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In this paper we analyze the value of the information in a cooperative model. There is an
agent (the innovator), having relevant information which can be sold to some potential
buyers. The n potential users of the information share a market. The expected utility
of each of them can be improved by obtaining the information. The whole situation is
modelled as a (n + 1)—person cooperative game.

We study the properties of the characteristic function of this game. It fulfills a weak
version of the superadditivity property, namely O-monotonicity. The game is proved to
be monotonic.

We compute the Shapley value and we prove it is an imputation for the game. We
compare the Shapley value with the equilibrium studied in a noncooperative model by
Quintas (1995). We also study some limit cases when the potential buyers are completely
informed or uninformed. It includes Big Boss Games (Muto et al. (1988)) and other limit
cases.

We conclude that in a cooperative environment the buyers avoid being exploited
by the innovator. Conversely the innovator obtains a higher utility in a noncooperative
game.

Keywords: Models of information transferal; cooperative games; O-monotonicity; Shapley
value.

JEL Classification: C71

1. Introduction

Information has a remarkable characteristic as a commodity. While its production
usually requires a cost, it can be reproduced easily as many times as possible once
it is acquired. The cost for reproduction is generally negligible. Thus, as soon as
the information is sold in the market by a monopolistic producer, the competition
among resellers should force the price to fall down to zero. The reward to the
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original producer will be injured thereby, so that it will not be traded in the market
(Arrow(1962)).

Patent licensing is a common legal arrangement to provide a proper incentive for
trading information such as technological innovations. A significant portion of the
existing literature on information trading has been devoted to analyzing economic
effects of patent licensing or protection (Kamien and Tauman (1984, 1986); Gilbert
and Shapiro (1990); Katz and Shapiro (1985, 1986); Poddar and Sinha (2004);
Stamatopoulos and Tauman (2005) and Muto (1986, 1993)). There exist many
papers studying the value of the information when the information holder acts
strategically, Kamien (1992) surveys most of these studies.

In this paper we consider the following problem: There are n firms with similar
characteristics. There exists an agent having relevant information for the firms.
This information can be sold to the firms. The innovator is not going to use the
information for himself and the firms acquiring the information will be better than
before obtaining it.

A typical example would be n farmers which are willing to obtain information
about the upcoming weather. Thus they could know what is the best seed they
should use for the upcoming season. They could pay for this information, in order
to improve their expectations of choosing the right seed. Another example is the
case of an innovator offering a new technology to n firms. They can then reduce
their production costs. The information holder is not part of the market, but he
can act strategically in order to maximize his utilities by selling the information

The problem can be modelled as a n+ 1 players game. This game can be cooper-
ative or noncooperative. Quintas (1995) considered in a noncooperative framework
under what conditions it was optimal and stable to sell the information to all the
firms. However the situation was not so appealing for the buyers. The information
should be bought for all the buyers, but the utilities they obtained were equal to
the case when each of them was the unique uninformed player. Nevertheless they
could not ignore the existence of the information, thus it was concluded that they
should buy it. This result reflects many real situations where the introduction of a
new technology produces serious damage in the local market. On the other hand it
might be expected that in some cases the firms could act in a cooperative way in
order to prevent the general damage mentioned above. We study this problem in a
cooperative characteristic form game of n + 1 players.

We make some assumptions on the Information Market: A fixed market, the
use of the information by all the agents, a conservative point of view in the com-
putation of informed players utilities, and the same previous information level of
all uninformed agents. These assumptions avoid modelling the problem as a game
with externalities. The study of games with externalities has been done by Macho-
Stadler, Pérez Castillo and Wettstein (2006); de Clippel and Serrano (2005), how-
ever in this approach it is still difficult to justify the use of the Shapley value as a
solution concept. We compute the Shapley value (Shapley (1953)). When we con-
sider a game in characteristic form function, superadditivity is usually assumed,



FA 1

August 24, 2010 14:27 WSPC/0219-1989 151-IGTR 00249

Shapley Value in a Model of Information Transferal 21

and thus the Shapley value can be computed and it gives an imputation. However
in our approach we use a weak version of superadditivity: 0-monotonicity and we
show that it is still possible to compute the Shapley value. It results an imputation
for the game. We give conditions for the 0-monotonicity and we study the implica-
tions of those conditions on the resulting market. The games is also proved to be
monotonic.

