δ or the 
probabilistically lifted signature. Thus the terms δ(a.ε ||B(a.ε+b.ε)), a.ε||Bδ(a.ε+b.ε), and a.ε||B(a.ε+b.ε) represent the 
same distribution. Indeed, it is not difficult to show that δa.ε ||B (a.ε+b.ε) = �δ(a.ε ||B(a.ε+ b.ε))� = �a.ε||Bδ(a.ε+ b.ε)� =
�a.ε||B(a.ε + b.ε)� . However, the Dirac operator δ is necessary to construct open distribution terms. The term δ(x) cannot 
be written in another manner, since the instance of the state term variable x is not yet known.

3. Probabilistic transition system specifications

A (probabilistic) transition relation prescribes which possible activity can be performed by a term in a signature. Such 
activity is described by the label of the action and a probability distribution on terms that indicates the probability to 
reach a particular new term. We will follow the probabilistic automata style of probabilistic transitions [21] which are a 
generalization of the so-called reactive model [20].

Definition 2 (PTS). A probabilistic labeled transition system (PTS) is a triple (T (�s), A, −→), where � = (�s, �d) is a probabilis-
tically lifted signature, A is a countable set of actions, and −→⊆ T (�s) × A ×
(T (�s)), is a transition relation.

We write t a−→ π for (t, a, π) ∈−→.
Transition relations are usually defined by means of structured operational semantics in Plotkin’s style [1]. Algebraic 

characterizations of this style were provided in [2,4,5] where the term transition system specification was used and which we 
adopt in our paper. In fact, based on these works, we define probabilistic transition system specifications.

Definition 3 (PTSS). A probabilistic transition system specification (PTSS) is a triple P = (�, A, R) where � is a probabilistically 
lifted signature, A is a set of labels, and R is a set of rules of the form:

{tk
ak−−→ θk | k ∈ K } ∪ {tl

bl−→� | l ∈ L} ∪ {θ j(T j) �
 j q j | j ∈ J }
t

a−→ θ

where K , L, J are index sets, t, tk, tl ∈ T(�s), a, ak, bl ∈ A, T j ⊆ T(�s), �
 j ∈ {>, ≥, <, ≤}, q j ∈ [0, 1] and θ j, θk, θ ∈ T(�d).
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Table 1
Rules for the process algebra of Example 1 (Y ⊆V is a countably infinite set, x /∈ Y , and {�} ∩ A = ∅).

ε
�−−→ 0 a.μ

a−→μ

x
a−→μ

x+ y
a−→μ

y
a−→μ

x+ y
a−→μ

x
a−→μ

x; y
a−→μ;δ(y)

a �=� x
�−−→μ y

a−→μ′

x; y
a−→μ′

x
a−→μ

x ||B y
a−→μ||Bδ(y)

a /∈ B ∪ {�} y
a−→μ

x ||B y
a−→ δ(x)||Bμ

a /∈ B ∪ {�}

x
a−→μ y

a−→μ′

x ||B y
a−→μ||Bμ′

a ∈ B ∪ {�}

x
a−→μ μ(Y ) > 0 {fsF (y)

�−−→� | y ∈ Y }
scF (x)

a−→ scF (μ)
a /∈ F

x
b−→μ {x a−→� | a /∈ F }

fsF (x)
�−−→ 0

b ∈ F
x

a−→μ {scF (x)
a′−→� | a′ ∈ A ∪ {�}}

fsF (x)
�−−→ 0

Expressions of the form t
a−→ θ , t

a−→� , and θ(T ) �
 p are called positive literal, negative literal, and quantitative literal, 
respectively. For any rule r ∈ R , literals above the line are called premises, notation prem(r); the literal below the line is 
called conclusion, notation conc(r). We denote with pprem(r), nprem(r), and qprem(r) the sets of positive, negative, and 
quantitative premises of the rule r, respectively. A rule r without premises is called an axiom. In general, we allow the sets 
of positive, negative, and quantitative premises to be infinite.

Substitutions provide instances to the rules of a PTSS that, together with some appropriate machinery, allow us to define 
probabilistic transition relations. Given a substitution ρ , it extends to literals as follows:

ρ(t
a−→� )= ρ(t)

a−→� ρ(θ(T ) �
 p)= ρ(θ)(ρ(T )) �
 p ρ(t
a−→ θ)= ρ(t)

a−→ ρ(θ)

We say that r′ is a (closed) instance of a rule r if there is a (closed) substitution ρ so that r′ = ρ(r). We say that ρ is 
a proper substitution of r if for all quantitative premises θ(T ) �
 p of r and all t ∈ T , �ρ(θ)�(ρ(t)) > 0 holds. Thus, if ρ is 
proper, all terms in ρ(T ) are in the support of �ρ(θ)� . Proper substitutions avoid the introduction of spurious terms, i.e. 
terms that after a transition are reached with probability 0. We use only this kind of substitution in the paper.

Example 2. The rules for the process algebra of Example 1 are defined in Table 1. We assume that � /∈ A. We denote 
with Psc the PTSS defined by these rules. We only explain the rules for scF and fsF since the other rules resemble their 
counterparts in a traditional non-probabilistic setting.

The rule for scF states that scF (t) is allowed to perform a non-failing step that t can perform as long as this step does 
not lead to an inevitable failure with non-zero probability. The first rule for fsF states that fsF (t) inevitably fails if it can 
only perform a failure action. The second rule sates that if scF (t) is not able to perform any action while t is, then it must 
be because t will inevitably fail with non-zero probability. This rule uses the lookahead embedded in the rule for scF to 
assess that, in the long run, t will eventually execute a failure action with some non-zero probability. In the following, we 
show that the interaction between the second rule of fsF and the rule of scF through negative premises is not a problem 
and that this PTSS has a clearly defined semantics. �

In the rest of the paper, we will deal with models as symbolic transition relations in the set T (�s) × A × T (�d) rather 
than the concrete transition relations in T (�s) × A ×
(T (�s)) required by a PTS. Hence we will mostly refer with the term 
“transition relation” to the symbolic transition relation. In any case, a symbolic transition relation induces always a unique 
concrete transition relation by interpreting every target distribution term as the distribution it defines; that is, the symbolic 
transition t

a−→ θ is interpreted as the concrete transition t
a−→ �θ � . If the symbolic transition relation turns out to be a 

model of a PTSS P , we say that the induced concrete transition relation defines a PTS associated to P .
However, first we need to define an appropriate notion of model. As has already been argued many times (e.g. [4,5,24]), 

transition system specifications with negative premises do not uniquely define a transition relation and different reasonable 
techniques may lead to incomparable models. For instance, the PTSS with the single constant f , set of labels {a, b} and the 
two rules

f
b−→�

f
a−→ f

and
f

a−→�
b

, (1)

f −→ f
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has two models that are justifiably compatible with the rules (so-called supported models [3,5,24]): { f
a−→ f } and { f

b−→ f }.
An alternative view is to consider 3-valued models. A 3-valued model partitions the set T (�s) × A × T (�d) in three sets 

containing, respectively, the transition that are known to hold, that are known not to hold, and those whose validity is 
unknown. Thus, a 3-valued model can be presented as a pair 〈CT,PT〉 of transition relations CT, PT⊆ T (�s)× A × T (�d), 
with CT ⊆ PT, where CT is the set of transitions that certainly hold and PT is the set of transitions that possibly hold. 
So, transitions in PT \ CT are those whose validity is unknown and transitions in (T (�s) × A × T (�d)) \ PT are those that 
certainly do not hold.

A 3-valued model 〈CT,PT〉 that is justifiably compatible with the proof system defined by a PTSS P is said to be stable
for P . We will make clear what we mean by “justifiably compatible” in Definition 5.

Before formally defining the notions of proof and 3-valued stable model we introduce some notation. Given a transition 
relation Tr⊆ T (�s) × A × T (�d), t a−→ θ holds in Tr, notation Tr |= t

a−→ θ , if t a−→ θ ∈ Tr; t a−→� holds in Tr, notation Tr |= t
a−→� , 

if for all θ ∈ T (�d), t a−→ θ /∈ Tr. A closed quantitative constraint θ(T ) �
 p holds in Tr, notation Tr |= θ(T ) �
 p, if �θ �(T ) �
 p. 
Notice that the satisfaction of a quantitative constraint does not depend on the transition relation. We nonetheless use this 
last notation as it turns out to be convenient. Given a set of literals H , we write Tr |= H if for all φ ∈ H , Tr |= φ.

Definition 4 (Proof). Let P = (�, A, R) be a PTSS. Let ψ be a positive literal and let H be a set of literals. A proof of a 
transition rule H

ψ
from P is a well-founded, upwardly branching tree where each node is a literal such that:

1. the root is ψ ; and
2. if χ is a node and K is the set of nodes directly above χ , then one of the following conditions holds:

(a) K = ∅ and χ ∈ H , or
(b) χ = (θ(T ) �
 p) is a closed quantitative literal such that �θ �(T ) �
 p holds, or
(c) K

χ is a valid substitution instance of a rule from R .

H
ψ

is provable from P , notation P � H
ψ

, if there exists a proof of H
ψ

from P .

Before, we said that a 3-valued stable model 〈CT,PT〉 for a PTSS P has to be justifiably compatible with the proof system 
defined by P . By “compatible” we mean that 〈CT,PT〉 has to be consistent with every provable rule. With “justifiable” we 
require that for each transition in CT and PT there is actually a proof that justifies it. More precisely, we require that (a) for 
every certain transition in CT there is a proof in P such that all negative hypotheses of the proof are known to hold (i.e. 
there is no possible transition in PT denying a negative hypothesis), and (b) for every possible transition in PT there is 
a proof in P such that all negative hypotheses possibly hold (i.e. there is no certain transition in CT denying a negative 
hypothesis). This is formally stated in the next definition.

Definition 5 (3-valued stable model). Let P = (�, A, R) be a PTSS. A tuple 〈CT,PT〉 with CT⊆ PT⊆ T (�s)× A × T (�d) is a 
3-valued stable model for P if for every closed positive literal ψ ,

(a) ψ ∈ CT iff there is a set N of closed negative literals such that P � N
ψ

and PT |= N

(b) ψ ∈ PT iff there is a set N of closed negative literals such that P � N
ψ

and CT |= N .

The example above, in equation (1), has three 3-valued stable models: 〈{ f
a−→ f }, { f

a−→ f }〉, 〈{ f
b−→ f }, { f

b−→ f }〉, and 
〈∅, { f

a−→ f , f
b−→ f }〉. Notice that the last one is the model that contains least information in the sense that it is the one 

with most unknown transitions. Formally, a model 〈CT,PT〉 has at most as much information as 〈CT′,PT′〉, if CT ⊆ CT′ and 
PT⊇ PT′ . It turns out that every PTSS has an (information-)least 3-valued stable model [24].2

In fact, the least 3-valued stable model of a PTSS can be constructed using induction. (We borrow this construction 
from [28,29].)

Lemma 1. Let P be a PTSS. For each ordinal α, define the pair 〈CTα,PTα〉 as follows:

• CT0 = ∅ and PT0 = T (�s) × A × T (�d).
• For every non-limit ordinal α > 0, define:

CTα =
{

t
a−→ θ | for some set N of negative literals, P � N

t
a−→θ

and PTα−1 |= N
}

2 Since every non-trivial closed transition rule H
ψ

provable in a PTSS can be rewritten as a rule such that H does not contains quantitative literals, the 
results about meaning of TSS of [5,24] can be easily restated and proved in our setting mutatis mutandis. Therefore and without further ado, we will credit 
these articles in respect to the results about meaning of PTSS with negative premises.
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PTα =
{

t
a−→ θ | for some set N of negative literals, P � N

t
a−→θ

and CTα−1 |= N
}

• For every limit ordinal α, define

CTα =⋃
β<α CTβ and PTα =⋂

β<α PTβ

Then:

1. if β ≤ α, CTβ ⊆ CTα and PTβ ⊇ PTα , that is, 〈CTβ,PTβ〉 has at most as much information as 〈CTα,PTα〉, and
2. there is an ordinal λ such that CTλ = CTλ+1 and PTλ = PTλ+1 . Moreover, 〈CTλ,PTλ〉 is the least 3-valued stable model for P .

This result is shown in [29,28] for a non-probabilistic setting and using a slightly different definition of 3-valued models. 
(With minor changes the same proofs appearing in [29,28] apply to our setting). We remark that the first item of the 
lemma can be proved using transfinite induction on the lexicographic order of (α, β), and the second item follows using 
the Knaster–Tarski theorem.3

PTSSs with least 3-valued stable model that are also a 2-valued model are particularly interesting, since this model is 
actually the only 3-valued stable model [5,24].

Definition 6. A PTSS P is said to be complete if its least 3-valued stable model 〈CT,PT〉 satisfies that CT = PT (i.e., the 
model is also 2-valued).

PTSSs not containing rules with negative premises as well as stratifiable PTSSs [14,4] are complete [5,24].
We associate a probabilistic transition system to each complete PTSS.

Definition 7. Let P be a complete PTSS and let 〈Tr,Tr〉 be its unique 3-valued stable model. We say that Tr is the transition 
relation associated to P . We also define the PTS associated to P as the unique PTS (T (�s), A, −→) such that t a−→ π if and only 
if t a−→ θ ∈ Tr and �θ � = π for some θ ∈ T (�d).

Two PTSSs P and P ′ are equivalent if they have the same associated transition relation. The next lemma states that to 
show that two PTSSs are equivalent, it is sufficient to show that they can prove the same set of rules with only negative 
premises.

Lemma 2. Let P and P ′ be two PTSSs over the same signature such that P � N
c iff P ′ � N

c for all closed rule N
c with N containing only 

negative premises. Then

1. a 3-valued model is stable for P iff it is stable for P ′,
2. P is complete iff P ′ is complete, and
3. if any of P or P ′ is complete, then they have associated the same transition relation and the same PTS.

This lemma is an adapted variant of (part of) Proposition 29 in [24]. Its proof follows by observing that only closed rules 
with negative premises are needed in Definition 5.

Example 3. We show that the PTSS Psc defined in Example 2 is complete. For this we will use Lemma 2 and the notion of 
stratification. A stratification for a given PTSS is a function str : (T (�s) × A × T (�d)) → α, for some ordinal α, such that for 
every rule r in the PTSS and closed (proper) substitution ρ , it holds that

1. for every ψ ∈ pprem(r), str(ρ(ψ)) ≤ str(ρ(conc(r))), and

2. for every t a−→� ∈ nprem(r) and closed term θ ∈ T (�d), str(ρ(t) a−→ θ) < str(ρ(conc(r))).

If such a stratification exists the PTSS is complete [5,24].
Unfortunately, our running example is not stratifiable as such. This can be seen from the two rules in which scF and fsF

interact. By taking a proper closed substitution ρ such that ρ(x) = ρ(Y ) = a.0 and ρ(μ) = a.0 we obtained the following 
closed instances of the rules:

a.0
a−→ a.0 (a.0)(a.0) > 0 fsF (a.0)

�−−→�
scF (a.0)

a−→ scF (a.0)

a.0
a−→ a.0 {scF (a.0)

b−→� | b ∈ A ∪ {�}}
fsF (a.0)

�−−→ 0

3 To construct the actual complete lattice for the Knaster–Tarski theorem, [29] adopts a different construction of pairs to represent 3-valued models. 
These pairs have the form 〈CT,UT〉 where CT is as before and UT⊆ T (�s)× A × T (�d) is the set of unknown transitions. In our setting, this corresponds 
to a pair 〈CT,CT∪UT〉. To see the treatment of this type of construction see [29,28].
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provided a /∈ F . Notice that any stratification function needs to satisfy that str(fsF (a.0) �−−→ 0) < str(scF (a.0) a−→ scF (a.0)) <
str(fsF (a.0) �−−→ 0), which is a clear contradiction.

Obviously, we expect the first rule to be spurious since, hopefully, transition a.0
a−→ a.0 will be false in any 3-valued 

stable model. So, we construct an equivalent PTSS that precisely rules out any of these spurious rules and show that this 
other PTSS is indeed stratifiable and hence complete. Using Lemma 2 we conclude that our PTSS of Example 2 is also 
complete.

So, the new PTSS P ′sc contains exactly all closed rules provable in Psc of the form N
ψ

with N being a minimal set of 
negative premises. By minimal we indicate that all literals in N should appear in some node of the proof of Psc � N

ψ
. Clearly 

Psc and P ′sc are in the conditions of Lemma 2. Therefore we only have to prove that P ′sc is stratifiable.

Define the stratification function for P ′sc by str(t
a−→ θ) = str(t) for all closed transition t

a−→ θ where str is inductively 
defined on the structure of the terms as follows:

str(0)= str(0)= 0 str(scF (t))= str(t)

str(ε)= str(ε)= 2 str(scF (θ))= str(θ)

str(a.θ)= str(a.θ)= str(θ)+ 2 str(fsF (t))= str(t)+ 1

str(t1 + t2)=max{str(t1), str(t2)} str(fsF (θ))= str(θ)+ 1

str(θ1 + θ2)=max{str(θ1), str(θ2)} str(δ(t))= str(t)

str(t1; t2)= str(t1 ||B t2)= str(t1)+ str(t2) str(θ1 ⊕p θ2)=max{str(θ1), str(θ2)}
str(θ1;θ2)= str(θ1||Bθ2)= str(θ1)+ str(θ2)

Using induction on the height of the proof of Psc � N

t
a−→θ

, we show that for every rule N

t
a−→θ

in P ′sc , str satisfies:

(a) str(t) ≥ str(θ) + 2, and

(b) for every t′ a−→� ∈ N , str(t′) < str(t).

From (b) it follows that str is a stratification in P ′sc . We first state two facts that can be proven by structural induction:

F1. For every ξ ∈ T (�), str(ξ) ∈N.
F2. For every θ ∈ T (�d) and t ∈ T (�s), if �θ �(t) > 0 then str(θ) ≥ str(t).

Fact F1 holds because �d does not contain the infinitary version of 
⊕

i∈I [pi] . (In fact, it only contains the binary ⊕p .) 
Besides, F1 ensures that the sum is commutative. This is important for the induction in the cases in which rules for ; and 
||B are applied.

