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a b s t r a c t

We prove that perturbing the reaction–diffusion equation ut = uxx + (u+)p (p > 1), with time–space
white noise produces that solutions explodes with probability one for every initial datum, opposite to
the deterministic model where a positive stationary solution exists.
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1. Introduction

In this paper we study the following parabolic SPDE with
additive noise

ut = uxx + f (u)+ σ Ẇ (x, t), (1.1)

in an interval (0, 1), complemented with homogeneous Dirichlet
boundary conditions. HereW is a 2-dimensional Brownian sheet,
σ is a positive parameter and f is a locally Lipschitz real function.
We restrict ourselves to one space dimension since for higher

dimensions, the solution to (1.1) (if it exists) is not expected
to be a function-valued process and has to be understood in a
distributional sense. But in this case there is no natural way to
define f (u), see [17] for more details.
Semilinear parabolic equations like (1.1) arise in the phe-

nomenological approach to such different phenomena as the dif-
fusion of a fluid in a porousmedium, transport in a semiconductor,
chemical reactions with possibility of spatial diffusion, population
dynamics, chemotaxis in biological systems, etc. In all these cases,
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due to the phenomenological approximate character of the equa-
tions, it is of interest to understand how the description changes
under the effect of stochastic perturbation.
Eq. (1.1) with f globally Lipschitz has been widely studied (see

[17,19]), in this case global solutions exist with probability one.
However, when f is just locally Lipschitz, typically f (s) ∼ sp with
p > 1 or f (s) ∼ es, there are practically no results on this problem.
Using standard approximation arguments one can easily prove the
existence of local in time solutions. But the behavior of themaximal
time of existence does not follow from that proof.
On the other hand, the deterministic case (i.e. σ = 0) is very

well understood. One problem that has drawn the attention of the
PDE community is the appearance of singularities in finite time,
no matter how smooth the initial data may be. This phenomena is
known as blow-up. What happens is that solutions go to infinity in
finite time, i.e. there exists a time T <∞ such that

lim
t↗T
‖u(·, t)‖∞ = ∞.

A well-known condition on the nonlinear term f that assures this
phenomena is when f is a nonnegative convex function with∫
∞ 1
f
<∞.

For a general reference of these facts and much more on blow-up
problems, see the book [18] and the surveys [1,6].
For a large class of nonlinearities f , such as the ones mentioned

above, problem (1.1) with σ = 0 admits a stationary positive
solution v and hence, since the comparison principle holds for this
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equation, for every initial datum u0 ≤ v the solution to (1.1) is
global in time.
It is well-known (see [6,18]) that the appearance of blow-up

persists under (small) regular perturbations. On the other hand,
regular perturbations of (1.1) with σ = 0 admit global in time
solutions. Summarizing, the existence of global in time/blowing up
solutions for this problemwith σ = 0 is stable under small regular
perturbations. Hence it is of interest to test how this phenomena is
affected by stochastic perturbations.
Surprisingly, the situation changes for σ > 0. We prove that,

in this case, there is no global in time solution. In fact, for every
initial nonnegative datum u0, the solution to (1.1) blows up with
probability one.
Stochastic partial differential equations with blow-up has been

considered by Mueller in [14,15] and Mueller and Sowers in [16].
In those papers, a linear drift with a nonlinear multiplicative noise
is considered and the explosion is due to this latter term.
A similar result, but in some sense in the opposite direction,was

proved by Mao, Marion and Renshaw in [13]. There, the authors
prove for a system of ODEs that arise in population dynamics and
that have blow-up solutions, that perturbing some coefficients of
the system with a small Brownian noise, global solutions a.s. are
obtained for every initial data.
In our problem, a common way to interpret the asymptotic

behavior of u is as follows: consider first the deterministic case
σ = 0. In this case there is some kind of competition between
the diffusion, which diffuses the zero boundary condition to the
interior of the domain and the nonlinear source f (u) that induces
u to grow very fast.
Again in the deterministic case, it was proved in [4] that for

small initial datum u0, u → 0 as t → +∞, while for u0 large,
there exists a finite time T , such that ‖u(·, t)‖∞ ↗ +∞ as t ↗ T .
More precisely, it is proved that for every data u0, there exists a
critical parameter λ∗ such that if we solve the PDE with initial data
λu0, for λ < λ∗ the solution converges to 0 uniformly, for λ > λ∗

the solution blows-up in finite time and for λ = λ∗ the solution
converges uniformly to the unique positive steady state.
For small noise σ � 1 one could expect a similar behavior.