We compare the utilities of the agents in the cooperative and noncooperative
model and we observe that the Shapley value gives a better utility for the users that
what they obtained in the noncooperative model. It means that they avoid being
exploited by the innovator. An opposite situation is observed from the innovator
point of view because his utility is lower than in the noncooperative model.

2. The Information Market

We consider a market with n firms (n > 2) and an innovator who posses a patent
or an information.

The set of agents will be denoted by: N = {1,2,...,n+1}, where: I = {1} (the
innovator) is the agent having a new information and U = {2,...,n+ 1}(users) are
the firms who could be willing to obtain the new information.

The n users or firms, interact in the same market, producing or performing the
same activity, with the same technology or the same information. Thus all the users
have the same incentives for the acquisition of the new information or technology.
We will make certain assumptions about the problem we want to study:

S.1: The n users of the information are the same before and after the informa-
tion holder offers the new technology. It indicates that there are no exits or
incoming agents in the market.

S.2: All the players that acquire the new information make use of it. This is a
natural assumption in a noncooperative environment, and it is assumed in a
cooperative model to avoid the formation of monopolies.

S.3: From the point of view of the players that acquire the information, their
utilities will be computed under a conservator point of view, assuming that
the uninformed agents take the right decision.

S.4: All the users have the same previous information level. For instance, in the
case of the farmers, they all have the same knowledge about the upcoming
weather, or in the case of firms producing a good, they all have the same
technology. It can be formalized as follows: For each j € U there exists a
probability p; of having success (taking the right decision). We also assume
that this probability is the same for all players: p; = cVj € U.

S.5: The utility they obtain depends on how many players take a right decision
no matter the identity of them. Thus if r players make a right decision (for
instance, if they are farmers choosing the right seed for the upcoming weather)
each utility function will be a(r). In particular, a(r) is a decreasing function,
because when more agents take the right decision, each agent obtains a lower
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utility level i.e., if 7 < k then a(r) > a(k). We also assume that: a(1) =1 and
a(r) > 0. The agents making a wrong decision obtain no utility.

We will model this problem as a cooperative game, where each agent can decide
to acquire the information. If an agent is uniformed, the probability of making a
right decision (or success) can be described by a binomial probability distribution,
being ¢ the probability of sucess. The probability that & among n players take the
right decision is: p(k,c,n) = (})c*(1 — ¢)"~*. The utility obtained by the agents
in U is: p(k,c,n)a(k). The success of each agent is independent of the remaining
agents. The aggregated utility of k players which succeeded is: kp(k,c,n)a(k) =
k(7)c"(1 — ¢)"*a(k). Thus, we have:

C'.1: If the agents in a coalition S do not have the information (the innovator is not a
member of S), we have that: v(S) = w(S) = Y3 _k(;)c*(1—c)* Fa(n—s+k)
with s = |S|. It is so, because if k players have succeeded, each one has an
expected utility: p(k, ¢, n)a(n—s+k), since we assumed that the (n—s) players
outside the coalition also success.

C'.2: If the agents in S have the information (the innovator belongs to S): v(S) =
u(S) = (s —1)a(n) with s = |S]. It is so because s players have succeeded and
their expected utility will be a(n).

Definition 1. An n person game in characteristic function form is given by (N, v),
where N = {1,2,...,n+1} is the set of players and v : 2V — R is the characteristic
function.

In our case, by (C.1) and (C.2) the characteristic function v is:

0 if S =10.
u(S) = (s —1)a(n) iflesS.

V) =0 (s = > @ d(l—e)a(n—s+j) if1¢S, and S #0
=0
! for all S C N.

The set of all characteristic functions games v with the set of players N is
denoted by G¥. In this paper, we will restrict our attention to a subset of GV
consisting of all monotonic games. This set is denoted by MGY = {v € GN|v(S) <
v(T) when S C T'}. It is immediate to observe that:

Remark 1. (1) v(S) >0 for all S C N.