We will only show the case in which the rule for scF is used at the root of the proof of Psc � N

t
a−→θ

since this is the 

most relevant case. Thus, there is a closed substitution ρ such that scF (ρ(x)) = t , scF (ρ(μ)) = θ , Psc � N ′
ρ(x)

a−→ρ(μ)
with 

minimal N ′ ⊆ N , �ρ(μ)�(ρ(y)) > 0 for all y ∈ Y , and {fsF (ρ(y)) �−−→� | y ∈ Y } ⊆ N .
Using case (a) of the induction hypothesis, we calculate str(t) = str(scF (ρ(x))) = str(ρ(x)) ≥ str(ρ(μ)) + 2 =

str(scF (ρ(μ))) + 2 = str(θ) + 2, which proves (a).
Using case (b) of the induction hypothesis, we have that

for every t′ a−→� ∈ N ′, str(t′) < str(ρ(x))= str(scF (ρ(x)))= str(t) (2)

and, using Fact F2 and case (a) of the induction hypothesis, for all y ∈ Y ,

str(fsF (ρ(y)))= str(ρ(y))+ 1 < str(ρ(μ))+ 2≤ str(ρ(x))= str(scF (ρ(x)))= str(t). (3)

Hence, by (2) and (3) and the fact that N = N ′ ∪ {fsF (ρ(y)) �−−→� | y ∈ Y }, case (b) is proven. �

4. The ntμf θ/ntμxθ format

In this section we introduce our rule format. We motivate and discuss each of the choices that restrict the format by 
showing that if they are relaxed, we can construct an operator for which bisimulation is not a congruence. First, we define 
formally the notion of bisimulation on probabilistic transition systems [19,20]. The definition we adopt in this paper is a 
little less common since it does not require that the relation is an equivalence as in [19,20], nor deals with sets closed 
under the relation as in [30,31]. Nevertheless the largest bisimulation according to the definition here is indeed the usual 
bisimulation equivalence [22, Prop. 3.4.4].

Given a relation R⊆ T (�s) × T (�s), its lift to 
(T (�s)) ×
(T (�s)) is defined as follows: π R π ′ if and only if there is a 
weight function w : (T (�s) × T (�s)) →[0, 1] such that for all t, t′ ∈ T (�s), (i) w(t, T (�s)) = π(t), (ii) w(T (�s), t′) = π ′(t′), 
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and (iii) w(t, t′) > 0 implies t R t′ . It is easy to check that the weight function is a probability distribution on (T (�s) ×
T (�s)). Moreover, the lifting of R is reflexive, symmetric or transitive if R is. The overloading on the use of R should be 
harmless.

Definition 8. Let P = (T (�s), A, −→) be a PTS. A relation R⊆ T (�s) × T (�s) is a bisimulation if R is symmetric and for all 
t, t′ ∈ T (�s), π ∈
(T (�s)), a ∈ A,

t R t′ and t
a−→ π imply that there exists π ′ ∈
(T (�s)) s.t. t′ a−→ π ′ and π R π ′.

We define the relation ∼, called bisimilarity or bisimulation equivalence, as the smallest relation that includes all bisimulation 
relations. It is well-known that ∼ is itself a bisimulation and an equivalence relation.

A congruence over an algebraic structure is an equivalence relation on the algebra elements that is compatible with its 
structure. Formally, a (sort-respecting) equivalence relation R⊆ T (�) ×T (�) is a congruence if for all f ∈� and ξi, ξ ′i ∈ T (�)

with ξi R ξ ′i for all i ∈ {1, . . . , rk( f )}, f (ξ1, . . . , ξrk( f )) R f (ξ ′1, . . . , ξ ′rk( f )).
In our setting we interpret R on distribution terms as the lifting of R from their interpretation: for θ, θ ′ ∈ T (�d), we 

define θ R θ ′ if and only if �θ � R �θ ′� .
An interesting result is that if � is a probabilistically lifted signature, then it suffices to prove that R is only preserved 

by the s-mapping function symbols.

Proposition 3. Let � = (�s, �d) be a probabilistically lifted signature. Let R⊆ T (�) × T (�) be a relation such that

1. for all θ, θ ′ ∈ T (�d), θ R θ ′ iff �θ � R �θ ′� , and
2. for all f ∈�s and ξi, ξ ′i ∈ T (�) with ξi R ξ ′i , i ∈ {1, . . . , rk( f )}, f (ξ1, . . . , ξrk( f )) R f (ξ ′1, . . . , ξ ′rk( f )).

Then, for all f ∈�d, if θi R θ ′i for all i ∈ {1, . . . , rk( f )}, f (θ1, . . . , θrk f ) R f (θ ′1, . . . , θ ′rk f ).
As a consequence, if R is an equivalence relation, then it is also a congruence on �.

Proof. The fact that R is a congruence whenever it is an equivalence relation, follows from item 2, for all s operators, and 
the first part of the proposition, for all d operators. Therefore, we only prove the first part. We proceed by induction doing 
a case analysis.

Case δ. Suppose t R t′ . By defining the weight function w(t, t′) = 1 we can conclude that δ(t) R δ(t′).

Case 
⊕

. Suppose θi R θ ′i which is witnessed by the weight function wi , for all i ∈ I . By straightforward calculations, we 
can conclude that w , defined by w(t, t′) =∑

i∈I pi wi(t, t′), for all t, t′ ∈ T (�s), is a weight function witnessing 
⊕

i∈I [pi]θi R⊕
i∈I [pi]θ ′i .

Case f . Let f be the probabilistic lifting of f with ar( f ) = σ1 . . . σrk( f )→ s. For simplicity, assume that the sets of indexes I
and J are a partition of {1, . . . , rk( f )}, where σi = s for all i ∈ I and σ j = d for all j ∈ J . Suppose that θi R θ ′i is witnessed 
by the weight function wi , for all i ∈ I . We define function w by

w( f (ξ1, . . . , ξrk( f )), f (ξ ′1, . . . , ξ ′rk( f )))=
∏

i∈I wi(ξi, ξ
′
i ) ·

∏
j∈ J 1θ j (ξ j) · 1θ ′j (ξ

′
j)

and w(t, t′) = 0 in any other case. The characteristic function 1θ used above, is defined as usual: 1θ (θ) = 1 and 1θ (θ
′) = 0

for all θ ′ �= θ . We show that w satisfy (i)–(iii) and, as a consequence, it witnesses f (θ1, . . . , θrk f ) R f (θ ′1, . . . , θ ′rk f ). For (i), 
we calculate:

w( f (ξ1, . . . , ξrk( f )), T (�s))=∑
(ξ1,...,ξrk( f ))∈T (�)rk( f ) w( f (ξ1, . . . , ξrk( f )), f (ξ ′1, . . . , ξ ′rk( f )))

=∑
(ξ ′1,...,ξ ′rk( f ))∈T (�)rk( f )

∏
i∈I wi(ξi, ξ

′
i ) ·

∏
j∈ J 1θ j (ξ j) · 1θ ′j (ξ

′
j)

=∏
i∈I

∑
ξ ′i∈T (�s)

wi(ξi, ξ
′
i ) ·

∏
j∈ J 1θ j (ξ j) ·∑ξ ′j∈T (�d) 1θ ′j (ξ

′
j)

=∏
i∈I wi(ξi, T (�s)) ·∏ j∈ J 1θ j (ξ j) · 1θ ′j (T (�d))

=∏
i∈I �θi �(ξi) ·∏ j∈ J 1θ j (ξ j)

= � f (θ1, . . . , θrk f )�( f (ξ1, . . . , ξrk( f )))

The case of (ii) follows similarly. For (iii), suppose w( f (ξ1, . . . , ξrk( f )), f (ξ ′1, . . . , ξ ′rk( f ))) > 0. Hence 
∏

i∈I wi(ξi, ξ
′
i ) ·∏

j∈ J 1θ j (ξ j) · 1θ ′j (ξ
′
j) > 0 and from here wi(ξi, ξ ′i ) > 0, for all i ∈ I , and θ j = ξ j and θ ′j = ξ ′j , for all j ∈ J . As a consequence 

ξi R ξ ′i , because wi is a weight function, and ξ j = θ j R θ ′j = ξ ′j by hypothesis. From here, f (ξ1, . . . , ξrk( f )) R f (ξ ′1, . . . , ξ ′rk( f ))

by the hypothesis of the lemma. �



P.R. D’Argenio et al. / Information and Computation 249 (2016) 76–109 85
Before introducing the ntμfθ/ntμxθ format, we give a first approach to extend the ntyft/ntyxt format with probabilities 
that considers a restrictive form of quantitative premise. It can also be seen as a generalization of Segala-GSOS format [16]
with terms in the premises as well as full lookahead. This first approach considers rules of the form

{tm
am−−→μm |m ∈ M} ∪ {tn

bn−−→� | n ∈ N} ∪ {θl(zl) > 0 | l ∈ L}
f (ζ1, . . . , ζrk( f ))

a−→ θ
(F)

where M , N , and L are index sets, zl , ζk , and μm , with 1 ≤ k ≤ rk( f ) and m ∈ M , are all different variables, 
(⋃

l∈L Var(θl)
)∩

{ζ1, . . . , ζrk( f )} = ∅, f ∈ Fs , tm, tn ∈ T(�s), and θl, θ ∈ T(�d).
It can be proved that bisimilarity is a congruence for any operator defined in format (F). Indeed, it follows as a corollary 

of Theorem 4 since format (F) can be seen as a particular case of a rule in ntμfθ format.
In the following we present several counterexamples justifying the restrictions imposed by format (F). These counterex-

amples also apply to the ntμfθ/ntμxθ format.
We consider the probabilistic lifting of a signature containing unary operator f with ar( f ) = s → s, and three constants b, 

c and d of sort s, together with a label a ∈ A. We will also consider the following axioms:

c
a−→ c d

a−→ θd where θd = c ⊕0.5 d

No rule is associated to constant b. Notice that c ∼ d. In the following we concentrate on rules for f .
The need that the source of the conclusion of a rule has a particular format has already been shown by several coun-

terexamples in [2,4] for the tyft/tyxt format. We adapt an example from [4] to motivate the need. Consider the axiom

f (b)
a−→ f (b).

Then f ( f (b)) ∼ b since none of them perform any action. However, f ( f ( f (b))) and f (b) are not bisimilar since f (b) can 
perform an action but f ( f ( f (b))) cannot.

Consider now the rule

x
a−→ c

f (x)
a−→ c

.

Then, despite that c ∼ d, f (c) and f (d) are not bisimilar since d a−→ c is not a valid transition in the (unique) supported 
model. This shows that the target of a positive premise cannot be a distribution on a particular (shape of) term.

The following rule has a similar problem:

x
a−→μ μ(d) > 0

f (x)
a−→ c

This rule shows that quantitative literals cannot inquire over arbitrary terms: note that f (c) and f (d) are not bisimilar since 
c

a−→ c and �c�(d) = 0.
Moreover, the requirement that all variables zl , μm , and ζk are different is inherited from the tyft/tyxt format. Examples 

from [2] are easily adaptable to our setting.
Allowing for a quantitative literal that compares with a value different from 0 is also problematic. Consider rule

x
a−→μ μ(y)≥ 1 y

a−→μ′

f (x)
a−→ c

Again f (c) and f (d) are not bisimilar since d a−→ θd , and there is no single term t in which �θd �(t) ≥ 1.
This example suggests that quantitative premises should have the form μ(Y ) > p or μ(Y ) ≥ p where Y is a set of 

variables. So the previous rule could be recast as

x
a−→μ μ({y, z})≥ 1 y

a−→μ′

f (x)
a−→ c

(4)

However, the same problem repeats if we introduce a new constant e and axiom e a−→ ([0.4]c ⊕ [0.3]d⊕ [0.3]e). In fact, it 
turns out that Y needs to be infinite (consider the case in which a new infinite set of constants {en}n∈N0 is defined with 
en

a−→ (⊕i∈N0

[
1

2i+1

]
ei)). Moreover, it is necessary that all terms that substitute some variable in Y have some symmetric 

behavior, i.e, all variable in Y has to satisfy the same conditions. In rule 4 such symmetric behavior is not present, allowing 
for z to be substituted by any valid term, in particular one that not necessarily performs action a which was not the 
originally intended behavior. Moreover, symmetry is also necessary for the congruence result as we will see later.

In view of these considerations, we extend format (F) with quantitative premises of the form θ(Y ) > p or θ(Y ) ≥ p, with 
Y an infinite set of term variables. We call this format ntμfθ/ntμxθ following the nomenclature of [2,4]. Later we will give 
an example justifying the symmetry restriction. The following definition is important to ensure symmetry.
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Definition 9. Let {Yl}l∈L be a family of sets of state term variables in V with the same cardinality. Let W ⊆ V . The l-th 
element of a tuple �z is denoted by �z(l). For a set of tuples T = {�zi | i ∈ I} we denote the l-th projection by �l(T ) = {�zi(l) |
i ∈ I}. We say that Z ⊆∏

l∈L Yl ×∏
ζ∈W {ζ } is a diagonal in 

∏
l∈L Yl , if

1. for all l ∈ L, �l(Z) = Yl; and
2. for all �z, �z′ ∈ Z , (∃l ∈ L : �z(l) = �z′(l)) ⇒�z= �z′ .

Property (ii) ensures that different tuples �z, �z′ ∈ Z differ in all L-positions, and by property (i) every variable of every Yl
is used in (exactly) one �z ∈ Z . We call this property “diagonal” following the intuition that each L-prefix of �z represents a 
coordinate in the space 

∏
l∈L Yl , so that the L-projection of Z can be seen as the line that traverses the main diagonal of 

the space 
∏

l∈L Yl . Therefore, notice that, for Yl = {y0
l , y1

l , y2
l , . . .} and W = {w1, . . . , wn}, a possible definition for Z such 

that it is a diagonal in 
∏

l∈L Yl , is

Z = {(y0
1, y0

2, . . . , y0
L, w1, . . . , wn), (y1

1, y1
2, . . . , y1

L, w1, . . . , wn), (y2
1, y2

2, . . . , y2
L, w1, . . . , wn), . . .}

In addition, we use the following notation: t(ζ1, . . . , ζn) denotes a term that only has variables in the set {ζ1, . . . , ζn}, that 
is Var(t(ζ1, . . . , ζn)) ⊆ {ζ1, . . . , ζn}, and moreover, t(ζ ′1, . . . , ζ ′n) denotes the same term as t(ζ1, . . . , ζn) in which each variable 
ζi has been replaced by ζ ′i .

Definition 10. Let P = (�, A, R) be a PTSS. A rule r ∈ R is in ntμfθ format if it has the following form

⋃
m∈M{tm(�z) am−−→μ�zm | �z ∈ Z} ∪ ⋃

n∈N{tn(�z) bn−−→� | �z ∈ Z} ∪ {θl(Yl) �l,k pl,k | l ∈ L,k ∈ Kl}
f (ζ1, . . . , ζrk( f ))

a−→ θ

with �l,k ∈ {>, ≥} for all l ∈ L and k ∈ Kl , Yl ⊆V for all l ∈ L, W ⊆V ∪D\ ⋃l∈L Yl and Z ∈∏
l∈L Yl×∏

ζ∈W {ζ } is a diagonal 
in 

∏
l∈L Yl . In addition, it has to satisfy the following conditions:

1. Each set Yl should be at least countably infinite, for all l ∈ L, and the cardinality of L should be strictly smaller than 
that of the Yl ’s.

2. All variables ζ1, . . . , ζrk( f ) are different.
3. All variables μ�zm , with m ∈ M and �z ∈ Z , are different and {ζ1, . . . , ζrk( f )} ∩ {μ�zm | �z ∈ Z, m ∈ M} = ∅.
4. For all l ∈ L, Yl ∩ {ζ1, . . . , ζrk( f )} = ∅, and Yl ∩ Yl′ = ∅ for all l′ ∈ L, l �= l′ .
5. For all m ∈ M , the set {μ�zm | �z ∈ Z} ∩ (

Var(θ)∪ (
⋃

l∈L Var(θl))∪W
)

is finite.
6. For all l ∈ L, the set Yl ∩

(
Var(θ)∪⋃

l′∈L Var(θl′ )
)

is finite.

A rule r ∈ R is in ntμxθ format if its form is like above but has a conclusion of the form x a−→ θ and, in addition, it satisfies 
the same conditions as above, except that whenever we write {ζ1, . . . , ζrk( f )}, we should write {x}. P is in ntμfθ format if all 
its rules are in ntμfθ format. P is in ntμfθ/ntμxθ format if all its rules are in either ntμfθ format or ntμxθ format.

Variables ζ1, . . . , ζrk( f ) appearing in the source of the conclusion are binding. So are variables in 
⋃

l∈L Yl appearing in 
quantitative premises and variables in {μ�zm |m ∈ M ∧ �z ∈ Z} appearing in the target of a positive premise. Therefore they all 
need to be different. This is stated in conditions 2, 3, and 4. Every set Yl has to be infinite, which is stated in condition 1. 
By requiring that Z is diagonal in 

∏
l∈L Yl and bundling the set of positive premises in {tm(�z) am−−→μ�zm : �z ∈ Z}, we ensure a 

symmetric behavior of terms tm(�z) for every possible substitution of variables �z. This is the same for the negative premises. 
In fact, notice that, since Z is diagonal in 

∏
l∈L Yl , a substitution ρ is always free to assign different terms to coordinates 1 

to L in two different terms t(y1, . . . , yL, . . .) and t(y′1, . . . , y′L, . . .). Finally, condition 5 ensures that the symmetric behavior

introduced in the positive premises {tm(�z) am−−→ μ�zm : �z ∈ Z} is used consistently in a lookahead. This is guaranteed by 
requesting that a finite number of μ�zm (of all introduced in the family m of positive premises) may appear in a bound 
occurrence. Similarly, condition 6 ensures that the variables in the set Yl are use consistently, also by requesting that only a 
finite subset of variables in Yl may appear in a bound occurrence.

The following example shows that quantitative premises cannot check for upper bounds (or equality). Consider the rule

x
a−→μ μ(Y )≤ 0.5

f (x)
a−→ c

with c and d defined as before. f (c) and f (d) are not bisimilar because f (d) a−→ c by taking the substitution ρ such that 
ρ(y) = c for all y ∈ Y , but f (c) a−→� since there is no term t such that it can be properly substituted in y (i.e., such that 
�c�(t) > 0) and �c �(t) ≤ 0.5.
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Fig. 1. Graphical representation of the axioms used to show why the symmetry requirement is needed.