Of course we cannot expect convergence to the zero solution as
t → ∞ since in this case v ≡ 0 is not invariant for (1.1), but it is
reasonable to suspect the existence of an invariant measure close
to the zero solution of the deterministic PDE and convergence to
this invariant measure for small initial datum as t →∞.
However, that is not the case. We prove in Section 3 that for

every initial datum u0 solutions to (1.1) blow-up in finite timewith
probability one.
Numerical simulations, as well as heuristical arguments,

suggest that, for small initial data u0, metastability could be taking
place in this case. Metastability appears here since, while the
noise remains relatively small, the solution stays in the domain of
attraction of the zero solution of the deterministic problem. But, as
soon as the noise becomes large, the solution escapes this domain
of attraction and hence the reaction term begins to dominate and
pushes forward the solution until ultimately explosion cannot be
prevented by the action of the noise.

Organization of the paper

The paper is organized as follows. In Section 2 we give the
rigorous meaning of (1.1) and give the references where the
foundations for the study of this kind of equation were laid.
Section 3 deals with the proof of the main result of this paper:
the explosion of the solutions of (1.1). In Section 4 we propose a
semidiscrete scheme in order to approximate the solutions to (1.1).
We prove that the numerical approximations also explode with
probability one and that they converge a.s., in time intervals where
the continuous solution remains bounded. Finally, in Section 5 we
show some numerical simulations for this equation.

2. Formulation of the problem

We begin this section discussing the rigorous meaning of
(1.1), the references for this being [2,11,17,19]. There are two
alternatives: the integral and the weak formulation as described
in [2,17,19]. The last being more suitable for our purposes. Both
formulations are equivalent as is shown in [19].
Let (Ω,F , (Ft)t≥0, P) be a probability space equipped with

a filtration (Ft)t≥0 which is supposed to be right continuous
and such that F0 contains all the P-null sets of F . We are
given a space–time white noise on R+ × [0, 1] defined on
(Ω,F , (Ft)t≥0, P) and u0 ∈ C0([0, 1]).
Assume for a moment that f is globally Lipschitz, multiply (1.1)

by a test functionϕ ∈ C2((0, 1))∩C0([0, 1]) and integrate to obtain∫ 1

0
u(x, t)ϕ(x) dx−

∫ 1

0
u0(x)ϕ(x) dx

=

∫ t

0

∫ 1

0
u(s, x)ϕxx(x) dx ds+

∫ t

0

∫ 1

0
f (u(s, x))ϕ(x) dx ds

+ σ

∫ t

0

∫ 1

0
ϕ(x) dW (x, s). (2.1)

Alternatively, the integral formulation of the problem is
constructed by means of the function G, the fundamental solution
of the heat equation for the domain (0, 1).

u(x, t)−
∫ 1

0
Gt(x, y)u0(y) dy =

∫ t

0

∫ 1

0
Gt−s(x, y)f (u(y, s)) dyds

+ σ

∫ t

0

∫ 1

0
Gt−s(x, y)dW (y, s).

As a solution to (1.1)weunderstand anFt-adapted processwith
values in C0([0, 1]) that verifies (2.1) for every ϕ ∈ C∞((0, 1)) ∩
C0([0, 1]).
In [2,19] it is proved that there exists a unique solution to

this problem and that the integral and weak formulations are
equivalent.
For f locally Lipschitz globally defined solutions do not exist

in general. Nevertheless, existence of local in time solutions is
proved by standard arguments: consider for each n ∈ N the
globally Lipschitz function fn(x) = f (−n)1(−∞,−n] + f (x)1(−n,n) +
f (n)1[n,+∞) and un, the unique solution of (1.1) with f replaced by
fn. Let Tn be the first time at which ‖un(·, t)‖∞ reaches the value
n. Then (Tn)n is an increasing sequence of stopping times and we
define the maximal existence time of (1.1) as T := lim Tn. It is easy
to see that un+11{t<Tn} = un1{t<Tn} a.s. and hence there exist the
limit u(x, t) = lim un(x, t) for t < T which verifies∫ 1