(2) v({1}) = 0, because when the innovator do not sell the information, he obtains
no utility by the use of it.

(3) The function v depends only on the fact that the innovator belongs (or not) to
it, and the number of agents in the coalition. Thus we will keep the notations
v(S), w(S) and u(S), but in all these cases they are functions depending only
on the cardinality s of the set S, we will denotes it by v(s) (where s = |S]).



FA 1

August 24, 2010 14:27 WSPC/0219-1989 151-IGTR 00249

Shapley Value in a Model of Information Transferal 23

2.1. Properties of the characteristic function

We will first present a result which analyzes the incentives of uninformed players to
join an informed players coalition. This result is used in the study of the O-monotonic
property. We will then study the monotonic property. An usual assumption on the
function v is the superadditivity property.

Definition 2. A game (N, v) is superadditives if for all sets A C N and B C N
with AN B = (), we have that: v(AU B) > v(A) + v(B).

It gives the players proper incentives to form bigger coalitions. We will consider
a weaker version of the superadditivity property, the so called O-monotonic property
(Pérez Castillo and Wettstein (2001)).

Definition 3. A game (V, v) is 0-monotonic if for all sets A C N and for all ¢ ¢ A,
we have that: v(AU{i}) > v(A) + v({i}).

In a 0-monotonic game there are no negative externalities when a single player
joins a coalition.

2.1.1. 0-monotonic games

Theorem 1. If the innovator is not in the coalition S(1 ¢ S) and he belongs to
T(1€T) such that SNT =0, then v(SUT) > v(S) +v(T) if and only if

v(8) = w(S) <u(SU{1}) = v(SU{1}) (1)

Proof. First, we are going to prove that if u(SUT) > w(S) + u(T) then w(S) <
u(SU{1}). f u(SUT) > w(S) + u(T) by Definition 1, we have: (s +t — 1)a(n) >
Sr_ok(3)*(1 =) Fa(n — s+ k) + (t — 1)a(n), simplifying (t — 1)a(n) we have:

sa(n) > s k(® (1 —c) *a(n—s+k). (2)
2
By Definition 1;
uw(SU{1}) =sa(n) and w(S)= Zk (Z) (1) Fa(n — s+ k) (3)
k=0

Then using (3) in (2) we have: w(S) < u(SU{1}). This proves the first part.

Now we are going to prove that if w(S) <wu(SU{1l}) then w(SUT) >
w(S)+w(T). I w(S) <u(SU{l}) then: w(SUT)—w(S)—u(T)>u(SUT)
—u(SU{1}) —u(T), by Definition 1: u(SUT) —u(SU{1}) —u(T)=(s+t—1)
a(n) —sa(n) — (t — 1)a(n) = 0 then: w(SUT)—w(S)—u(T) > 0, hence u(SUT) >
w(S) + u(T).

|

This theorem indicates two outcomes. Firstly, the players in a uninformed coali-
tion S C U have incentives to join a informed coalition 7" C N, if the utility they
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obtain is less than they would obtain buying the information. We do not need a
restriction on the set T' because by assumption S.3, for the computation of the char-
acteristic function v(T') we assumed that the uninformed agents outside the coali-
tion take the right decision. Thus it is always better for them to join the coalition.
Secondly, if s = |S| = 1 then w(S) = 0 and u(SU{1}) = a(n). Thus a(n) > 0. It indi-
cates that a sole uninformed player always have incentives to buy the information.

Now we will analyze what happens if s > 1. We analyze the restrictions (1)
given in Theorem 1 depending on the number of agents in the market.

For each set S we have an inequation, thus we have (7}) inequations, but as all
the sets having the same cardinality s give the same inequation, we have only n
relevant equations.