Notice that if Yl appears in two different quantitative premises they should appear in the context of the same θl , oth-
erwise we can define an operator that distinguishes bisimilar process as shown in the following example. Consider the 
rule

x
a−→μ x′ a−→μ′ μ(Y )≥ 1 μ′(Y )≥ 1

f (x, x′) a−→ f (μ,μ′)

with c and d defined as before. Notice that f (c, c) a−→ f (c, c) but f (c, d) a−→� . For the later case we would need to define 
a substitution ρ s.t. ρ(μ) = c , ρ(μ′) = θd , and �c�(ρ(Y )) = �θd �(ρ(Y )) = 1. This implies that necessarily ρ(Y ) = {c, d} in 
which case ρ is not proper (since �ρ(μ)�(d) = �c�(d) = 0).

If symmetry of behavior on variables in Yl were not enforced, it would also be possible to distinguish distributions 
that are equivalent. To show this, consider a signature with state constants c, d, and {n, n′ | n ∈ N0}, unary operator f , 
ar( f ) = s → s, and rules

n
n−→ n n′ n−→ n′ c

a−→ θ d
a−→ θ ′

with θ =⊕
n∈N0

[
1

2n+1

]
n and θ ′ =⊕

n∈N0

([
1

2n+2

]
n⊕

[
1

2n+2

]
n′

)
x

a−→μ μ({yk}k∈N0)≥ 1 {yk
k−→μk | k ∈N0}

f (x)
b−→μ

Fig. 1 depicts the probabilistic transition system for the constants defined by the rules above. Notice that c ∼ d; nonetheless, 
f (c) b−→ c but f (d) b−→� since d

a−→ θ ′ and there is no way to match both n and n′ to two different variables yk1 and yk2

(for all n ∈N0), hence �θ ′�(ρ({yk}k∈N0 )) = 0.5 for any substitution ρ satisfying the positive premises.
If all symmetric variables μ�zm are allowed to be used (contradicting condition 5), it would also be possible to distinguish 

distributions that are equivalent. To show this, consider the variation of the previous example where two rules for constants 
{n, n′ | n ∈N0} are added and the rule of f is changed as follows:

n
b−→ n

n′ b−→ n′

x
a−→μ μ({yk}k∈N0)≥ 1 {yk

b−→μk | k ∈N0}
{μk({y j

k} j∈N0)≥ 1 | k ∈N0} {{y j
k

k−→μ
j
k | j ∈N0} | k ∈N0}

f (x)
b−→μ

Again, notice that c ∼ d; nonetheless, f (c) b−→ c but f (d) b−→� . The reason is similar as the previous example, except that 
it needs a more complex reasoning on the two steps of lookahead: Suppose we intend to prove f (d) b−→ θ ′′ for some 



88 P.R. D’Argenio et al. / Information and Computation 249 (2016) 76–109
θ ′′ . Then we need to construct a substitution ρ such that ρ(x) = d, and hence only ρ(μ) = θ ′ is possible. To achieve 
θ ′({ρ(yk)}k∈N0 ) ≥ 1, we need that ρ(yk) = n and ρ(yk′ ) = n′ for two different k, k′ ∈ N0. If ρ(yk) = n then ρ(μk) = n and 

ρ(y j
k) = n for all j ∈ N0. Then, necessarily k = n for ρ(y j

k) 
k−→ ρ(μ

j
k) to hold. A similar reasoning yields that if ρ(yk′ ) = n′

then k′ = n, contradicting the fact that k and k′ need to be different.
Finally, following a similar reasoning to the cases above, the following rule justifies the presence of condition 6:

x
a−→μ μ({yk}k∈N0)≥ 1 {δ(yk)({y j

k} j∈N0)≥ 1 | k ∈N0} {{y j
k

k−→μ
j
k | j ∈N0} | k ∈N0}

f (x)
b−→μ

The rationale to show that f (c) b−→ c but f (d) b−→� is similar to the previous case.

If conditions 5 and 6 are strengthened so that the sets contain at most one variable, the burden introduced by the 
restrictions associated to symmetry can be significantly eased using some special notation. Therefore we require that

5′ . for all m ∈ M
∣∣∣{μ�zm | �z ∈ Z} ∩ (

Var(θ)∪ (
⋃

l∈L Var(θl))∪W
)∣∣∣≤ 1, and

6′ . for all l ∈ L, 
∣∣Yl ∩

(
Var(θ)∪⋃

l′∈L Var(θl′ )
)∣∣≤ 1

Provided that conditions 5′ and 6′ are satisfied, and assuming that Z =∏
l∈L Yl ×∏H

h=1{ζh}, we can write tm(Y1, . . . , Y L,

ζ1, . . . , ζH ) am−−→ μm as an abbreviation for {tm(�z) am−−→μ�zm : �z ∈ Z}, where μm is the only μ�zm that may be used in an 

ntμfθ/ntμxθ rule outside its defining positive premise. Similarly, we write tn(Y1, . . . , Y L, ζ1, . . . , ζH ) bn−−→� as an abbreviation 
for {tn(�z) bn−−→� : �z ∈ Z}. Moreover, if yl ∈ Yl ∩

(
Var(θ)∪⋃

l′∈L Var(θl′ )
)

we replace each occurrence of yl in θ and θl′ by Yl . For 

example, rule x
a−→μ μ(Y )>0 {fsF (y)

�−→� |y∈Y }
scF (x)

a−→scF (μ)
can be rewritten to x

a−→μ μ(Y )>0 fsF (Y )
�−→�

scF (x)
a−→scF (μ)

.

The ntμfθ/ntμxθ format can then be restated in the setting of this notation as follows. A rule is in abbreviated ntμfθ
format if it has the form:

{tm
am−−→μm :m ∈ M} ∪ {tn

bn−−→� : n ∈ N} ∪ {θl(Yl) �l,k pl,k : l ∈ L,k ∈ Kl}
f (ζ1, . . . , ζrk( f ))

a−→ θ

where �l,k∈ {>, ≥}, each Yl is a new variable name not belonging to V ∪D , Var(tm), Var(tn), Var(θl), Var(θ) ⊆V ∪D ∪ {Yl |
l ∈ L}, for all l ∈ L, m ∈ M and n ∈ N , and variables Yl , μm , ζi , with l ∈ L, m ∈ M and 1 ≤ i ≤ rk( f ), are all different.

Notice that this notation hides all the restrictions associated to symmetry. Hence the definition of the format becomes 
remarkably simpler. Of course, it has the small caveat imposed by restrictions 5′ and 6′ . Notice also that this new for-
mulation of the ntμfθ/ntμxθ format makes it more evident that it is the natural probabilistic extension of the ntyft/ntyxt
format.

We finally remark that all rules of our running example Psc (see Table 1) are in ntμfθ format. Moreover, they all satisfy 
conditions 5′ and 6′ and hence can be rewritten in the abbreviated ntμfθ format. In particular, the rule for scF is rewritten 
as

x
a−→μ μ(Y ) > 0 fsF (Y )

�−−→�
scF (x)

a−→ scF (μ)
a /∈ F

5. The congruence theorem

In this section we prove the following general theorem:

Theorem 4. Let P be a complete well-founded PTSS in ntμfθ/ntμxθ format. Then ∼ is a congruence relation for all operators defined 
in P .

Notice that the theorem does not apply to all PTSSs in ntμfθ/ntμxθ format but only to those whose rules are well-founded. 
Basically, a rule is well-founded if every bound variable (i.e. a variable that appears in the source of the conclusion, in the 
set Y of a quantitative premise, or in the target of a positive premise) does not depend on itself or on infinitely many bound 
variables. In Section 5.1 we formally introduce the notions of dependency graph, well-founded rule, and also free variable. 
It turns out that for any complete PTSS in ntμfθ/ntμxθ format there is an equivalent PTSS in ntμfθ format without free 
variables, which simplifies the proof of the theorem. We show this in Section 5.2. In Section 5.3, we introduce the congruence 
closure of a relation and some general properties about it. This concept is central to the proof of Theorem 4 —reported in 
Section 5.4— since its aim is to show that the congruence closure of the bisimulation equivalence is a bisimulation relation. 
As a consequence they coincide, since the congruence closure extends the original relation. Hence bisimulation equivalence 
is a congruence.
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Fig. 2. Dependency graphs for two non-well-founded sets of premises.

x μ Y
Gsc degree(x)= 1 degree(μ)= 2

degree(y)= 3 for all y ∈ Y

Fig. 3. Dependency graph of the rule of scF and dependency degree of its variables.

5.1. Well-founded premises and free variables

Given a rule r, the instantiation of a bound variable in r depends on the instantiation of all variables occurring in the 
term that appears on the same literal that the bound variable is defined. Thus, if t

a−→ μ is a positive literal in r, we say 
that μ depends on all variables in Var(t). Similarly, any variable in Y depends on all the variables in Var(θ) if θ(Y ) � p is a 
quantitative literal in r. Thus, we exclude rules in which there are circular dependencies or any infinite backward chain of 
dependencies since we will need to construct substitutions in an inductive manner. To define the proper partial order, we 
use the notion of dependency graph which was introduced in [2] together with the notion of well-founded rule. We adapt 
them to our setting.

Definition 11. Let W be a set of positive and quantitative premises. The (variable) dependency directed graph of W is given 
by GW = (V , E) with

• V =∪ψ∈W Var(ψ) and

• E = {〈ζ,μ〉 | (t a−→μ) ∈W, ζ ∈ Var(t)} ∪ {〈ζ, y〉 | (θ(Y ) � p) ∈W, ζ ∈ Var(θ), y ∈ Y }.

We say that W is well-founded if any backward chain of edges in GW is finite. For each ζ ∈ V , define its dependency degree
in W by degree(ζ ) = sup({degree(ζ ′) + 1 | (ζ ′, ζ ) ∈ E}), where sup(∅) = 0.

A rule is called well-founded if its set of positive and quantitative premises is well-founded. A PTSS is called well-founded
if all its rules are well-founded.

Example 4. Let

W1 = { f1(x1, Y2)
a−→μ1,μ1(Y1) > 0, f2(x2, Y1)

a−→μ2,μ2(Y2) > 0}
W2 = {Yn+1

a−→μn,μn(Yn) > 0 | n ∈N}
Their respective dependency graphs GW1 and GW2 are depicted in Fig. 2 where we introduce an abuse of notation: for 
example, the edge Y2→ μ1 represents the infinite set of edges {y2 → μ

y2
1 | y2 ∈ Y2} introduced by the set of transitions 

f1(x1, Y2)
a−→μ1 = { f1(x1, y2) 

a−→μ
y2
1 | y2 ∈ Y2}.

The set W1 is not well-founded because GW1 has a cycle. W2 is not well-founded because for every node in GW2 there is 
an infinite backward chain starting on it.

The rule for scF is an example of a well-founded rule. Its dependency graph is reported in Fig. 3 as well as the depen-
dency degree of its variables. �

Definition 12. A variable occurs free in a rule r if it occurs in r but not in the source of the conclusion, in the set Y of a 
quantitative premise θ(Y ) � q, or in the target of a positive premise.

A rule is called pure if it is well-founded and does not contain free variables. A PTSS is called pure if all of its rules are 
pure.

5.2. From ntμfθ/ntμxθ format to pure ntμfθ format

In this section, we show that every complete well-founded PTSS in ntμfθ/ntμxθ can be translated into an equivalent 
PTSS that is pure and in ntμfθ format. We do this in several steps. We first show that for every PTSS in ntμfθ/ntμxθ
there is another PTSS in ntμfθ that can prove exactly the same set of rules (Lemma 5). By using Lemma 2 it immediately 
follows that both PTSSs define exactly the same transition relation (Corollary 6). Next, we show that for every complete and 
well-founded PTSS in ntμfθ format there is a pure and complete PTSS in ntμfθ format that proves exactly the same rules 
(Lemma 7). Using Lemma 2 we can ensure that both PTSS define the same transition relation (Corollary 8).
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Lemma 5. Let P = (�, A, R) be a PTSS in ntμfθ/ntμxθ format. Then there is a PTSS P ′ = (�, A, R ′) in ntμfθ format such that, for all 
rule H

φ
, P � H

φ
iff P ′ � H

φ
. Moreover, P ′ is well-founded whenever P is. Similarly, P ′ is complete whenever P is.

Proof (Sketch). For each r and function symbol f ∈� we define the open substitution ρ f by:

ρ f (x)= f (ζ1, . . . , ζrk( f )) if x is in the source of the conclusion of r and ζ1, . . . , ζrk( f ) are variables that do not 
occur in r and respect the arity of f .

ρ f (ζ )= ζ otherwise.

We define the set of rules R ′ that contains all rules r ∈ R that are in ntμfθ format, and all rules ρ f (r) for all r ∈ R in 
ntμxθ format and f ∈�s . Notice that ρ f (r) is well-founded whenever r is well-founded. So, if P is well-founded, so is P ′ .

To prove that P � H
ψ

implies P ′ � H
ψ

we take a proof pH
ψ of P � H

ψ
and construct a proof p′ Hψ by mimicking pH

ψ using the 
rule ρ f (r) in p′ Hψ whenever r in ntμxθ is used in pH

ψ and the target variable in conc(r) is substituted by a term of the form 
f (ξ1, · · · , ξrk( f )). We also have to accommodate the current substitution according to ρ f .

The reverse implication proceeds in the same way only that when rules ρ f are used in p′ Hψ they are replaced by r in pH
ψ

and again the current substitution is accommodated with ρ f in the inverse manner.
Since both P and P ′ prove exactly the same set of rules, it immediately follows that P is complete iff P ′ is complete. �

Lemma 2 guarantees that two PTSSs that can prove exactly the same sets of rules H
φ

with H containing only negative 
literals have also the same set of 3-valued stable models. Moreover, if one of them is complete, so is the other, in which 
case they are equivalent. Using this fact, the following result is a corollary of Lemma 5.

Corollary 6. Let P = (�, A, R) be a complete PTSS in ntμfθ/ntμxθ format. Then there is a complete PTSS P ′ = (�, A, R ′) in ntμfθ
format that is equivalent to P .

The following lemma states that for every complete well-founded PTSS in ntμfθ/ntμxθ format there is another PTSS that 
is complete and pure in ntμfθ/ntμxθ format that proves exactly the same set of rules. Moreover, if the first PTSS is ntμfθ , 
so is the second one.

Lemma 7. Let P = (�, A, R) be a well-founded PTSS in ntμfθ/ntμxθ format. Then there is a pure PTSS P ′ = (�, A, R ′) in ntμfθ/ntμxθ
format such that for all rule H

φ
, P � H

φ
iff P ′ � H

φ
. Moreover, if P is in ntμfθ format then P ′ is also in ntμfθ format. In addition, P is 

complete iff P ′ is complete.

Proof (Sketch). For every rule r ∈ R , if r has no free variables then r ∈ R ′ . If r ∈ R has free variables, then for all substitution 
ρ̂ such that

ρ̂(x)= t for all free variable x ∈V in r and t ∈ T (�s),

ρ̂(μ)= θ for all free variable μ ∈D in r and θ ∈ T (�d); and

ρ̂(ζ )= ζ otherwise,

we define r′ ∈ R ′ by ρ̂(r). Note that all rules in R ′ have no free variables and they are in ntμfθ or ntμxθ format if r is in 
ntμfθ or ntμxθ format, respectively. Therefore, if rules in P is in ntμfθ format then P ′ is also in ntμfθ format.

The proof that both PTSSs prove exactly the same set of rules follows in the same way as for Lemma 5. Moreover, since 
both P and P ′ prove exactly the same set of rules, it follows that P is complete iff P ′ is complete. �

Using Lemma 2, the following is a corollary of Lemma 7.

Corollary 8. Let P = (�, A, R) be a complete and well-founded PTSS in ntμfθ/ntμxθ format. Then there is a complete PTSS P ′ =
(�, A, R ′) in pure ntμfθ/ntμxθ format that is equivalent with P . Moreover, if P is in ntμfθ format then P ′ is in ntμfθ format.

5.3. The congruence closure

The congruence closure, introduced in Definition 13, is central to the proof of Theorem 4. By construction, it defines a 
relation that is preserved by all contexts. The aim of the proof of Theorem 4 is to show that the congruence closure of ∼ is 
a bisimulation.

Notice that the congruence closure is defined on a relation over T (�s)× T (�s) but actually defines a relation over 
T (�)× T (�).

Definition 13 (Congruence closure). Let P = (�, A, R) be a PTSS. The congruence closure of a relation R ⊆ T (�s)× T (�s) is 
defined as the smallest relation RP ⊆ T (�)× T (�) such that:
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1. R⊆ RP ,
2. c RP c′ whenever c, c′ ∈�s , ar(c) = ar(c′) = s and c R c′ and
3. f (ξ1, · · · , ξrk( f )) RP f (ξ ′1, · · · , ξ ′rk( f )) whenever ξi RP ξ ′i for all i = 1, . . . , rk( f ) and f ∈�s ∪�d .

The proof of the following lemma is straightforward by structural induction.

Lemma 9. Let ρ, ρ ′ be two closed substitutions such that ρ(ζ ) RP ρ ′(ζ ) for all ζ ∈ V ∪ D . Then ρ(ϑ) RP ρ ′(ϑ) for every term 
ϑ ∈ T(�).

For a bisimulation relation R, we have already defined that θ R θ ′ if and only if �θ � R �θ ′� for θ, θ ′ ∈ T (�d). This extends 
the definition of bisimulation relation to all closed distribution terms. We fix this notation from now on. In the following 
lemma we show that RP lifts properly to distributions. This ensures that, though RP is not yet proven to be a bisimulation 
relation, �θ � RP �θ ′� whenever θ RP θ ′ .

Lemma 10. Let R⊆ T (�s)× T (�s) be a bisimulation relation. Then, for all θ, θ ′ ∈ T (�d) such that θ RP θ ′ , �θ � RP �θ ′� .

Proof. We proceed by induction on the definition of RP . Case 1 does not apply since R ⊆ T (�s)× T (�s). If it is due to 
case 2, by defining the weight function w(c, c′) = 1 we can conclude that �c � RP �c′� .

For case 3 we proceed by case analysis in the three type of operations.

Case δ. Suppose δ(t) RP δ(t′). Then, necessarily, t RP t′ . By defining the weight function w(t, t′) = 1 we can conclude that 
�δ(t)� RP �δ(t′)� .

Case ⊕. If 
⊕

i∈I [pi]θi RP
⊕

i∈I [pi]θ ′i , θi RP θ ′i for all i ∈ I . By the induction hypothesis �θi � RP �θ ′i � . Suppose that for 
each i ∈ I , this is witnessed by the weight function wi . It is straightforward to conclude that w , defined by w(t, t′) =∑

i∈I pi wi(t, t′), for all t, t′ ∈ T (�s), is a weight function witnessing �
⊕

i∈I [pi]θi � RP �
⊕

i∈I [pi]θ ′i � .