0
u(x, t ∧ T )ϕ(x) dx−

∫ 1

0
u0(x)ϕ(x) dx

=

∫ t∧T

0

∫ 1

0
u(s, x)ϕxx(x) dx ds+

∫ t∧T

0

∫ 1

0
f (u(s, x))ϕ(x) dx ds

+ σ

∫ t∧T

0

∫ 1

0
ϕ(x) dW (x, s). (2.2)

Sowe say that u solves (1.1) up to the explosion time T . We also
say that u blows up in finite time if P(T <∞) > 0. Observe that if
T (ω) <∞ then

lim
t↗T (ω)

‖u(·, t, ω)‖∞ = ∞.
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3. Explosions

In this section, we show that Eq. (1.1) blows-up in finite time
with probability one for every initial datum u0 ∈ C0([0, 1]).
Hereafter we assume that f is a nonnegative convex function,
hence locally Lipschitz. Moreover we assume that

∫
∞ 1/f <∞.

In order to prove the blow-up of u, we define the function

Φ(t) :=
∫ 1

0
φ(x)u(x, t) dx.

Hereφ(x) > 0 is the normalized first eigenfunction of the Dirichlet
Laplacian in (0, 1). That is,φ(x) = π

2 sin(πx) and hencewe can use
it as a test function in (2.1) to obtain

Φ(t)− Φ(0) = −λ1

∫ t

0
Φ(s) ds+

∫ t

0

∫ 1

0
φ(x)f (u(x, s)) dxds

+ σ

∫ t

0

∫ 1

0
φ(x) dW (x, s).

We denote by z0 := Φ(0) =
∫ 1
0 φ(x)u0(x) dx.

Now, as f is convex, by Jensen’s inequality, we get∫ 1

0
φ(x)f (u(x, s)) dx ≥ f

(∫ 1

0
φ(x)u(x, s) dx

)
= f (Φ(s)).

Moreover, since φ is a positive function with L1-norm equal to 1, it
is easy to see that

B(t) :=

√
8
π

∫ t

0

∫ 1

0
φ(x) dW (x, s),

is a standard Brownian motion.
Combining all these facts, we obtain that Φ verifies the (one

dimensional) stochastic differential inequality

dΦ(t) ≥ (−λ1Φ(t)+ f (Φ(t))) dt +
π
√
8
σdB(t).

Define z(t) to be the one-dimensional process that verifies

dz = (−λ1z + f (z)) dt + σdB,

with initial condition z(0) = z0. Then, e(t) = Φ(t)− z(t) verifies

de ≥
(
−λ1e+

f (Φ)− f (z)
Φ − z

e
)
dt.

Observe that e verifies a deterministic differential inequality.
Hence, as e(0) = 0 it is easy to check that e(t) ≥ 0 as long as it
is defined.
Therefore,Φ(t) ≥ z(t) as long asΦ is defined.
The following lemma proves that z explodes with probability

one.

Lemma 3.1. Let z be the solution of

dz = (−λ1z + f (z)) dt + σdB, z(0) = 0. (3.1)

Then z explodes in finite time with probability one.

Proof. The proof is just an application of the Feller Test for
explosions ([12], Chapter 5). Using the same notation as in [12] we
obtain the scale function for (3.1) to be

p(x) =
∫ x

0
exp

(
−
2
σ 2

∫ s

0
b(ξ) dξ

)
ds.

Here b(ξ) = −λ1ξ + f (ξ).
It is easy to see that, as

∫
∞ 1/f <∞,

p(−∞) = −∞, p(+∞) < +∞,

and hence the Feller Test implies that, if S is the explosion time of
z, we get

P
(
lim
t↗S
z(t) = +∞

)
= 1.

To prove that P(S < +∞) = 1 we have to consider the function

v(x) = 2
∫ x

0

p(x)− p(y)
σ 2p(y)

dy.

The behavior of v at+∞ is given by 1/f and hence v(+∞) < +∞,
which implies that

P(S <∞) = 1.

This completes the proof. �

These facts all together, imply that there exists a (random) time
T = T (ω) <∞ a.s. such that

lim
t↗T
‖u(·, t)‖∞ = ∞ a.s.

So we have proved the following theorem.

Theorem 3.2. Let f be a nonnegative, convex function such that∫
∞ 1
f
<∞.

Then, for every nonnegative initial datum u0 ≥ 0 the solution u to
(1.1) blows-up in finite (random) time T with

Pu0(T <∞) = 1.

4. Numerical approximations

In this section we introduce a numerical scheme in order
to compute solutions to problem (1.1). We discretize the space
variable with second order finite differences in a uniform mesh
of size h = 1/n. That is, for x := i/n, i = 1, 2, . . . , n − 1 the
process un(t, i/n) = ui(t) is defined as the solution of the system
of stochastic differential equations

dui =
1
h2
(ui+1 − 2ui + ui−1)dt + f (ui) dt +

σ
√
h
dwi,

2 ≤ i ≤ n− 1, (4.1)

accompanied with the boundary conditions u1(t) = un(t) = 0,
ui(0) = u0(ih), 1 ≤ i ≤ n. The Brownian motions wi are
obtained by space integration of the Brownian sheet in the interval
[ih, (i+ 1)h).
Equivalently, this can be written as

dU = (−AU + f (U)) dt +
σ
√
h
dW , U(0) = U0.

Where U(t) = (u1(t), . . . , un(t)), −A is the discrete Laplacian,
f (U) in understood componentwise (i.e. f (U)i = f (ui)), dW =
(dw1, . . . , dwn) and (U0)i = u0(ih).
With the same techniques of Theorem 3.2 it can be proved

that solutions to this system of SDEs explodes in finite time with
probability one.
We extend un(t, ·) to the whole interval [0, 1] by linear

interpolation in the space variable for each t .
Concerning the explosions of this system of SDEs we have the

following.
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Theorem 4.1. Let f be a nonnegative, convex function such that∫
∞ 1
f
<∞.

Then, for every nonnegative initial datum U0 ≥ 0 the solution U to
(4.1) blows-up in finite (random) time T n with

PU
0
(T n <∞) = 1.

Proof. The proof uses the same technique of that of Theorem 3.2.
Since A is a symmetric positive definitematrix, we have a sequence
of positive eigenvalues of A, 0 < λn1 ≤ · · · ≤ λnn. Let φ

n the
eigenvector associated to λn1. It is easy to see that one can tale φ

n

such that φnj ≥ 0 for every j, and we assume that it is normalized
such that

∑n
i=1 hφ

n
i = 1. Now, consider the function

Φn(t) =
n∑
i=1

hφni ui(t).

Proceeding as in the proof of Theorem 3.2 we get thatΦn verifies

dΦn(t) ≥ (−λn1Φ
n(t)+ f (Φn(t))) dt + σndB(t),

where B is a standard Brownian motion and σn → σπ/
√
8. The

rest of the proof follows by Lemma 3.1 as in Theorem 3.2. �

Now we turn to the problem of convergence of the approxima-
tions. In [10] convergence of this numerical scheme for globally
Lipschitz reactions is proved

Theorem 4.2 (Gyöngy, [10] Theorem 3.1). Assume f is globally
Lipschitz and u0 ∈ C3([0, 1]). Then

(1) For every p ≥ 1 and for every T > 0 there exists a constant
K = K(p, T ) such that

sup
0≤t≤T

sup
x∈[0,1]

E(|un(t, x)− u(t, x)|2p) ≤
K
np
.

(2) un(t, x) converges to u(t, x) uniformly in [0, T ] × [0, 1] almost
surely as n→∞.