Case f . Suppose f (θ1, . . . , θrk( f )) RP f (θ ′1, . . . , θ ′rk( f )). Then, θi RP θ ′i and by the induction hypothesis �θi � RP �θ ′i � . Suppose 
that for each i ∈ I , this is witnessed by the weight function wi . Suppose f is the probabilistic lifting of f with ar( f ) =
σ1 . . . σrk( f )→ s. Take the sets of indexes I and J that partition {1, . . . , rk( f )} such that σi = s for all i ∈ I and σ j = d for all 
j ∈ J . Define function w by

w( f (ξ1, . . . , ξrk( f )), f (ξ ′1, . . . , ξ ′rk( f )))=
∏

i∈I wi(ξi, ξ
′
i ) ·

∏
j∈ J δθ j (ξ j) · δθ ′j (ξ

′
j)

and w(t, t′) = 0 in any other case. By calculating as in the proof of Proposition 3, we conclude that it is indeed a weight 
function witnessing � f (θ1, . . . , θrk( f ))� RP � f (θ ′1, . . . , θ ′rk( f ))� . �

5.4. Proof of Theorem 4

Along the section we have set the basis for the proof of Theorem 4 whose core lies on Lemma 11. This lemma uses the 
inductive construction of Lemma 1 to show that RP converges towards a bisimulation, provided that R is a bisimulation 
relation. The structure of its proof takes the ideas set in [5] with some stylized framework taken from [28,29]. However, the 
construction of the substitution on the simulating side requires particular ingenuity to adapt to probabilities and quantified 
premises.

Lemma 11. Let P be a complete and pure PTSS in ntμfθ format. For all ordinal α, let 〈CTα,PTα〉 be the 3-valued models of P con-
structed inductively as in Lemma 1 with 〈CTλ,PTλ〉 being the 3-valued least stable model. (Hence CTλ = PTλ is the transition relation 
associated to P .) Let R be a bisimulation relation (on the associated transition relation CTλ). Then, for all α ≤ λ and t1, t2 ∈ T (�s)

such that t1 RP t2 ,

Iα . t1
a−→ θ1 ∈ CTα implies that t2

a−→ θ2 ∈ CTλ with θ1 RP θ2 , for some θ2 ∈ T (�d), and

IIα . t1
a−→ θ1 ∈ CTλ implies that t2

a−→ θ2 ∈ PTα with θ1 RP θ2 , for some θ2 ∈ T (�d).

Proof. We proceed by transfinite induction on α proving simultaneously both items. For case α = 0, I0 and II0 hold imme-
diately since CT0 = ∅ and PT0 = T (�s) × A × T (�d). If α is a limit ordinal, Iα follows by transfinite induction from the fact 
that CTα =⋃

β<α CTβ . IIα also follows from transfinite induction using the fact that PTα =⋂
β<α PTβ and considering that 

PTβ ⊇ PTβ ′ , whenever β ≤ β ′ (Lemma 1.1), to ensure that the existent θ2 is the same for each β < α.
We focus on the successor case and suppose, by induction hypothesis, that Iα−1 and IIα−1 hold.
If t1 RP t2 because t1 R t2 (Definition 13, case 1), Iα and IIα follow from Lemma 1.1 which ensures that CTα ⊆ CTλ and 

PTα ⊇ PTλ = CTλ .
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We focus on the case in which t1 RP t2 as a consequence of Definition 13.3. Then, t1 = f (ξ1
1 , · · · , ξ1

rk( f )) and t2 =
f (ξ2

1 , · · · , ξ2
rk( f )) with ξ1

i RP ξ2
i , for all i = 1, . . . , rk( f ), and f ∈�s .

We proceed first with case Iα . Since f (ξ1
1 , · · · , ξ1

rk( f ))
a−→ θ1 ∈ CTα , there is a set H of negative literals such that P �

H

f (ξ1
1 ,··· ,ξ1

rk( f ))
a−→θ1

and PTα−1 |= H . We use induction on the height γ of the proof of P � H

f (ξ1
1 ,··· ,ξ1

rk( f ))
a−→θ1

. So, by Definition 4, 

there must exist a rule r of the form

{tm(�z) am−−→μ�zm |m ∈ M, �z ∈ Z} ∪ {tn(�z) bn−−→� | n ∈ N, �z ∈ Z} ∪ {θl(Yl) �l,k pl,k | l ∈ L,k ∈ Kl}
f (ζ1, . . . , ζrk( f ))

a−→ θ

and a proper substitution ρ1 such that

(ρ11) ρ1(ζi) = ξ1
i , for all i ∈ {1, . . . , rk( f )},

(ρ12) ρ1(θ) = θ1,
(ρ13) for each m ∈ M and �z ∈ Z , there is a set H�zm ⊆ H of negative literals such that P � H�zm

ρ1(tm(�z)) am−−→ρ1(μ�zm)
is proved with 

a proof shorter than γ , and PTα−1 |= H�zm (since PTα−1 |= H),

(ρ14) for each n ∈ N and �z ∈ Z , ρ1(tn(�z)) bn−−→� ∈ H , hence PTα−1 |= ρ1(tn(�z)) bn−−→� , and
(ρ15) for each l ∈ L and k ∈ Kl , �ρ1(θl)�(ρ1(Yl)) �l,k pl,k .

We construct a substitution ρ2 such that, together with rule r, proves f (ξ2
1 , · · · , ξ2

rk( f ))
a−→ ρ2(θ) ∈ CTλ and ρ1(θ) RP ρ2(θ). 

To construct ρ2 we proceed by induction on the variable dependency graph of r.
Because of the quantitative premises, we need to collect in each set ρ2(Yl) sufficient terms to let �ρ2(θl)�(ρ2(Yl)) �l,k pl,k

hold. So, for each term in t∗1 ∈ ρ1(Yl), we will let ρ2(Yl) contains all terms t∗2 in the support set of �ρ2(θl)� such that 
t∗1 RP t∗2. For this we find a partition of the set of variables Z that makes room to allocate precisely all this terms for each 
l ∈ L.4 The partition is constructed to keep the appropriate correspondence on the instances of vectors �z ∈ Z , particularly if 
some μ�zm or �z(l) ∈ Yl is used in other place apart of its defining position.

Let D = {ρ1(�z) | �z ∈ Z}. Let � = {Z�d ⊆ Z | �d ∈ D} be a partition of Z such that for all �d ∈ D

(�1) |Z�d| ≥ℵ0;

(�2) there exists some �z ∈ Z�d such that ρ1(�z) = �d;

(�3) for all �z ∈ Z and m ∈ M , if μ�zm ∈ Var(θ) ∪ (∪l∈L Var(θl)) ∪W and ρ1(�z) = �d, then �z ∈ Z�d (here, W is as in Definition 10); 
and

(�4) for all �z ∈ Z , if, for some l ∈ L, �z(l) ∈ Yl ∩
(
Var(θ)∪⋃

l′∈L Var(θl′ )
)

and ρ1(�z) = �d, then �z ∈ Z�d .

Condition (�1) ensures that there are sufficient places for substitution ρ2 to allocate all required terms to make the quanti-
tative premises valid. Condition (�2) associates the set of variable vectors Z�d with the vector �d. So, ρ2 will be defined such 
that, for every �z ∈ Z�d and index k, �d(k) RP ρ2(�z(k)). Notice that (�2) is only concerned with the existence of one �z ∈ Z�d such 
that ρ1(�z) = �d (by the definition of D such �z can always exist). Any other �z′ satisfying the same condition is, in principle, 
ignored. This is so because ρ1(�z′) = ρ1(�z) and for the construction of ρ2 it is only important to know that the vector �d
is used by the proof of the transition. However, if any of the variables of �z′ is used in any of the bound terms, then we 
specially request that �z′ is also in Z�d . This is required by (�3) in the case that μ�z′m appears in θ , any θl , or W (and hence in 
some tm(�z′) or tn(�z′)), and by (�4) in the case that some �z′(l) appears in θ or any θl . Conditions 1, 5, and 6 in Definition 10
ensure that the cardinality of Z is strictly larger than the set of vector variables under the conditions of (�3) and (�4). 
This, in turns, guarantees that each Z�d can be chosen to be infinitely large. Therefore, the partition � indeed exists.

We define ρ2 such that

4 Contrarily to the non-probabilistic case (see, e.g., [2,4,5,28]), we cannot construct a substitution ρ2 such that ρ1(ζ ) RP ρ2(ζ ) for every variable ζ . To 
understand why, consider a PTSS with constants c, d, and {n, n′ | n ∈N}, a unary operator f , and rules

n
a−→ n

n′ a′−→ n′
c

b−→ θ

d
b−→ θ ′

x
b−→μ μ({yk | k ∈N0})≥ 1 {yk

b−→� μk | k ∈N0}
f (x)

b−→μ

with θ = 1⊕ 1
2

⊕
n∈N

[
1

2n+1

]
n′ and θ ′ = 1′ ⊕ 1

2

⊕
n∈N

[
1

2n+1

]
n.

Clearly f (c) ∼ f (d). Suppose that f (c) a−→ θ is proved using substitution ρ1 such that ρ1(y0) = 1 and ρ1(yn) = n′ for n ∈ N. Then any matching ρ2

satisfying ρ1(ζ ) RP ρ2(ζ ) for every ζ will necessarily assign ρ2(yn) = 1 for every n ≥ 1 and it only remains variable y0 to fit one constant in {n | n ∈ N}. 
Hence it is not possible to construct a substitution ρ2 under the conditions above such that ρ2(μ)(ρ2({yk | k ∈N0})) ≥ 1 holds.

Notice that, in principle, it is sufficient to find a ρ2 such that ∀k ∈ N0 : ∃k′ ∈ N0 : ρ1(yk) RP ρ2(y′k), and ∀k′ ∈ N0 : ∃k ∈ N0 : ρ1(yk) RP ρ2(y′k), and, of 
course, meeting the conditions of the premises.
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(ρ21) ρ1(ζ ) RP ρ2(ζ ) for all ζ ∈ Var(θ) ∪ (∪l∈L Var(θl)) ∪W ∪ {ζ1, . . . , ζrk( f )},
(ρ22) ρ2(�l(Z�d)) =

{
t ∈ T (�s) | �d(l) RP t and �ρ2(θl)�(t) > 0

}
,

(ρ23) ρ2(ζi) = ξ2
i for all i ∈ {1, . . . , rk( f )},

(ρ24) ρ2(tm(�z)) am−−→ ρ2(μ
�z
m) ∈ CTλ for all m ∈ M and �z ∈ Z ,

(ρ25) �ρ2(θl)�(ρ2(Yl)) �l,k pl,k for all l ∈ L and k ∈ Kl , and

(ρ26) CTλ |= ρ2(tn(�z)) bn−−→� for all n ∈ N and �z ∈ Z ,

We prove (ρ21)–(ρ24) by constructing ρ2 inductively on the dependency degree of each variable (which we can do 
because r is well-founded). For i ∈ {1, . . . , rk( f )}, define ρ2(ζi) = ξ2

i , which immediately yields (ρ23). Moreover, ρ1(ζi) =
ξ1

i RP ξ2
i = ρ2(ζi) and hence (ρ21) and (ρ22) hold for this case. ((ρ22) holds trivially, since ζi /∈⋃

l∈L Yl).
For the inductive case, we assume that every variable ζ with degree(ζ ) < k satisfy (ρ21) and (ρ22).
We analyze first the case of μ�zm with degree(μ�zm) = k. Necessarily, �z ∈ Z�d for some Z�d ∈� since � forms a partition of 

Z . By (�2), there exists �z′ ∈ Z�d such that ρ1(�z′) = �d. In particular, if μ�zm ∈ Var(θ) ∪ (∪l∈L Var(θl)) ∪W , we know by (�3) that 
ρ1(�z) = �d, in which case we choose �z′ = �z. Since all variables in Var(tm(�z)) have a dependency degree smaller than k, using 
the induction hypothesis on (ρ21) and (ρ22) respectively, we have:

• If ζ ∈ Var(tm(�z)) ∩ W , ρ1(�z′(ζ )) = ρ1(ζ ) RP ρ2(ζ ) = ρ2(�z(ζ )). (Here �z(ζ ) represents the variable in the coordinate ζ
which is ζ itself.)
• For every l ∈ L, if ζ ∈ Var(tm(�z)) ∩ Yl , then

ρ2(ζ )= ρ2(�z(l)) ∈ ρ2(�l(Z�d))=
{

t ∈ T (�s) | �d(l) RP t and �ρ2(θl)�(t) > 0
}
,

and hence ρ1(�z′(l)) = �d(l) RP ρ2(�z(l)).

Therefore, by Lemma 9, ρ1(tm(�z′)) RP ρ2(tm(�z)). Furthermore, by (ρ13), there is a proof of P � H�zm
ρ1(tm(�z)) am−−→ρ1(μ�zm)

with 

PTα−1 |= H�zm . Thus, ρ1(tm(�z′)) am−−→ ρ1(μ
�z′
m) ∈ CTα . Since moreover, the proof is shorter than γ , by induction Iα , there exists 

θ ′ ∈ T (�d) such that ρ2(tm(�z)) am−−→ θ ′ ∈ CTλ and ρ1(μ
�z′
m) RP θ ′ . Define ρ2(μ

�z
m) = θ ′ . Then (ρ21) holds since �z′ was chosen 

to be �z in case μ�zm ∈ Var(θ) ∪ (∪l∈L Var(θl)) ∪W , and (ρ22) holds trivially. Moreover, also (ρ24) is satisfied.
It only remains to show the case of the term variables in 

⋃
l∈L Yl . Recall that all variables in Yl have the same dependency 

degree. So, we define ρ2 simultaneously for all variables in Yl with degree(Yl) = k. We directly define ρ2 such that

ρ2(�l(Z�d))=
{

t ∈ T (�s) | �d(l) RP t and �ρ2(θl)�(t) > 0
}

(5)

for all Z�d ∈�. For this to be a good definition, we need to show that

(i) Yl =⋃
�d∈D �l(Z�d),

(ii) �l(Z�d) ∩�l(Z�d′ ) �= ∅ implies Z�d = Z�d′ , and

(iii) there exists t ∈ T (�s) such that �d(l) RP t and �ρ2(θl)�(t) > 0.

(i) is immediate since � is a partition of Z .
For (ii) suppose y ∈�l(Z�d) ∩�l(Z�d′ ). Then, there is a �z ∈ Z such that �z(l) = y. By Definition 9, such �z needs to be unique, 

from which (ii) follows.
For (iii) we proceed as follows. By induction on the dependency degree, we know that for all ζ ∈ Var(θl), ρ1(ζ ) RP ρ2(ζ ). 

Then, by Lemmas 9 and 10, �ρ1(θl)� RP �ρ2(θl)� . As a consequence, there is a weight function w such that

w(�d(l), T (�s))= �ρ1(θl)�(�d(l))= �ρ1(θl)�(ρ1(�z(l))) > 0

for some �z ∈ Z�d . The existence of �z is guaranteed by (�2) and the last inequality is a consequence of ρ1 being proper. Then, 
there must exist some t ∈ T (�s) such that w(�d(l), t) > 0, and hence �d(l) RP t . Finally, we calculate

�ρ2(θl)�(t)= w(T (�s), t)≥ w(�d(l), t) > 0

which proves (iii).
The definition in (5) not only ensures (ρ22) but also (ρ21) in case y ∈ Var(θ) ∪⋃

l′∈L Var(θl′ ). Indeed, if �z is such that 
�z(l) = y ∈ �l(Z�d), then �z ∈ Z�d and hence, necessarily ρ1(�z) = �d because of (�4). Therefore ρ1(y) = �d(l) RP ρ2(y) since 
y ∈�l(Z�d).

It only remain to show cases (ρ25) and (ρ26). We focus first on (ρ25). Because of (�3) and (ρ21), ρ1(ζ ) RP ρ2(ζ ) for all 
ζ ∈ Var(θl), from which �ρ1(θl)� RP �ρ2(θl)� , because of Lemmas 9 and 10. Let w be the weight function that witness it. 
We can now calculate:
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�ρ2(θl)�(ρ2(Yl))=∑
t′∈ρ2(Yl)

�ρ2(θl)�(t′)
=∑

t′∈ρ2(Yl)
w(T (�s), t′) (by property (ii) of weight functions)

=∑
t∈T (�s)

∑
t′∈ρ2(Yl)

w(t, t′)
≥∑

t∈ρ1(Yl)

∑
t′∈ρ2(Yl)

w(t, t′) (because ρ1(Yl)⊆ T (�s))

=∑
t∈ρ1(Yl)

∑
t′∈T (�s)

w(t, t′) (*)

= �ρ1(θl)�(ρ1(Yl)) (by property (i) of weight functions)

�l,k pl,k (by (ρ15))

Since t ∈ ρ1(Yl) there must exist �d ∈ D such that �d(l) = t . Then, by property (iii) of weight functions, w(t, t′) > 0 implies 
t RP t′ and hence t′ ∈ ρ2(�l(Z�d)) ⊆ ρ2(Yl). From here, if t′ /∈ ρ2(Yl), w(t, t′) = 0, which justifies (*).

Finally we prove (ρ26). (ρ21) and Lemma 9 imply that ρ1(tn(�z)) RP ρ2(tn(�z)). By contradiction assume ρ2(tn(�z)) bn−−→
θ ′2 ∈ CTλ for some θ ′2 ∈ T (�d). By induction, IIα−1 implies ρ1(tn(�z)) bn−−→ θ ′1 ∈ PTα−1 for some θ ′1 ∈ T (�d). However, this 

contradicts (ρ14) which states that ρ1(tn(�z)) bn−−→� ∈ H and PTα−1 |= H .
Properties (ρ21)–(ρ26) imply that rule r together with substitution ρ2 form the basis of the proof of a transition rule 

H ′

f (ξ2
1 ,··· ,ξ2

rk( f ))
a−→ρ2(θ)

with CTλ |= H ′ . Hence f (ξ2
1 , · · · , ξ2

rk( f ))
a−→ ρ2(θ) ∈ CTλ . By (ρ21) and Lemma 9, ρ1(θ) RP ρ2(θ), which 

concludes the proof of Iα .

The proof of case IIα follows symmetrically to the case Iα only that when it says CTα and PTα−1, it should be changed 
by CTλ , and when it says CTλ , it should be changed appropriately by PTα or CTα−1. For the sake of completeness, we spell 
this part of the proof out in Appendix B. �

Theorem 4 follows as a corollary of Lemma 11.