Based on this theorem we can prove that even when f is just
locally Lipschitz, convergence holds but just in (stochastic) time
intervals where the solution remains bounded. Observe that a
better convergence result is not expected. Since the explosion
times of u and un in general are different, then ‖un(t, ·)−u(t, ·)‖∞
is unbounded in intervals of the form [0, τ ] with τ close to the
minimum of the explosion times. To state the convergence result
we define the following stopping times. Let M > 0 and consider
RM := inf{t > 0, ‖u(t, ·)‖L∞([0,1]) ≥ M} and RnM := inf{t >
0, ‖un(t, ·)‖L∞([0,1]) ≥ M}

Theorem 4.3. Assume f is a nonnegative convex functionwith
∫ 1
f <

∞. Let u be the solution to (1.1) and un its numerical approximation
given by (4.1). Then

(1) For every p ≥ 1 and for every T > 0 there exists a constant
K = K(p, T ) such that

sup
0≤t≤T

sup
x∈[0,1]

E(|un(t, x)− u(t, x)|2p1{t≤RM∧RnM }) ≤
K
np
.

(2) For every M ≥ 0, ‖un − u‖L∞([0,T∧RM ]×[0,1]) converges to zero
almost surely as n→∞.

Remark 4.1. Observe that statement (2) does not make assump-
tions on the numerical approximations un.

Table 1
The maximum of the solution at different times.

Snapshot Time ‖u(·, t, ω)‖∞

1 1.0000 5.6159
2 50.0000 3.3863
3 72.0202 15.5104
4 72.4202 18.2885
5 72.4802 38.5848
6 72.5002 82.8705
7 72.5012 203.0799
8 72.5068 2.2695× 103

9 72.5076 1.8128×1012

Proof. First, we truncate the f to get a globally Lipschitz function,
bounded and that coincides with the original f for values of swith
|s| ≤ M . i.e. we consider

fM(s) =

{f (s) if |s| ≤ M
f (M) if s ≥ M
f (−M) if s ≤ −M.

Letw andwn be the solutions of (1.1) and (4.1) with f replaced by
fM respectively.
From Theorem 4.2,

sup
0≤t≤T

sup
x∈[0,1]

E(|wn(t, x)− w(t, x)|2p) ≤
K
np
.

From the uniqueness of solutions of (1.1) and (4.1) up to the
stopping time RM ∧ RnM , we have that almost surely, if t ≤ RM ∧ R

n
M

then u(t, x) = w(t, x) and un(t, x) = wn(t, x), hence

sup
0≤t≤T

sup
x∈[0,1]

E(|un(t, x)− u(t, x)|2p1{t≤RM∧RnM })

= sup
0≤t≤T

sup
x∈[0,1]

E(|wn(t, x)− w(t, x)|2p1{t≤RM∧RnM })

≤ sup
0≤t≤T

sup
x∈[0,1]

E(|wn(t, x)− w(t, x)|2p) ≤
K
np
.

This proves (1). To prove (2) observe that sincewn → w almost
surely and uniformly in [0, T ]×[0, 1]we have that for every ε > 0
and 0 ≤ t ≤ RM , ‖wn(t, ·)‖∞ ≤ M + ε if n is large enough. That
means that lim inf RnM ≥ RM and hence RM ∧ R

n
M → RM . That is the

reason we can get rid of RnM . So we have

0 = lim
n→∞
‖wn − w‖L∞([0,T ]×[0,1])

≥ lim
n→∞
‖(wn − w)1{t≤RM−1∧RnM }‖L∞([0,T ]×[0,1])

= lim
n→∞
‖(un − u)1{t≤RM−1∧RnM }‖L∞([0,T ]×[0,1])

≥ lim
n→∞
‖(un − u)1{t≤RM−1}‖L∞([0,T ]×[0,1])

= lim
n→∞
‖un − u‖L∞([0,T∧RM−1]×[0,1]).

SinceM is an arbitrary constant, this proves (2). �

Remark 4.2. This discretization in not enough to compute an
approximate solution. We need to discretize the time variable, but
this is much simpler since now we are dealing with a SDE instead
of a SPDE. The time discretization of (4.1) can be handled as in [5].

5. Numerical experiments

In this section we show some numerical simulations of (1.1).
We perform all the simulations with the reaction f (u) = (u+)2,
σ = 6.36 and initial datum u0 ≡ 0.
To perform the simulations we use the numerical scheme

introduced in Section 4, that is we discretize the space variable
with second order finite differences in a uniform mesh of size
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Fig. 1. Profiles of a sample solution at different times.

Fig. 2. The evolution of themaximum of a sample solutionwith initial data u0 ≡ 0.

h = 0.02 (i.e.: n = 50 nodes). With this discretization we obtain a
system of SDE that reads

dui =
1
h2
(ui+1 − 2ui + ui−1)dt + f (ui) dt +

σ
√
h
dwi,

2 ≤ i ≤ n− 1,

Fig. 3. The graph of a sample solution with initial datum u0 ≡ 0.

accompanied with the boundary conditions u1 = un = 0, ui(0) =
u0(ih), 1 ≤ i ≤ n. The Brownian motions wi are obtained by space
integration of the Brownian sheet in the interval [(i − 1/2)h, (i +
1/2)h).
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Fig. 4. The kernel density estimator of the explosion time for σ = 6.36 and the corresponding box-plot.

To integrate this system we use an adaptive procedure similar
to the one developed in [5] for the one dimensional case. Here
we adapt the time step as in that work replacing the value of the
solution (which is a real number) by the L1-norm of uj, as is done
in [9] for the deterministic case. More precisely, the totally discrete
scheme reads as follows

uj+1i − u
j
i =

τj

h2
(uji+1 − 2u

j
i + u

j
i−1)+ τjf (u

j
i)

+
σ
√
h
(wi(t j+1)− wi(t j)),

accompaniedwith the boundary conditions uj1 = u
j
n = 0, for every

j ≥ 1 and u0i = u0(ih), 1 ≤ i ≤ n. Here

t0 = 0, τj =
τ∑
i
huji
, tj+1 − tj = τj,

and τ is the time-discretization parameter. The Brownian motions
wi are the ones of the semidiscrete scheme.
We want to remark that adaptivity in time is essential in this

case since a fixed time step procedure gives rise to globally defined
approximations.
Concerning adaptivity in space, it is known for the case

σ = 0 that it is not needed to capture the behavior of the
maximal existence time. However spatial adaptivity is needed to
compute accurately the behavior of the solution near the forming
singularities (see [3,7–9]).
In spite that in Theorem 3.2 we prove that solutions to (1.1)

blow up with probability one for every σ > 0 and every initial
data, we want to remark that it is not possible to observe that
in numerical simulations since for small σ , the explosion time is
exponentially large when the initial datum is small.
Essentially, in order to blow-up, the solution needs to be greater

than the positive stationary solution of the deterministic problem
(i.e. the solution of vxx = −f (v), which is of size 12 when f (v) =
(v+)

2) plus the order of the noise σ . Once the solution is in that
range of values, the noise cannot prevent the explosion.
The probability pσ that such an event occurs in a finite fixed

time interval depends on σ and is exponentially small (pσ ∼
exp(−1/σ 2)). Hence, one can estimate P(Tσ > e1/2σ

2
) ∼

exp(exp(−1/2σ 2)). That means for small σ , explosions cannot
be appreciated numerically and hence the importance of the
theoretical arguments.
To show the explosive behavior, we choose to do the

simulations with σ = 6.36 and initial datum u0 ≡ 0. We ran the
code with σ ≤ 5 until time t = 1000 and we did not observe
explosions but a meta-stable behavior.

The features of a particular sample path are shown in Fig. 1.
Table 1 shows the times at where the solution is drawn and the

L∞-norm of the solution at that time.
In Fig. 2 we show the evolution of the L∞ norm and in Fig. 3 is

the whole picture as a function of x and t of a sample path.
Finally, Fig. 4 shows some statistics: we perform 832 simula-

tions of the solution with σ = 6.36 to obtain a sample of the ex-
plosion time. Actually, we stop the simulationwhen themaximum
of the solution reaches the value 1013. The kernel density estima-
tor of the data obtained by the simulation and the corresponding
box–plot are shown. The sample mean is 46.8834 and the sample
standard deviation 43.8857.
These statistics suggest that the distribution of the explosion

time Tσ is close to an exponential variable. This is confirmed by
the metastable nature of the phenomena. The expected behavior
of Tσ in this case is

lim
σ→0

Tσ
E(Tσ )

= Z,

where Z is a mean one exponential variable.
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