Proof of Theorem 4. By Corollaries 6 and 8 there is an equivalent complete and pure PTSS P ′ in ntμfθ format. Therefore 
P ′ is in the conditions of Lemma 11. By taking R =∼ and α = λ in Lemma 11 we can conclude that ∼P is a bisimulation 
relation and, since ∼ ⊆ ∼P by Definition 13, ∼ = ∼P . Also, by Definition 13, ∼P preserves all operators in P ′ , and hence 
in P . As a consequence ∼ is a congruence for all operators in P . �

6. Modular properties

Often, one wants to extend a language with new operations and behaviors. This is naturally done by adding new func-
tions and rules to the original PTSS. In other words, given two PTSSs P 0 = (�0, A0, R0) and P 1 = (�1, A1, R1), one wants 
to combine them in a new PTSS P 0 � P 1, where we generally assume that P 0 is the original PTSS and P 1 is the extension.5

A desired property is that the extension does not alter the behavior of the terms in the original language. That is, one ex-
pects that for every old term t ∈ T (�0

s ), the set of outgoing transitions defined by P 0 is exactly the same that those defined 
by P 0 � P 1. In this case we say that P 0 � P 1 is a conservative extension of P 0.

The property of conservative extension has been studied in the non-probabilistic setting (see [32,29,8] and references 
therein). In this section, we adapt the definition of conservative extension to the probabilistic setting and provide important 
results that connect the syntactic definition to the models of the original PTSS and its extension. We actually take the results 
from [29,8] which apply with fairly minor changes to the probabilistic setting.

In order to combine two PTSSs, the function names should provide the same functionality in both signatures. Provided 
this hold, the union or sum of the two PTSSs is definable.

Definition 14. Let �0 = (F 0, ar0) and �1 = (F 1, ar1) be two S-sorted signatures such that for all f ∈ F 0 ∩ F 1, ar0( f ) =
ar1( f ). In such case, the sum of �0 and �1, denoted by �0 ��1, is defined as the new signature (F 0 ∪ F 1, ar0∪ ar1).

Definition 15. Let P 0 = (�0, A0, R0) and P 1 = (�1, A1, R1) be two PTSSs such that the sum �0 ��1 is defined. Then, the 
sum of P 0 and P 1, denoted by P 0 � P 1, is also defined, in which case P 0 � P 1 = (�0 ��1, A0 ∪ A1, R0 ∪ R1).

In early definitions (e.g. [2,4,32]) an extension P 0 � P 1 is conservative w.r.t. P 0 if the original semantics of a term t in 
P 0 is exactly the same in P 0 � P 1. In other words, t a−→ θ is a transition in the unique model of P 0 if and only if it is also 
a transition in the unique model of P 0 � P 1. However, to have such a requirement, we need that both P 0 and P 0 � P 1 are, 

5 Normally, the combinations of two TSSs is denoted with the symbol ⊕ instead of �. We have chosen the second symbol to avoid confusion with our 
probabilistic summation operator which is usually also denoted with ⊕.
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complete at the least. We will now give a general definition and show later that the particular case of complete PTSSs is as 
expected. Inspired by the fact that only rules with only negative premises play a role in the definition of 3-valued stable 
models (see Definition 5 and also Lemma 2), we have the following definition.

Definition 16. P 0 � P 1 is a conservative extension of P 0 if for all t ∈ T (�0
s ), a ∈ A0 ∪ A1, θ ∈ T (�0

d ∪�1
d ) and set of closed 

negative premises N , P 0 � P 1 � N

t
a−→θ

implies P 0 � N

t
a−→θ

.

Notice that the implication in the other direction is an immediate consequence of all rules of P 0 being also rules of 
P 0 � P 1.

Theorem 12 below gives a general syntactic characterization to ensure that P 0 � P 1 is a conservative extension of P 0. 
First, some few concepts and shorthands need to be introduced.

Definition 17. A variable ζ is source dependent in a rule H

t
a−→θ

if one of the following statements holds:

• ζ ∈ Var(t),

• there exists t∗ b−→ θ∗ ∈ H such that all variables in Var(t∗) are source dependent and ζ ∈ Var(θ∗), or
• there exists θ∗(T ) �
 p ∈ H such that all variables in Var(θ∗) are source dependent and ζ ∈ Var(t∗) for some t∗ ∈ T .

We say that a rule is source dependent if all its variables are. Similarly, we say that a PTSS is source dependent if all its rules 
are.

The term t in rule H

t
a−→θ

is usually called the “source” of the rule, therefore the name of “source dependent”. It is worth 
to notice that if a rule is pure, then it is source dependent.

Given two signatures �0 and �1, a term ξ ∈ T(�0 ��1) is said to be fresh if ξ /∈ T(�0). That is, a term is fresh if it 
contains a function name of the new signature �1.

Let r be a rule of P 0 � P 1. We let r� denote the same rules as r where all the premises whose leading terms are fresh 
have been removed. (By “leading terms” we mean the left-hand side terms in positive and negative premises, and the 
distribution term in the quantitative premises.) That is, if r = H

t
a−→θ

then

r�= {t
∗ b−→ θ∗ ∈ H | t∗ ∈ T(�0)} ∪ {t∗ b−→� ∈ H | t∗ ∈ T(�0)} ∪ {θ∗(T ∗) �
 p ∈ H | θ∗ ∈ T(�0)}

t
a−→ θ

Now we are in conditions to state the theorem.

Theorem 12. Under the following conditions P 0 � P 1 is a conservative extension of P 0:

1. for every rule r ∈ R0 , all its variables are source dependent, and
2. for every rule r = H

t
a−→θ
∈ R1 , one of the following conditions hold:

(a) t is fresh,

(b) or there is a positive premise t∗ b−→ θ∗ ∈ H such that
(i) t∗ ∈ T(�0),

(ii) all variables in Var(t∗) are source dependent in r�, and
(iii) either b /∈ A0 or θ∗ is fresh;

(c) or there is a quantitative premise θ∗(T ∗) �
 p ∈ H such that
(i) θ∗ ∈ T(�0),

(ii) all variables in Var(θ∗) are source dependent in r�, and
(iii) T ∗ contains a fresh term.

The proof of Theorem 12 follows the same structure of the proof of Theorem 3.20 in [29]. However, we report a proof in 
Appendix C since the quantitative premises require some special treatment.

Definition 16 provides a syntactic notion of conservative extension in the sense that the extension preserves exactly all 
provable rules of the form N

t
a−→θ

with N being a set of negative premises and t being an “old” term. Since rules with only 
negative premises are fundamental on the construction of the models (see Definition 5) we expect also that the models 
defined by the extended PTSS are also a “conservative extension” of the models of the original PTSS. In this case, we mean 
that each model of the extended PTSS is a model of the original PTSS when restricted to the original terms, and moreover, 
every model of the original PTSS can be extended to a model of the extended PTSS without changing the (certain or 
possible) transitions of the old terms. This is stated by Theorem 13.
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We first introduce some short-hand notation. Let Tr be a set of transition relations with terms over the signature �0��1. 
We let Tr�= {t a−→ θ ∈ Tr | t ∈ T (�0)} be the subset of Tr where all transitions with fresh sources have been removed.

Theorem 13. Let P 0 � P 1 be a conservative extension of P 0. Then,

1. if 〈CT,PT〉 is a 3-valued stable model of P 0 � P 1 , 〈CT�,PT�〉 is a 3-valued stable model of P0; and
2. if 〈CT,PT〉 is a 3-valued stable model of P0, there is a 3-valued stable model 〈CT′,PT′〉 of P 0 � P 1 such that CT = CT′� and 

PT= PT′�.

The previous theorem refers to stable models in general. More importantly a conservative extension also preserves the 
least stable model.

Theorem 14. Let P 0 � P 1 be a conservative extension of P 0. If 〈CT,PT〉 is the least 3-valued stable model of P 0� P 1 then 〈CT�,PT�〉
is the least 3-valued stable model of P0.

The proofs of statements 1 and 2 in Theorem 13, and Theorem 14 are exactly the same as the proofs of Theorems 3.24, 
3.25, and 3.26 of [29], respectively, with very minor adaptations to accommodate our setting. So we directly refer the reader 
to [29] for the proofs.

It is immediate from Theorem 14 that if P 0� P 1 is complete and a conservative extension of P 0, then P0 is also complete. 
However, as shown in [29], it is not generally the case that if P0 is complete, so is its conservative extension P 0 � P 1. In 
fact, it is also not true that if P0 and P1 are complete, so is the conservative extension P 0 � P 1. This is shown by taken 

P0 to be a PTSS with only a constant a and the rules 
a

a−→δ(a)
and x

a−→�
x

a−→δ(x)
, and P1 the PTSS with only constant b and no 

rules. Then 〈{a a−→ δ(a)}, {a a−→ δ(a)}〉 and 〈∅,∅〉 are the only stable models of P0 and P1, respectively —hence P0 and P1

are complete—, and 〈{a a−→ δ(a)}, {a a−→ δ(a),b
a−→ δ(b)}〉 is the only 3-stable model of P 0 � P 1.

7. Tracing bisimulation

An equivalence relation is said to be fully abstract w.r.t. a set of operators � and another equivalence ≡ if it is the 
coarsest congruence for all contexts constructed with operators in � that is included in ≡. This concept can be lifted to a 
particular PTSS format as follows: an equivalence relation on PTSs is fully abstract w.r.t. a PTSS format and an equivalence 
≡ if it is the coarsest congruence for all context constructed with operators specifiable in a complete PTSS in such format 
and that is finer than ≡ [10].

Two terms are (possibilistic) trace equivalent if they can perform the same sequences of actions with some positive 
probability (but not necessarily the same). In this section we show that a “finitary” version of the bisimulation equivalence 
—which we called bounded bisimilarity— is fully abstract with respect to the ntμfθ/ntμxθ format and trace equivalence. That 
is, we show that the trace congruence induced by the ntμfθ/ntμxθ format is exactly the bounded bisimulation equiva-
lence. In particular, the bounded bisimulation equivalence agrees with ∼ on image finite probabilistic transition systems. 
(A transition relation −→ is image-finite iff for all t ∈ T (�) and a ∈ A, the set {θ | t a−→ θ} is finite.)

Definition 18. Let P = (�, A, R) be a complete PTSS and −→ its associated transition relation. Given t ∈ T (�s), a sequence 
a1 . . .an ∈ A∗ is a trace from t iff there are terms t0, . . . , tn ∈ T (�s) and θ1, . . . , θn ∈ T (�d) s.t. t0 = t , ti

ai+1−−−→ θi+1 and 
�θi+1 �(ti+1) > 0 for 0 ≤ i < n. Let traces(t) be the set of all traces from t . Terms t, t′ ∈ T (�s) are trace equivalent (with respect 
to P ), notation t ≡t

P t′ , iff traces(t) = traces(t′).

Definition 19. Let P be a complete PTSS in ntμfθ/ntμxθ format. Terms t, t′ ∈ T (�s) are trace congruent with respect to 
ntμfθ/ntμxθ if for every PTSS P ′ in ntμfθ/ntμxθ format such that P � P ′ is complete, well-founded and a conservative 
extension of P , C[t] ≡t

P�P ′ C[t′] for every context C[_] of P � P ′ . In this case we write t ≡t
ntμfθ/ntμxθ t′ .

Then, it is our aim to show that ≡t
ntμfθ/ntμxθ agrees precisely with the bounded bisimulation equivalence which is formally 

defined as follows.

Definition 20. Let P = (�, A, R) be a complete PTSS and let −→ be its associated transition relation. For each n ∈ N, we 
define �n

P ⊆ T (�s) × T (�s) inductively by:

�0
P = T (�s)× T (�s)

�n+1
P = {(t, t′) | (∀θ : t a−→θ⇒∃θ ′ : t′ a−→θ ′ ∧ θ �n

P θ ′) ∧
(∀θ ′ : t′ a−→θ ′ ⇒ ∃θ : t a−→θ ∧ θ �n

P θ ′)}
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B0(x, y)
yes−−→⊥ T 1

x
a−→μ {μ(Zi)≥ qi, Bn−1(zi , Zi)

yes−−→μi}ki=1

Prk
n(x, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−→⊥
T 2

Prk
n(x, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−→μ Prk
n(y, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−→�
Bn(x, y)

no−−→⊥
T 3

Bn(x, y)
no−−→� Bn(y, x)

no−−→�
Bn(x, y)

yes−−→⊥
(4) T 4

Fig. 4. Rules for the bisimulation tester (for all n,k > 0, a ∈ A and q1, . . . ,qk ∈Q).

(We use θ �n
P θ ′ as a shorthand for �θ � �n

P �θ ′� .) Whenever t �n
P t′ we say that t and t′ are n-bounded bisimilar Moreover, 

we say that t and t′ are bounded bisimilar, notation t �P t′ , if t �n
P t′ for all n ∈N.

It is easy to see that each �n
P is an equivalence relation and, as a consequence, so is �P . Bounded bisimilarity and bisim-

ulation equivalence agree on image-finite probabilistic transition systems [22, Lemma 3.5.8]. That is, if −→ is image-finite, 
then ∼=�P .

We now define the bisimulation tester, that is, a PTSS P T that can be added conservatively to another PTSS and that 
introduces contexts that are able to distinguish terms that are not bounded bisimilar. More precisely, P T introduces a trivial 
constant ⊥ and two family of functions: binary functions Bn and (k + 1)-ary functions Prk

n , where n, k ∈ N. Their intended 
meaning is as follows. Bn(t, u) can detect whether t and u are n-bounded bisimilar by showing transition Bn(t, u) 

yes−−→
⊥. Otherwise, Bn(t, u) no−−→ ⊥. In this way, two non-bisimilar terms t and u can be distinguished by the context Bn(t, _)
for some appropriate n. Prk

n is used as an auxiliary operator to test the measures of k (not necessarily different) (n −
1)-bounded bisimulation equivalence classes. More precisely, Prk

n(t, u1, · · · , uk) 
(a,q1,...,qk)−−−−−−−→⊥ if there is a transition t

a−→ θ

such that �θ �([u1]�n−1)≥ q1, . . . , �θ �([uk]�n−1)≥ qk , where [u j]�n−1 = {u ∈ T (�s) | u j �n−1 u} and q1, . . . , qk ∈Q. We write 
Bn−1(zi, Zi) 

yes−−→μi to denote the set {Bn−1(zi, z) 
yes−−→μi | z ∈ Zi} following the notation introduced at the end of Section 4.

Definition 21. Let P = (�, A, R) be a PTSS. The bisimulation tester of P is the PTSS P T = (�T , A ∪ AT , RT ) where

• �s ∩�T
s = ∅ and �T

s contains binary functions Bn and (k + 1)-ary functions Prk
n for all n ∈N, and the constant ⊥;

• AT = (
⋃

i>0(A ×Qi)) ∪ {yes, no}; and
• RT contains the rules given in Fig. 4.

The idea behind functions Prk
n explained above becomes apparent in rule T 2. Besides, notice that distinction between two 

non-n-bounded bisimilar terms is revealed by rule T 3. There, the negative premise indicates that there is no a-transition 
from the instance of y that measures more than qi in each equivalence class [zi]�n−1 (in the appropriate instance of zi ) 
while the positive premise indicates that the instance of x has an a transition of this kind.

Observe that P T is well-founded and in ntμfθ format but is not pure. Though this is not necessary, it is quite convenient 
in our case: the non-pure rule T 3 allows for instances of arbitrary terms (and hence arbitrary (n − 1)-bounded bisimulation 
equivalence classes) which is in the core of the definition of the n-bisimulations. Nevertheless, the family of rules T 3 can 
be replaced by an equivalent set of pure rules as stated in Lemma 7.

Finally, notice that if P is a source dependent PTSS then P � P T satisfies the hypothesis of Theorem 12 (the conclusion 
of each rule in P T contain only fresh terms) and, as a consequence, P � P T is a conservative extension of P .

The following lemma is central to our main result presented in Theorem 16 below.

Lemma 15. Let P = (�, A, R) be a complete PTSS in ntμfθ/ntμxθ format such that P � P T conservatively extends P and is also 
complete. If Tr is the associated transition relation of P � P T , then

1. t �n
P t′ implies Bn(t, t′) yes−−→⊥ ∈ Tr, for all t, t′ ∈ T (�s); and

2. if in addition either Tr is image finite or �d only contains finitary and rational instances of ⊕, Bn(t, t′) yes−−→⊥ ∈ Tr implies t �n
P t′ , 

for all t, t′ ∈ T (�s).

Proof. First notice that, as a consequence of Theorem 14, Tr� is the associated transition relation of P .



98 P.R. D’Argenio et al. / Information and Computation 249 (2016) 76–109
Case 1. We prove it by induction on n. Notice that for all t, t′ ∈ T (�s), B0(t, t′) yes−−→⊥ ∈ Tr because of rule T 1,6 hence case 
n = 0 follows trivially. For the induction case, suppose item 1 is valid for n, we show it also holds for n + 1.

By contradiction, let Bn+1(t, t′) yes−−→⊥ /∈ Tr. Because of rule T 4, suppose w.l.o.g., that Tr �|= Bn+1(t, t′) 
no−−→� . Hence Tr |=

Bn+1(t, t′) 
no−−→⊥. By rule T 3,

Tr |= Prk
n+1(t, t1, . . . , tk)

(a,q1,...,qk)−−−−−−−→⊥ and (6)

Tr |= Prk
n+1(t

′, t1, . . . , tk)
(a,q1,...,qk)−−−−−−−→� , (7)

for some k ∈N, t1, . . . , tk ∈ T (�s ��T
s ), q1, . . . , qk ∈Q, and a ∈ A.

From (6) and rule T 2, there exist θ ∈ T (�d) and T1, . . . Tk ⊆ supp(�θ �) such that Tr |= t
a−→ θ , Tr |= Bn(ti, Ti)

yes−−→⊥, and 
θ(Ti) ≥ qi for all i ∈ {1 . . .k}. By induction hypothesis, Ti ⊆ [ti]�n for all i.

Besides, since t ∈ T (�s), t
a−→ θ ∈ Tr�. Because t �n+1

P t′ there is some θ ′ ∈ T (�d) such that t′ a−→ θ ′ ∈ Tr�⊆ Tr and θ �n
P

θ ′ . For each i, define T ′i = [ti]�n ∩ supp(�θ ′�). By induction hypothesis, Bn(ti, T ′i ) 
yes−−→ ⊥ ∈ Tr. Moreover, we can calculate 

�θ ′�(T ′i ) = �θ ′�([ti]�n ) = �θ �([ti]�n ) ≥ �θ �(Ti) ≥ qi . Instantiating rule T 2 we obtain

t′ a−→ θ ′ {θ ′(T ′i )≥ qi, Bn(ti, T ′i )
yes−−→⊥}ki=1

Prk
n+1(t

′, t1, . . . , tk)
(a,q1,...,qk)−−−−−−−→⊥

Since we have just proved that all premises hold in Tr, Tr |= Prk
n+1(t

′, t1, . . . , tk)
(a,q1,...,qk)−−−−−−−→⊥. This contradicts (7), which 

proves this part of the lemma.

Case 2. We prove it by induction on n. Definition 20 states that for all t, t′ ∈ T (�s), t �0
P t′ , hence case n = 0 follows 

trivially. For the induction case, suppose item 2 is valid for n, we show it also holds for n + 1.
By contradiction suppose t ��n+1

P t′ . Then, w.l.o.g., assume that for some a ∈ A and θ ∈ T (�d),

t
a−→ θ ∈ Tr� but there is no θ ′ ∈ T (�d) such that t′ a−→ θ ′ ∈ Tr� and θ �n

P θ ′. (8)

Let � = {θ ′ | t′ a−→ θ ′}. Suppose first � �= ∅.
If Tr is image finite then � is finite. Hence there are k ≤ |�| different equivalence classes, C1, . . . , Ck ∈ T (�s)/�n

P , such 
that for each θ ′ ∈�, �θ �(Ci) �= �θ ′�(Ci) for some i ∈ {1, . . . , k}. Moreover, we can safely assume that �θ �(Ci) > �θ ′�(Ci).7 In 
addition, for all i ∈ {1, . . . , k}, define qi ∈ Q such that �θ �(Ci) ≥ qi > sup{�θ ′�(Ci) | θ ′ ∈�, �θ �(Ci) > �θ ′�(Ci)}. (Since � is 
finite and Q is dense, qi always exists.)

If �d only contains finitary and rational instances of ⊕ then, by straightforward induction, it can be proved that �θ �
has finite support. Then, let C1, . . . , Ck ∈ T (�s)/�n

P be all the different equivalence classes such that �θ �(Ci) > 0 for all 
i ∈ {1, . . . , k} and 

∑k
i=1 �θ �(Ci) = 1. Again, for each θ ′ ∈ �, �θ �(Ci) > �θ ′�(Ci) for some i ∈ {1, . . . , k} as a consequence 

of (8). It can be shown by induction that �θ �(Ci) is a rational number, using the fact that we can only use rational numbers 
pi in terms of the form 

⊕m
i=1[pi]ti . So, in this case, we define qi = �θ �(Ci) for all i ∈ {1, . . . , k}. (Since � may be infinite, 

sup{�θ ′�(Ci) | θ ′ ∈�, �θ �(Ci) > �θ ′�(Ci)} could converge to qi . That is why here we define qi differently.)
By letting Ti = Ci ∩ supp(�θ �), in any case, we have that

for all i ∈ {1, . . . ,k}, �θ �(Ti)= �θ �(Ci)≥ qi, and

for all θ ′ ∈�,qi > �θ ′�(Ci), for some i ∈ {1, . . . ,k}. (9)

Let ti ∈ Ci . By induction hypothesis, Bn(ti, Ti) 
yes−−→⊥ ∈ Tr. Instantiating rule T 2 we obtain

t
a−→ θ {θ(Ti)≥ qi, Bn(ti, Ti)

yes−−→⊥}ki=1

Prk
n+1(t, t1, . . . , tk)

(a,q1,...,qk)−−−−−−−→⊥
Because all premises hold in Tr,

Tr |= Prk
n+1(t, t1, . . . , tk)

(a,q1,...,qk)−−−−−−−→⊥. (10)

6 Along this proof we omit making reference to the existence of an appropriate substitution together with the referred rule whenever it does not 
contribute to the significance of the proof.

7 Otherwise �θ �(Ci) < �θ ′�(Ci) and �θ �(C) ≤ �θ ′�(C) for all other C ∈ T (�s)/�n
P , which leads to the absurdity 1 = �θ �(Ci) +∑

C∈T (�s)/�n
P ,C �=Ci

�θ �(C) <
�θ ′�(Ci) +∑

C∈T (� )/�n ,C �=C �θ ′�(C) = 1.

s P i
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By assumption Bn+1(t, t′) 
yes−−→⊥ ∈ Tr. So, by rule T 4, Tr |= Bn+1(t, t′) 

no−−→� . Because of this and (10), rule T 3 yields that 

necessarily Tr |= Prk
n+1(t, t1, . . . , tk) 

(a,q1,...,qk)−−−−−−−→⊥ which can only be proved using rule T 2 with an instance

t′ a−→ θ∗ {θ∗(T ′i )≥ qi, Bn(ti, T ′i )
yes−−→⊥}ki=1

Prk
n+1(t

′, t1, . . . , tk)
(a,q1,...,qk)−−−−−−−→⊥

for some T ′1, . . . , T ′k ⊆ T (�s � �T
s ). Necessarily, all premises should hold in Tr. Therefore, by induction hypothesis T ′i ⊆ Ci

for all i ∈ {1, . . . , k}. Hence θ∗ ∈� and �θ∗�(Ci) ≥ �θ∗�(T ′i ) ≥ qi for all i ∈ {1, . . . , k} which contradicts (9). This proves the 
induction case under the assumption that � �= ∅.

For the case � = ∅, take any t1 ∈ T (�s) and q1 ∈Q such that �θ �(t1) ≥ q1 > 0. Then, we take the following instance of 
rule T 2:

t
a−→ θ θ({t1})≥ q1 Bn(t1, t1)

yes−−→⊥
Pr1

n+1(t, t1)
(a,q1)−−−−→⊥

Since Bn(t1, t1) 
yes−−→⊥ ∈ Tr by induction hypothesis and t a−→ θ ∈ Tr�⊆ Tr, all premises hold in Tr and hence Pr1

n+1(t, t1) 
(a,q1)−−−−→

⊥ ∈ Tr.

On the other hand, since Pr1
n+1(t

′, t1)
(a,q1)−−−−→⊥ ∈ Tr can only be proved with some instance of T 2 in which t′ a−→ θ ′ with 

θ ′ ∈� = ∅, we conclude Tr |= Pr1
n+1(t

′, t1)
(a,q1)−−−−→� ⊥.

Then, we have the following instance of T 2 in which its premises hold in Tr:

Pr1
n+1(t, t1)

(a,q1)−−−−→⊥ Pr1
n+1(t

′, t1)
(a,q1)−−−−→�

Bn+1(t, t′) no−−→⊥
and hence also Bn+1(t, t′) no−−→⊥ ∈ Tr. However, this contradicts the hypothesis Bn+1(t, t′) yes−−→⊥ ∈ Tr which can only be 
proved using the instance of T 4 that requires that Tr |= Bn+1(t, t′) no−−→� . This concludes the proof. �

The additional conditions in Lemma 15.2 are necessary as shown by the following examples.

Example 5. Consider a PTSS P∞ with a signature containing the stop process, prefix and summation as in the running 
example and additional constant ∞. It also includes the infinitary version of ⊕. The rules for the new operator require the 
additional definition of a class of distribution terms as follows. For all j ∈N

∞ a−→ θ j

where, for every i, j ∈N,

ti = a.(b.0⊕ 1
i

c.0), t j
i = if (i �= j) then ti else 0, and θ j =⊕

i∈N
[

1
2i

]
δ(t j

i ).

Since no rule in P∞ has negative premises, P∞ is complete. Take θ∗ =⊕
i∈N

[
1
2i

]
δ(ti), and notice that ∞+ a.θ∗ ��3

P∞ ∞
since ∞+ a.θ∗ a−→ θ∗ and for all i ∈N, θ∗(ti) > θ i([ti]�3

P∞
) = 0.

However, any operator Prk
3 (which is central to the distinction of transitions by means of rule T 2) can distinguish the 

transition ∞+ a.θ∗ a−→ θ∗ from at most k transitions of ∞. To distinguish ∞+ a.θ∗ a−→ θ∗ from every transition ∞ a−→ θ j

at the same time, we would need infinitary operators Pr∞n (x, z1, z2, . . .) which we explicitly disallowed in the signature. (If 
infinitary operators are allowed in �s it would be easy to construct continuous distributions, something that our definitions 
are not prepared to deal with.)

Example 6. Notice that the previous example uses an infinitary but rational instance of ⊕. We change the definition of 
∞ to show that we also need that, though finitary, ⊕ cannot be instantiated with irrational numbers. Let r ∈ [0, 1] be an 
irrational number. For all q ∈ [0, r] ∩Q, define

∞ a−→ θq

where, for every p ∈ [0, 1], θ p = b.0⊕p c.0.

Notice that ∞+ a.θ r ��2
P ∞ since ∞+ a.θ r a−→ θ r and θ r(b.0) > θq([b.0]�2 ) = 0 for all q ∈ [0, r] ∩Q.
∞ P∞
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However, ∞+ a.θ r and ∞ cannot be distinguished by rule T 3 since Pr1
2(∞, b.0) 

(a,q)−−−→⊥ holds for any rational number 
q < r. The smallest number p such that θ r(b.0) = r ≥ p > θq([b.0]�2

P∞
) for all q is actually r. So the tester would be able to 

distinguish ∞+ a.θ r and ∞ only if transition Pr1
2(a, b.0) 

(a,r)−−−→⊥ is allowed.
There is no technical restriction to construct a tester like this. We have only limited to rationals to show that it is 

sufficiently powerful to prove Theorem 16 below.

Theorem 16 states that bisimulation equivalence is fully abstract with respect to the ntμfθ/ntμxθ format and trace 
equivalence. That is, bisimulation equivalence is the coarsest congruence with respect to any operator whose semantics 
is defined through ntμfθ/ntμxθ rules and that is included in trace equivalence. Its proof is a direct consequence of Theo-
rem 4, Lemma 15 and [22, Lemma 3.4.8].

Theorem 16. Let P be a pure and complete PTSS in ntμfθ/ntμxθ format such that its associated transition relation is image finite and 
P � P T is complete. Then, for all t, t′ ∈ T (�s),

t ≡t
ntμfθ/ntμxθ t′ ⇔ t �P t′ ⇔ t ∼P t′

Proof. Suppose t ∼P t′ . Let P ′ be a PTSS in ntμfθ/ntμxθ format such that P � P ′ is complete and a conservative extension 
of P . Then t ∼P�P ′ t′ . By Theorem 4, for every context C[_] of P � P ′ , C[t] ∼P�P ′ C[t′]. Therefore t ≡t

ntμfθ/ntμxθ t′ and hence 
t ∼P t′ ⇒ t ≡t

ntμfθ/ntμxθ t′ .
Suppose t ��P t′ . This implies that there is n ∈N such that t ��n

P t′ . By Theorem 12 P � P T is a conservative extension of 
P since P is pure, and hence source dependent, and the sources of all rules of P T are fresh. Then we are in the conditions 
of Lemma 15, from which Tr |= Bn(t, t) 

yes−−→⊥ and Tr |= Bn(t, t) 
yes−−→� , where Tr is the transition associated to P � P T . Hence, 

the context Bn(t, _) distinguishes between t and t′ and then t �≡t
ntμfθ/ntμxθ t′ . Therefore, t ≡t

ntμfθ/ntμxθ t′ ⇒ t �P t′ .
Finally t �P t′ ⇒ t ∼ t′ , by [22, Lemma 3.4.8]. �

In the case that the associated transition relation of P is not image finite but P only contains finitary and rational 
instances of ⊕, we cannot make use of [22, Lemma 3.4.8] but Lemma 15 still holds in full. Hence t ∼P t′ ⇒ t ≡t

ntμfθ/ntμxθ t′ ⇒
t �P t′ .

Notice that Theorem 16 strangely requires that P � P T is complete. This is necessary precisely because of the observation 

at the end of Section 6. If we take P to be the PTSS with only a constant a and the rules 
a

a−→δ(a)
and x

a−→�
x

a−→δ(x)
, then P � P T

will not be complete. (See the example in the last paragraph of Section 6.) This could be circumvented by translating P in 
an equivalent PTSS P ′ that is compatible with the tester P T (or, more precisely with a variant of the tester). However, we 
omit this more general result for the complication and length of its proof which, in addition, does not add any substantial 
technical contribution.

8. Expressiveness issues

8.1. Limiting PTSSs to rational numbers

With the exception of the discussion of full abstraction and the bisimulation tester (see Section 7) the rest of the work 
does not make any particular assumption on the use of numbers in [0, 1] on probabilistic sums or quantitative premises.

In the following we briefly discuss the fact that limiting to rationals do not yield limitations on PTSS in ntμfθ/ntμxθ
format. First notice that, since any real number can be expressed as a countable sum of rationals, any term 

⊕
i∈I [pi]θi can 

be equally written as 
⊕

i∈I, j∈N[q j
i ]θi where each q j

i ∈ [0,1] ∩Q and for every i ∈ I , 
∑

j∈N q j
i = pi .

Similarly, since any real number can be expressed as a converging sequence of rationals, it turns out that it is sufficient 
to consider quantitative premises of the form θ(Y ) > q with q ∈Q (or, alternatively, θ(Y ) ≥ q). In effect, a rule r in a PTSS 
containing a quantitative premise of the form θ(Y ) ≥ p, can be replaced by a rule that is just like r but contains the set 
of quantitative premises {θ(Y ) > q | q ∈ [0, p)∩Q} instead of θ(Y ) ≥ p. Such a change would yield an equivalent PTSS. If 
instead, a rule r contains a quantitative premise of the form θ(Y ) > p, for each q ∈ (p, 1] ∩ Q, define the rule rq that is 
like r but contains the quantitative premise θ(Y ) > q instead of a premise θ(Y ) > p. Replacing rule r by the set of rules 
{rq | q ∈ (p,1] ∩Q} in the original PTSS would also yield an equivalent PTSS. The rationale of the first replacement is that 
p′ ≥ p if and only if p′ > q for all rational q < p. The second case is based on the fact that p′ > p if and only if p′ > q for 
some rational q > p.

8.2. The case of exponential distributions

A continuous time Markov chain can be seen as a transition system where each transition represents the (exponentially 
distributed) occurrence time of an event. Thus, a Markovian transition is a relation that goes from states to states and is 



P.R. D’Argenio et al. / Information and Computation 249 (2016) 76–109 101
labeled with a positive real number indicating the rate of the controlling exponential distribution: if s λ� s′ , the system will 
move from state s to state s′ after a delay of τ time units that depends on an exponential distribution of rate λ ∈ R+ .

Markov automata [26] is an extension of PTSs that includes also this other type of relation following the style introduced 
by interactive Markov chains (IMC) [25]. Thus, a Markov automaton is a tuple (S, A, −→, �) where (S, A, −→) is a PTS and 
�⊆ S ×R+ × S . Markov automata (and the particular case of IMCs) have been used as the underlying semantic model of 
different process algebras (e.g. [33,25]).

The Markovian behavior can be also modeled with a probabilistic transition as follows [26]: s 
rate(γ )−−−−−→ π where γ =∑

s
λ�s′

λ is the rate of the (exponentially distributed) sojourn time in s, and the probability of jumping to state s′ after such 

sojourn time is π(s′) = λ′
γ where λ′ =∑

s
λ�s′

λ (notice that in this second case s′ is also fixed). Thus, a Markov automata 
can be also given as a PTS (S, A, −→) (where A may contain labels in {rate(λ) | λ ∈R+}) provided that for each state s,

s
rate(λ)−−−−→ π and s

rate(λ′)−−−−−→ π ′ implies λ= λ′ and π = π ′. (11)

It turns out that bisimulation as given in Definition 8 corresponds to the usual definition on Markov automata [25,26]. 
Therefore, under this PTS view, all the theory introduced above lift immediately to Markov automata. The only problem 
remaining here is that the ntμfθ/ntμxθ format does not guarantee that rules preserve the property given in (11). Indeed, 
using our running example it is easy to see that the term rate(λ).0 ||∅ rate(λ′).0 violates the property.

The next theorem gives sufficient conditions to ensure that the associated transition of a complete PTSS is a Markov 
automata.

Theorem 17. The associated transition of a complete PTSS P = (�, A, R) is a Markov automata if every rule in R of the form H

t
rate(λ)−−−→θ

satisfies:

1. t = f (ζ1, . . . , ζrk( f )) with ζ1, . . . ζrk( f ) ∈V ∪D ,

2. Var(θ) ⊆ {ζ1, . . . ζrk( f )} ∪
{
μ | ζi

rate(γ )−−−−−→μ ∈ H for some i ∈ {1, . . . , rk( f )} and γ ∈R+
}

3. if there is a different rule H ′

f (ζ ′1,...,ζ ′rk( f ))
rate(λ′)−−−−→θ ′

∈ R, then there are ̂t, ̂t′ ∈ T(�s), a ∈ A and μ′ ∈D such that

(a) Var(t̂) ⊆ {ζ1, . . . ζrk( f )} ∪
{
μ | ζi

rate(γ )−−−−−→μ ∈ H for some i ∈ {1, . . . , rk( f )} and γ ∈R+
}

;

(b) there is a substitution ρ such that t̂′ = ρ(t̂), ρ(ζi) = ζ ′i for all i ∈ {1, . . . , rk( f )}, and, if ζi
rate(γ )−−−−−→μ ∈ H with μ ∈ Var(t), 

then ρ(μ) ∈D and ζ ′i
rate(γ )−−−−−→ ρ(μ) ∈ H ′; and

(c) either

• t̂
a−→μ′ ∈ H and ̂t′ a−→� ∈ H ′ , or

• t̂
a−→� ∈ H and ̂t′ a−→μ′ ∈ H ′ .

If all these conditions are met, we say that P is in Markov automata format (MA format for short).

Before proving the theorem, we show some examples that motivate the conditions of the MA format. First notice that 
Markov automata require a strong form of determinism on rate labels. Then, the MA format aims to preserve such strong 
determinism in a given term provided its subterms also have this type of determinism. Nondeterminism is central in the 
interactive transitions of a Markov automata. Since the nondeterminism of transitions in the premises of a rule may be 
transferred to transitions in the conclusion of it, the role of interactive transitions in the construction of a Markovian 
transition should be limited. For instance, consider a PTSS with constants a, b and the unary operator f , and interactive 
label c with the following rules:

a
c−→ a a

c−→ b

x
c−→μ

f (x)
rate(1)−−−−→μ

Then, both transitions f (a) 
rate(1)−−−−→ a and f (a) 

rate(1)−−−−→ b can be derived. Thus, condition 2 does not allow that the target of 
the conclusion depends on the targets of interactive premises.

Similarly, lookahead cannot be trusted since we cannot guarantee how the terms in support sets are substituted in a 
rule. Consider, a PTSS with the same signature but the following rules instead:

a
rate(1)−−−−→ a⊕ 1 b

x
rate(1)−−−−→μ μ(Y ) > 0

f (x)
rate(1)−−−−→ δ(y)

with y ∈ Y
2
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Table 2
Extension of the process algebra of Example 1 with Markovian transitions.

x
rate(λ)−−−−→μ y

rate(λ′)−−−−−→μ′

x+ y
rate(λ+λ′)−−−−−−−→μ⊕ λ

λ+λ′
μ′

x
rate(λ)−−−−→μ y

rate(λ′)−−−−−→μ′

x ||B y
rate(λ+λ′)−−−−−−−→ (μ ||B δ(y))⊕ λ

λ+λ′
(δ(x) ||B μ′)

x
rate(λ)−−−−→μ {y rate(λ′)−−−−−→� | λ′ ∈R+}

x+ y
rate(λ)−−−−→μ

x
rate(λ)−−−−→μ {y rate(λ′)−−−−−→� | λ′ ∈R+}

x ||B y
rate(λ)−−−−→μ ||B δ(y)

{x rate(λ)−−−−→� | λ ∈R+} y
rate(λ′)−−−−−→μ

x+ y
rate(λ′)−−−−−→μ

{x rate(λ)−−−−→� | λ ∈R+} y
rate(λ′)−−−−−→μ

x ||B y
rate(λ′)−−−−−→ δ(x) ||B μ

Depending on how variables in Y are assigned, transitions f (a) 
rate(1)−−−−→ δ(a) and f (a) 

rate(1)−−−−→ δ(b) can be derived.
Condition 3 ensures that different rules do not have closed instances in such a way that the source of the conclusion is 

the same. Thus, it states that for any closed instance of both rules with equal source at the conclusion, there is a state term 
that appears as source of a positive premise in one rule and of a negative premise in the other such that the literals deny 
each other (condition 3c). Again, we need to ensure that such a common term is inevitably constructed as a consequence 
of the source of the conclusion. That is why the restriction on the set of variables in condition 3a and the correspondence 
through a properly constructed substitution (condition 3b).

Proof of Theorem 17. Let Tr be the transition relation associated to P . It suffices to show that if t
rate(λ1)−−−−−→ θ1 ∈ Tr and 

t
rate(λ2)−−−−−→ θ2 ∈ Tr, then λ1 = λ2 and θ1 = θ2.
We proceed by structural induction on t . So let t = f (ξ1, . . . , ξrk( f )) with ξ1, . . . , ξrk( f ) ∈ T (�) and assume that the 

property is valid for each ξi ∈ T (�s).
Suppose by contradiction that either λ1 �= λ2 or θ1 �= θ2. Since the model is complete, by Definition 5 there are two sets 

of negative premises N1 and N2 such that Tr |= N1, Tr |= N2, P � N1

f (ξ1,...,ξrk( f ))
rate(λ1)−−−−→θ1

, and P � N2

f (ξ1,...,ξrk( f ))
rate(λ2)−−−−→θ2

. Let p1

and p2 be their respective proofs.
We consider two cases according the last rules used in each proof are the same or not.
Suppose the last rule used in both proofs is the same. Let H

f (ζ1,...,ζrk( f ))
rate(λ)−−−→θ

be such rule. Then there are two substi-

tution ρ1 and ρ2 for the proofs p1 and p2, respectively, such that ρ1(ζi) = ρ2(ζi) = ξi for all i ∈ {1, . . . , rk( f )}. In addition, 

by induction hypothesis ρ1(ζi) 
rate(γ 1

i )−−−−−→ ρ1(μ) and ρ2(ζi) 
rate(γ 2

i )−−−−−→ ρ2(μ) implies γ 1
i = γ 2

i and ρ1(μ) = ρ2(μ). As a conse-
quence of condition 2 θ1 = ρ1(θ) = ρ2(θ) = θ2. Moreover λ1 = λ2 = λ because the last rules applied in both proofs are the 
same. Therefore we reach a contradiction for this case.

So it has to be the case that the last rules on p1 and p2 are different. Let H

f (ζ1,...,ζrk( f ))
rate(λ)−−−→θ

and H ′

f (ζ ′1,...,ζ ′rk( f ))
rate(λ′)−−−−→θ ′

be 

the respective rules. Then there are two substitution ρ1 and ρ2 for the proofs p1 and p2, respectively, such that ρ1(ζi) =
ρ2(ζ ′i ) = ξi for all i ∈ {1, . . . , rk( f )}. Because of condition 3, there are t̂, ̂t′ ∈ T(�s), a ∈ A and μ′ ∈D satisfying conditions 3a, 
3b, and 3c.

Thus, if μ ∈ Var(t̂), ζi
rate(γ )−−−−−→μ ∈ H , for some 1 ≤ i ≤ rk( f ). Moreover, ζ ′i

rate(γ ′)−−−−−→ ρ(μ) ∈ H ′ . Then, by induction hypoth-

esis, ρ1(ζi) 
rate(γ )−−−−−→ ρ1(μ) and ρ2(ζ ′i ) 

rate(γ ′)−−−−−→ ρ2(ρ(μ)) implies γ = γ ′ and ρ1(μ) = ρ2(ρ(μ)). Moreover ρ1(ζi) = ρ2(ζ ′i ) =
ρ2(ρ(ζ1)). Because of this and condition 3a, ρ2(t̂′) = ρ2(ρ(t̂)) = ρ1(t̂). W.l.o.g. suppose t̂

a−→μ′ ∈ H and t̂′ a−→� ∈ H ′ is the 
case in condition 3c. Then ρ1(t̂)

a−→ ρ1(μ′) ∈ Tr and Tr |= ρ2(t̂′) a−→� , i.e., Tr |= ρ1(t̂)
a−→� which is a clear contradiction, hence 

proving the theorem. �

Example 7. We can extend our running example to ensure that it is in MA format. We do so by extending all rules in Table 1
to run on labels a ∈ A ∪ {rate(λ) | λ ∈R+} with the exceptions of the rules for + and ||B . For them, rules in Table 1 are only 
defined for the interactive labels a ∈ A \ {rate(λ) | λ ∈R+}. For the rate labels, we define the new rules in Table 2.

9. Related work

We first remark that the ntμfθ/ntμxθ format should be considered as a probabilistic extension of the tyft/tyxt and 
ntyft/ntyxt formats [2,4]. These formats can be encoded in ntμfθ/ntμxθ format if non-probabilistic transitions t

a−→ t′ are 
considered as a probabilistic transition in the usual way, i.e., as t a−→ δ(t′). Provided this encoding, an ntyft rule of the form
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{tm
am−−→ ym |m ∈ M} ∪ {tn

bn−−→� | n ∈ N}
f (x1, . . . , xrk( f ))

a−→ t

can be rewritten as the following ntμfθ rule (we are using the abbreviated ntμfθ format),

{t̂m
am−−→μm |m ∈ M} ∪ {μm(Ym) > 0 |m ∈ M} ∪ {t̂n

bn−−→� | n ∈ N}
f (x1, . . . , xrk( f ))

a−→ δ(t̂)

with t̂ being the same term as t where each occurrence of variable ym has been replaced by Ym .
SOS for probabilistic systems have received relatively little attention before our introduction of the predecessor 

ntμfν/ntμxν format in [14]. To our knowledge, only [15–18,34] study rule formats to specify probabilistic transition sys-
tems, and in [16,23] they are embedded in general bialgebraic frameworks.

Both RTSS format [18] and PGSOS format [15,16] consider transitions with the form t
a,q−−→ t′ as already explained in 

the introduction. They allow for the specification of only reactive probabilistic systems [12] (i.e. they should satisfy that if 
t

a−→ π and t
a−→ π ′ , then π = π ′). Moreover, these formats are very much like GSOS [3] in the sense that premises are 

of the form xi
ai ,qi−−−→ yi or xi

bi−−→� where each xi is a variable appearing on the term f (x1, . . . , xrk( f )) at the source of the 
conclusion. Moreover, qi needs to be a variable, so there is no possibility of testing for a particular probability value. In 
addition, RTSS allows for a restricted form of lookahead: only one step ahead from variable yi can be tested and moreover 
probabilities should be appropriately combined in the conclusion of the rule. (RTSS can be generalized to arbitrary steps 
of lookahead but such generalization would render the format unreadable [18].) We remark that both RTSS and PGSOS 
formats can be encoded in the ntμfθ/ntμxθ format. Segala-GSOS format [16] allows for rules similar to that in equation (F), 
with the restriction that terms tm and tn can only be any of the variables xk . Therefore, lookahead is not permitted beyond 
a quantitative testing. The target of the conclusion in the Segala-GSOS format has a particular form, which is similar to ⊕

i∈I [pi]θi where each θi does not contain ⊕ and δ only appears applied to a variable. Since ⊕ distributes with the lifted 
operators, this expression is as expressive as any distribution term in which δ only appears applied to a variable. However, 
the Segala-GSOS format is here a little bit more expressive since it allows to express the copying of a sampled value (apart 
from the copying of the distribution). Provided this characteristic is not present, all other characteristics of the Segala-GSOS 
format can be encoded in the ntμfθ/ntμxθ format.

Bialgebras present an abstract categorical framework to study structured operational semantics and, in this setting, gen-
eral congruence theorems have been presented [35,23]. They introduce the so-called abstract GSOS and abstract safe ntree [35,
23]. In fact, Segala-GSOS is derived as an instance of abstract GSOS [16]. It is known that the non-probabilistic ntyft/ntyxt
format cannot be instanced as an abstract safe ntree and hence cannot be introduced in a bialgebraic framework in the 
current state of the art. This also would apply to our format since it is a generalization of the ntyft/ntyxt format. However 
the tyft/tyxt format has been encoded in a categorical setting using topos [36], in particular the lookahead. Then it would 
be an open question whether this could also be done for the positive subset of ntμfθ/ntμxθ .

It is worth to mention that all previously mentioned formats only consider a single-sorted algebra. Moreover, we notice 
that none of these formats can encode the bisimulation tester of Definition 21 since it needs lookahead, negative premises 
of the form f (�x) a−→� , and quantitative premises testing against any possible probability value. None of the previous formats 
allow for all these simultaneously. In fact, to the authors knowledge no full abstraction result for rule formats has been 
presented before for PTSS, nor for complete PTS. Nevertheless, related to this result, we should remark that testers for 
bisimulation of reactive (i.e. deterministic) probabilistic transition systems were already introduced in [20]. Also, the recent 
paper [37] has shown that an extension of the higher order π calculus that includes action refusal and passivation (called 
HOπpass,ref) is powerful enough to distinguish bisimulation in reactive probabilistic transition systems. However, in these 
two cases, the achieved full abstraction is with respect to probabilistic trace equivalence rather than the weaker possibilistic 
trace equivalence used in Theorem 16.

Recently, there have been some few works on SOS and rule formats for quantitative variants of labeled transition systems 
that are worth to mention. [38] discuses a coalgebraic approach to produce a GSOS-like format (with some additional 
restriction) for reactive probabilistic transition system with continuous probabilities (namely, labeled Markov processes [30]). 
Based in the bialgebraic setting, [39–41] introduces another GSOS-like format for several classes of weighted transition 
systems. It includes a type of premise that allows to test for the total accumulated weight (i.e. the measure of the support 
set). This format still bears weights as labels. Based on this last work as well as [16,42] introduces yet another variant 
of GSOS, in this case oriented to the general setting of uniform labeled transition systems [43]. This format allows for 
quantitative premises that test for positive (like in Segala-GSOS [16]) and total accumulated weight (like in [40,41]). In all 
previous works, the corresponding bisimulation is shown to be a congruence for the operators defined in the said format, 
but for none of them bisimulation is fully abstract since they do not allow for lookahead and general quantitative premises.

There have been some additional work on PTSS that goes beyond bisimulation. [34] introduces a format to ensure 
non-expansiveness of ε-bisimulation using probability values on the labels. This work has been generalized an extended 
in [44] following the style set in this article. [45] characterizes a class of operators that ensures non-extensiveness of 
the bisimulation metric. [46,47] introduces different restrictions to the GSOS format following the style set in this article 
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so that each format ensures non-extensiveness, non-expansiveness, and uniform continuity, respectively. [48] provides a 
decomposition theorem for a probabilistic variant of the Hennessy–Milner logic based on the RTSS format [18]. Starting from 
a GSOS-like PTSS, [49] introduces an algorithm to derive complete equational theories for bisimulation, convex bisimulation 
and the bisimulation metric.

Finally, we observe that all previous mentioned work, including ours, is mostly oriented to the reactive type of models 
(either deterministic [12] or non-deterministic [21]) with the exception of [17,18] which also provide a rule format for 
generative probabilistic systems [12].

10. Conclusions

In this article we have introduced a general theory for structured operational semantics for languages with probabilis-
tic features. We focused on rule formats and introduced the ntμfθ/ntμxθ format, the most general (less restricting) of all 
formats available in the literature that preserves bisimilarity. We proved that bisimilarity is a congruence for all operators 
definable in this format and that it is also the least congruence relation preserved by all such operators included in possi-
bilistic trace equivalence. While working towards that aim, we also defined the meaning of PTSSs with negative premises 
and studied the concept of conservative extensions on PTSSs. Finally, we discussed expressiveness issues adding the partic-
ular case of IMCs and Markov automata: we introduced the MA format on complete PTSS that guarantees that the model it 
defines is indeed a Markov automaton.

We highlight the introduction of our quantitative premises which, in combination with lookahead, permits the construc-
tions of highly expressive operators such as the bisimulation tester of Definition 21 and the safe controller of the running 
example. The bisimulation tester, in particular, enables the definition of powerful operators that are able to measure precise 
probabilities. For instance, we can introduce the deadlock measuring operator dk where dk(t) 

q−→⊥ whenever t reaches a 
deadlock state with probability larger or equal to q in any possible resolution of non-determinism. The rules are as follows{

x
a−→� | a ∈ A

}
dk(x)

1−→⊥

{
Bn(x, y)

yes−−→μn | n ∈N0
}

B(x, y)
yes−−→⊥

x
a−→μ

{
dk(zi)

pi−−→μi, μ(Zi)≥ qi, B(zi, Zi)
yes−−→μ′i, B(zi, z j)

yes−−→� }
i, j∈I
i �= j

dk(x)
∑

i∈I qi pi−−−−−−→⊥

I is a countable
index set and∑

i∈I qi ≤ 1

The last rule appropriately collect the probabilities by looking ahead on disjoint (non-bisimilar) terms (notice the use of 
the bisimulation tester). Operation dk is somehow related to the zero process of [50] that allows for detection of inevitable 
deadlock.

We remark that the congruence theorem also holds for PTSs with subprobability distributions (i.e. distributions such 
that π(T (�)) < 1). However, we do not know whether the full abstraction result remains valid in this setting: our tester 
would fail to distinguish c from d where c

a−→ ([0.5]c ⊕ [0.5]⊥), c
a−→ ([0.5]c), and d a−→ ([0.5]c ⊕ [0.5]⊥). (The term 

([0.5]c) represents a subprobability distribution that only chooses c with probability 0.5.) We suspect that a test for the 
total measure of support sets like in [40,41] is actually needed.

There are two important issues that remain unsolved and which we wrongly claimed valid in [27]. The first one is 
whether the well-founded hypothesis of the congruence theorem (Theorem 4) is indeed necessary. The second one is 
whether the ntμfθ/ntμxθ format can be reduced to a probabilistic variant of the ntree format [51]. In [27], we made a 
mistake on the proof of Lemma 8 that we could not repair. Hence, Theorem 5 (which stated that every ntμfθ/ntμxθ PTSS 
can be reduced to pntree) and Corollary 1 (which dropped the well-founded hypothesis) in [27] remain unproved. We do 
know, however, that the claims hold for a restriction of the ntμfθ/ntμxθ format, in which quantitative premises can only be 
tested against 0, i.e. if the rules of the PTSS are in the format of equation (F).
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Appendix A. Comparison to [14] and [27]

The following list highlights the most important points in which the present paper improves over [14]. Moreover, we 
also compare to the related article [27].

1. PTSS in [14] are based on single-sorted algebras. There the target of a transition is a distribution on terms. Thus, in 
order to define the target of the conclusion we use arithmetic expressions of the form 

∑
i∈I pi · ((∏ j∈ J ν

j
) ◦ g−1) where 
i i
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∑
i∈I pi = 1, ν j

i are variables over actual probability distributions on terms, and gi are (measurable) functions on the set 
of terms. Carelessly, we did not require some necessary compositional properties on gi , which falsifies the congruence 
theorem. The adoption of distribution terms as a second sort introduces naturally such a compositionality property and, 
in fact, it is part of Definition 13 and the associated properties proven in Lemmas 9 and 10.
The two-sorted signatures (which we have already used in [27,49]) also allow us to obtain a significantly neater defini-
tion of PTSSs.

2. In this article we addressed the most general way to give meaning to PTSS using 3-valued stable models, and considered 
complete PTSS when a 2-valued model is required. In [14] we limited to stratified models. In [27] we already presented 
the same meaning as here through well-supported proofs.

3. The format introduced in [14] contains two mistakes. The first one is the already mentioned problem behind the gi
functions. The second one is with regard to the quantitative premises. We requested that the set of quantitative premises 
has the form {μ�zl (Yl) �l ql | l ∈ L, �z ∈ Z}, while we should have actually requested the form {μ�zl (Yl) �l ql | l ∈ L}, since 
allowing for different quantitative inquiries on the same set Yl introduces a contradiction. This has been corrected here.

4. The ntμfθ/ntμxθ format defined here allows for more complex quantitative premises than those in [14] since they 
may have the form θ(Y ) � q where θ is any distribution term rather than only a distribution variable. It is also more 
flexible with respect to the use of the variables μ�zm and those in the sets Yl . This can be seen in restrictions 5 and 6 of 
Definition 10 which are also more general than the restrictions from [27].

5. The congruence theorem in our original paper [14, Theorem 12] is missing the well-founded rules hypothesis which 
is actually necessary. This has already been reported in [27]. Notice, besides that the congruence theorem there [27, 
Theorem 4] is limited to stratifiable PTSSs (the proof has not appeared in the published paper).

6. The results on conservative extensions in this paper are new. In [14] we introduced conservative extension using the 
usual (more restricted) semantic definition, which here is a consequence of Theorem 14. Besides Theorem 12 is more 
general than Theorem 14 in [14], adapting to the most general conditions in non-probabilistic TSS theory [29].

7. The results on full abstraction (Sec. 7) are now proved in the context of complete PTSSs (rather than its subset of 
stratified PTSSs as given in [14]) and the new results of conservative extension.

8. All the results on expressiveness, including that of Markov automata, are new (see Sec. 8).

Appendix B. Conclusion of the proof of Lemma 11: Successor subcase on IIα

By induction hypothesis suppose that Iα−1 and IIα−1 hold. We focus on the remaining case of IIα in which t1 RP t2 as a 
consequence of Definition 13.3 (other cases were proved in the main text).

Then, t1 = f (ξ1
1 , · · · , ξ1

rk( f )) and t2 = f (ξ2
1 , · · · , ξ2

rk( f )) with ξ1
i RP ξ2

i , for all i = 1, . . . , rk( f ), and f ∈ �s . Since 

f (ξ1
1 , · · · , ξ1

rk( f ))
a−→ θ1 ∈ CTλ , there is a set H of negative literals such that P � H

f (ξ1
1 ,··· ,ξ1

rk( f ))
a−→θ1

and CTλ |= H . We use 

induction on the height γ of the proof of P � H

f (ξ1
1 ,··· ,ξ1

rk( f ))
a−→θ1

. So, by Definition 4, there must exist a rule r of the form

{tm(�z) am−−→μ�zm |m ∈ M, �z ∈ Z} ∪ {tn(�z) bn−−→� | n ∈ N, �z ∈ Z} ∪ {θl(Yl) �l,k pl,k | l ∈ L,k ∈ Kl}
f (ζ1, . . . , ζrk( f ))

a−→ θ

and a proper substitution ρ1 such that

(ρ11) ρ1(ζi) = ξ1
i , for all i ∈ {1, . . . , rk( f )},

(ρ12) ρ1(θ) = θ1,

(ρ13) for each m ∈ M and �z ∈ Z , there is a set H�zm ⊆ H of negative literals such that P � H�zm
ρ1(tm(�z)) am−−→ρ1(μ�zm)

is proved with 

a proof shorter than γ , and CTλ |= H�zm (since CTλ |= H),

(ρ14) for each n ∈ N and �z ∈ Z , ρ1(tn(�z)) bn−−→� ∈ H , hence CTλ |= ρ1(tn(�z)) bn−−→� , and
(ρ15) for each l ∈ L and k ∈ Kl , �ρ1(θl)�(ρ1(Yl)) �l,k pl,k .

We construct a substitution ρ2 such that, together with rule r, proves f (ξ2
1 , · · · , ξ2

rk( f ))
a−→ ρ2(θ) ∈ PTα and ρ1(θ) RP ρ2(θ). 

To construct ρ2 we proceed by induction on the variable dependency graph of r as we did for the case of Iα .
Let D = {ρ1(�z) | �z ∈ Z}. Let � = {Z�d ⊆ Z | �d ∈ D} be a partition of Z such that for all �d ∈ D

(�1) |Z�d| ≥ℵ0;

(�2) there exists some �z ∈ Z�d such that ρ1(�z) = �d;

(�3) for all �z ∈ Z and m ∈ M , if μ�zm ∈ Var(θ) ∪ (∪l∈L Var(θl)) ∪W and ρ1(�z) = �d, then �z ∈ Z�d (here, W is as in Definition 10); 
and

(�4) for all �z ∈ Z , if, for some l ∈ L, �z(l) ∈ Yl ∩
(
Var(θ)∪⋃

l′∈L Var(θl′ )
)

and ρ1(�z) = �d, then �z ∈ Z� .
d
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Just like for the successor subcase on Iα , the partition � exists as a consequence of conditions 1, 5, and 6 in Definition 10.
In the following, we define ρ2 such that

(ρ21) ρ1(ζ ) RP ρ2(ζ ) for all ζ ∈ Var(θ) ∪ (∪l∈L Var(θl)) ∪W ∪ {ζ1, . . . , ζrk( f )},
(ρ22) ρ2(�l(Z�d)) =

{
t ∈ T (�s) | �d(l) RP t and �ρ2(θl)�(t) > 0

}
,

(ρ23) ρ2(ζi) = ξ2
i for all i ∈ {1, . . . , rk( f )},

(ρ24) ρ2(tm(�z)) am−−→ ρ2(μ
�z
m) ∈ PTα for all m ∈ M and �z ∈ Z ,

(ρ25) �ρ2(θl)�(ρ2(Yl)) �l,k pl,k for all l ∈ L and k ∈ Kl , and

(ρ26) CTα−1 |= ρ2(tn(�z)) bn−−→� for all n ∈ N and �z ∈ Z ,

We prove (ρ21)–(ρ24) by constructing ρ2 inductively on the dependency degree of each variable (which we can do 
because r is well-founded). For i ∈ {1, . . . , rk( f )}, define ρ2(ζi) = ξ2

i , which immediately yields (ρ23). Moreover, ρ1(ζi) =
ξ1

i RP ξ2
i = ρ2(ζi) and hence (ρ21) and (ρ22) hold for this case. ((ρ22) holds trivially).

For the inductive case, we assume that every variable ζ with degree(ζ ) < k satisfy (ρ21) and (ρ22).
We analyze first the case of μ�zm with degree(μ�zm) = k. Necessarily, �z ∈ Z�d for some Z�d ∈� since � forms a partition of 

Z . By (�2), there exists �z′ ∈ Z�d such that ρ1(�z′) = �d. In particular, if μ�zm ∈ Var(θ) ∪ (∪l∈L Var(θl)) ∪W , we know by (�3) that 
ρ1(�z) = �d, in which case we choose �z′ = �z. Since all variables in Var(tm(�z)) have a dependency degree smaller than k, using 
the induction hypothesis on (ρ21) and (ρ22) respectively, we have:

• If ζ ∈ Var(tm(�z)) ∩ W , ρ1(�z′(ζ )) = ρ1(ζ ) RP ρ2(ζ ) = ρ2(�z(ζ )). (Here �z(ζ ) represents the variable in the coordinate ζ
which is ζ itself.)
• For every l ∈ L, if ζ ∈ Var(tm(�z)) ∩ Yl , then

ρ2(ζ )= ρ2(�z(l)) ∈ ρ2(�l(Z�d))=
{

t ∈ T (�s) | �d(l) RP t and �ρ2(θl)�(t) > 0
}
,

and hence. ρ1(�z′(l)) = �d(l) RP ρ2(�z(l)).

Therefore, by Lemma 9, ρ1(tm(�z′)) RP ρ2(tm(�z)). Furthermore, by (ρ13), there is a proof of P � H�zm
ρ1(tm(�z)) am−−→ρ1(μ�zm)

with 

CTλ |= H�zm . Thus, ρ1(tm(�z′)) am−−→ ρ1(μ
�z′
m) ∈ CTλ . Since moreover, the proof is shorter than γ , by induction IIα , there exists 

θ ′ ∈ T (�d) such that ρ2(tm(�z)) am−−→ θ ′ ∈ PTα and ρ1(μ
�z′
m) RP θ ′ . Define ρ2(μ

�z
m) = θ ′ . Then (ρ21) holds since �z′ was chosen 

to be �z in case μ�zm ∈ Var(θ) ∪ (∪l∈L Var(θl)) ∪W , and (ρ22) holds trivially. Moreover, also (ρ24) is satisfied.
It only remains to show the case of the term variables in 

⋃
l∈L Yl . Recall that all variables in Yl have the same dependency 

degree. So, we define ρ2 simultaneously for all variables in Yl with degree(Yl) = k. We directly define ρ2 such that

ρ2(�l(Z�d))=
{

t ∈ T (�s) | �d(l) RP t and �ρ2(θl)�(t) > 0
}

(B.1)

for all Z�d ∈�. For this to be a good definition, we need to show that

(i) Yl =⋃
�d∈D �l(Z{dl}L ),

(ii) �l(Z�d) ∩�l(Z�d′ ) �= ∅ implies Z�d = Z�d′ , and

(iii) there exists t ∈ T (�s) such that �d(l) RP t and �ρ2(θ)�(t) > 0.

(i) is immediate since � is a partition of Z .
For (ii) suppose y ∈�l(Z�d) ∩�l(Z�d′ ). Then, there is a �z ∈ Z such that �z(l) = y. By Definition 9, such �z needs to be unique, 

from which (ii) follows.
For (iii) we proceed as follows. By induction on the dependency degree, we know that for all ζ ∈ Var(θl), ρ1(ζ ) RP ρ2(ζ ). 

Then, by Lemmas 9 and 10, �ρ1(ζ )� RP �ρ2(ζ )� . As a consequence, there is a weight function w such that

w(�d(l), T (�s))= �ρ1(ζ )�(�d(l))= �ρ1(ζ )�(ρ1(�z(l))) > 0

for some �z ∈ Z�d . The existence of �z is guaranteed by (�2) and the last inequality is a consequence of ρ1 being proper. Then, 
there must exist some t ∈ T (�s) such that w(�d(l), t) > 0, and hence �d(l) RP t . Finally, we calculate

�ρ2(θl)�(t)= w(T (�s), t)≥ w(�d(l), t) > 0

which proves (iii).
The definition of (B.1) not only ensures (ρ22) but also (ρ21) in case y ∈ Var(θ) ∪⋃

l′∈L Var(θl′ ). Indeed, if �z is such that 
�z(l) = y ∈ �l(Z�d), then �z ∈ Z�d and hence, necessarily ρ1(�z) = �d because of (�4). Therefore ρ1(y) = �d(l) RP ρ2(y) since 
y ∈�l(Z�).
d



P.R. D’Argenio et al. / Information and Computation 249 (2016) 76–109 107
It only remain to show cases (ρ25) and (ρ26). We focus first on (ρ25). Because of (�3) and (ρ21), ρ1(ζ ) RP ρ2(ζ ) for all 
ζ ∈ Var(θl), from which �ρ1(θl)� RP �ρ2(θl)� , because of Lemmas 9 and 10. Let w be the weight function that witness it. 
We can now calculate:

�ρ2(θl)�(ρ2(Yl))=∑
t′∈ρ2(Yl)

�ρ2(θl)�(t′)

=∑
t′∈ρ2(Yl)

w(T (�s), t′) (by property (ii) of weight functions)

=∑
t∈T (�s)

∑
t′∈ρ2(Yl)

w(t, t′)

≥∑
t∈ρ1(Yl)

∑
t′∈ρ2(Yl)

w(t, t′) (because ρ1(Yl)⊆ T (�s))

=∑
t∈ρ1(Yl)

∑
t′∈T (�s)

w(t, t′) (*)

= �ρ1(θl)�(ρ1(Yl)) (by property (i) of weight functions)

�l,k pl,k (by (ρ15))

Since t ∈ ρ1(Yl) there must exist �d ∈ D such that �d(l) = t . Then, by property (iii) of weight functions, w(t, t′) > 0 implies 
t RP t′ and hence t′ ∈ ρ2(�l(Z�d)) ⊆ ρ2(Yl). From here, if t′ /∈ ρ2(Yl), w(t, t′) = 0, which justifies (*).

Finally we prove (ρ26). (ρ21) and Lemma 9 imply that ρ1(tn(�z)) RP ρ2(tn(�z)). By contradiction assume ρ2(tn(�z)) bn−−→
θ ′2 ∈ CTα−1 for some θ ′2 ∈ T (�d). By induction, IIα−1 implies ρ1(tn(�z)) bn−−→ θ ′1 ∈ CTλ for some θ ′1 ∈ T (�d). However, this 

contradicts (ρ14) which states that ρ1(tn(�z)) bn−−→� ∈ H and CTλ |= H .
Properties (ρ21)–(ρ26) imply that rule r together with substitution ρ2 form the basis of the proof of a transition rule 

H ′

f (ξ2
1 ,··· ,ξ2

rk( f ))
a−→ρ2(θ)

with CTα−1 |= H ′ . Hence f (ξ2
1 , · · · , ξ2

rk( f ))
a−→ ρ2(θ) ∈ PTα . By (ρ21) and Lemma 9, ρ1(θ) RP ρ2(θ), 

which concludes the proof of Iα .
This finishes this part of the proof.

Appendix C. Proof of Theorem 12

The proof of the theorem follows by double induction. The first induction is applied on the height of the proof of 
P 0 � P 1 � N

t
a−→θ

following Definition 16. The second induction follows the inductive definition of source dependent variables. 
To facilitate this we introduce the idea of source distance of a variable ζ in a rule r, which is the minimal number of steps 
that takes to deduce that ζ is source dependent in r. Formally, if r = H

t
a−→θ
∈ R1, the source distance sd(r, ζ ) is defined as 

follows:

• if ζ ∈ Var(t), then sd(r, ζ ) ≤ n for all n ∈N0;

• if t∗ b−→ θ∗ ∈ H and sd(r, ζ ∗) ≤ n for all ζ ∗ ∈ Var(t∗), then sd(r, ζ ) ≤ n + 1 for all ζ ∈ Var(θ∗);
• if θ∗(T ∗) �
 p ∈ H and sd(r, ζ ∗) ≤ n for all ζ ∗ ∈ Var(θ∗), then sd(r, ζ ) ≤ n + 1 for all ζ ∈⋃

t∗∈T ∗ Var(t∗).

Finally, sd(r, ζ ) =min {n | sd(r, ζ )≤ n}.
For the proof we will also require the following lemma.

Lemma 18. Let t ∈ T (�0 ��1) and θ ∈ T (�0
d ). If �θ �(t) > 0 then t ∈ T (�0

s ).

The proof of the lemma follows by straightforward induction on the structure of θ .

Proof of Theorem 12. Let N

t
a−→θ

be a closed rule with t ∈ T (�0) and N a set of negative premises and suppose that 

P 0 � P 1 � N

t
a−→θ

with a proof p. We show that p is also a proof of P 0 � N

t
a−→θ

. We proceed by induction on the height 
of p. Call this induction (†).

So, suppose the induction hypothesis proved for all proofs strictly smaller than p. The last step of p is defined by a rule 
r = H

t′ a−→θ ′
∈ R0 ∪ R1 and a closed substitution ρ :V ∪D→ T (�0 ��1) such that ρ(t′) = t .

We first show that

ρ(ζ ) ∈ T (�0) for all variable ζ that is source dependent in r�. (�)

We proceed by induction on the source distance sd(r�, ζ ). Call this induction (‡).
If sd(r�, ζ ) = 0 then ζ ∈ Var(t′). Since ρ(t′) = t ∈ T (�0), necessarily ρ(ζ )T (�0). For the inductive case, let sd(r�, ζ ) =

n + 1. By definition, one of the following cases hold:
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A. t∗ b−→ θ∗ ∈ H with t∗ ∈ T(�0) such that ζ ∈ Var(θ∗) and sd(r, ζ ∗) ≤ n for all ζ ∗ ∈ Var(t∗), or
B. θ∗(T ∗) �
 p ∈ H with θ∗ ∈ T(�0) such that ζ ∈ Var(t∗), for some t∗ ∈ T ∗ , and sd(r, ζ ∗) ≤ n for all ζ ∗ ∈ Var(θ∗).

For case A, induction (‡) implies ρ(ζ ∗) ∈ T (�0) for all ζ ∗ ∈ Var(t∗) and, as a consequence, ρ(t∗) ∈ T (�0). The closed rule 
N

ρ(t∗) b−→ρ(θ∗)
is proved with a strict sub-proof of p so, by induction (†), P 0 � N

ρ(t∗) b−→ρ(θ∗)
. In particular ρ(θ∗) ∈ T (�0) and 

hence ρ(ζ ) ∈ T (�0).
For case B, induction (‡) implies ρ(ζ ∗) ∈ T (�0) for all ζ ∗ ∈ Var(θ∗) and from here ρ(θ∗) ∈ T (�0). By Lemma 18, ρ(t∗) ∈

T (�0) and hence ρ(ζ ) ∈ T (�0).
Next, we show that r ∈ R0. We prove this by contradiction. So, suppose r ∈ R1. Since ρ(t′) = t ∈ T (�0), t′ ∈ T(�0). Then 

either hypothesis 2b or hypothesis 2c of the theorem applies.

If 2b applies, there exists t∗ b−→ θ∗ ∈ H such that t∗ ∈ T(�0), all variables in Var(t∗) are source dependent in r�, and 
either b /∈ A0 or θ∗ is fresh. In this last case ρ(θ∗) /∈ T(�0) Since either b /∈ A0 or ρ(θ∗) /∈ T(�0), the sub-proof of p
proving N

ρ(t∗) b−→ρ(θ∗)
cannot be a proof in P 0. So, according to induction (‡), ρ(t∗) /∈ T (�0). Since t∗ ∈ T(�0), necessarily 

ρ(ζ ∗) /∈ T (�0) for some ζ ∗ ∈ Var(t∗). Then, by (�), ζ ∗ is not source dependent in r� which contradicts Hypothesis 2(b)ii of 
the theorem.

If 2c applies, there exists θ∗(T ∗) �
 p ∈ H such that θ∗ ∈ T(�0), all variables in Var(θ∗) are source dependent in r�, 
and T ∗ contains a fresh term t∗ . Because ρ is proper, �ρ(θ∗)�(ρ(t∗)) > 0, and by Lemma 18, ρ(θ∗) /∈ T (�0). Therefore, 
ρ(ζ ∗) /∈ T (�0) for some ζ ∗ ∈ Var(θ∗). Then, by (�), ζ ∗ is not source dependent in r� which contradicts Hypothesis 2(c)ii of 
the theorem.

So r ∈ R0 and hence r = r�, so ρ(ζ ) ∈ T (�0) for all variable ζ that is source dependent in r. Because of Hypothesis 1, 
ρ(ζ ) ∈ T (�0) for all variable ζ in r and hence ρ(r) is a closed instance of r containing only terms in T (�0). In particular, 
for every t∗ b−→ θ∗ ∈ H , ρ(t∗) ∈ T (�0). Then, by induction (†), there is a strict sub-proof of p of P 0 � N

ρ(t∗) b−→ρ(θ∗)
. Since the 

last step of p is given by ρ(r) which is closed in P 0, then p is also a proof in P 0. �
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