If w(S) < u(SU{1}), then using Definition 1, and 0 < ¢ < 1. We have:

Sz_?‘l)j (j) (1 — ) a(n — s+ j)

- s(1—¢*) 4)

Y

a(n)
The first term in the numerator of the right side in (4) is 0. Thus we will consider

Jj=L
We will use in (4): %(j) =3z }) and (1—¢*) =(1— C)Zj;é ¢/, then we have:

s—1 <S._1)cj(1_c)s—j—1a(n—8+j)

N
a(n) > — (5)
>
j=0
For each s with 2 < s < n we have by (5), an inequation. Then we have:
a(n) >0
> -1
a(n) > T Ca(n )
k—1
(l; : i) (1 —c)f 77 ta(n —k+j)
aln) > #=
ch (6)
=0
n—1 n—1
(571) -
aln) > =
S
j=0
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We also have the general assumption: 0 < a(n) < a(n —1) < --- < a(2) < 1. We
should solve this system finding the variation of the variables a(n),a(n—1),...,a(2).
We will use the Fourier method for inequations. It consists of eliminating in each
step a variable obtaining a equivalent system with the remaining variables (Bertsi-
mas and Tsitsiklis (1997)). Thus, we have:

Proposition 1. The solution to the system (6) is: % <a(n) <aln-—1)
< <a3)<a2) <1
The proof is done by induction and it appears in the Appendix.

Remark 2. This proposition shows that the restriction of Theorem 1 can be sim-
plified, giving only a new inequality

e <t o

We analyze the left side restrictions of inequality (7) for some values of n with ¢
fixed. In the following figure we show the graphics for n = 2 (solid line), n = 3 (dot
dash) and n = 10 (dot-dot dash).

a(m 0.5T

0.3751

0.125+

. ‘
0.25 0.5 0.75 1

Restriction (7) indicates that when the number of players grows it gives a lower
value. Thus we have more freedom for choosing a(n). On the other hand, if we
analyze restriction (7) for the different values of ¢ and n, we have that for a fixed
%) holds when ¢ = —L-. Moreover, for a fixed n, we have:

. c(1—c)"2 . c(l—o)"—? i
lim. g4 Tre(—g™=2 = lime_q_ Tre(imn=2 = 0, thus in these extreme cases we

only have the basic restriction a(n) > 0.

n: The max(

The following theorem resumes the above studies cases. It shows under what
conditions v is 0-monotonic.

c(1—c)" 2

Theorem 2. v is 0-monotonic if and only if a(n) > Tre(—a2
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Proof. Let SC N andi ¢ S.If S =0 and v(0) =0 v(0) +v({i}) =0+ v({i}) =
v(@ U {i}). Thus we have that: v(S U{i}) > v(S) +v({i}). S # D and i ¢ S, we
have the following 3 cases:

Case 1. Let S (1 € S) be an informed players coalition and ¢ an user ¢ ¢ S then:
v(SU{i}) > v(S) + v({i}). By hypothesis we have that 1 € S and i # 1 then
by Definition 1: u(S) = (s — 1)a(n) and w({i}) = ca(n), then u(S) + w({i}) =
(s =1+ c)a(n). Then using 0 < ¢ < 1, we have that: (s — 1+ c)a(n) < sa(n). By
Definition 1, u(SU {i}) = sa(n), then u(S U {i}) > u(S) + w({i}).

Case 2. If the innovator is not in the coalition S (1 ¢ S) and ¢ is an user i ¢ S
then: v(SU{i}S) +v({i}).

The proof of this case follows by using Definition 1 and properties of combina-
toric numbers.

Case 3. If the innovator is not in the coalition S (1 ¢ S) and i is the innovator
n—2

(i = 1) then: u(SU{1}) > w(S) +u({1}) = w(S) if and only if a(n) > £UTo—.

This is a particular case of Theorem 1 and Proposition 1, when T' = {1}. O

2.1.2. Monotonic property

The following theorem shows that each function v determines a monotonic game
(N,v) € MG™.

Theorem 3. Given a game (N,v), with v given by Definition 1, and 0 < ¢ < 1,
then v(S) < v(T') for all S CT.

Proof. Let us first prove v(S) < v(SU{i}) for all i € N. If i = 1, by Theorem 2,
v(SU{1}) > v(S) +v({1}) and by Definition 1, v({1}) = 0 we have v(SU{1}) >
v(S). If ¢ # 1, by Theorem 2, v(S U {i}) > v(S) + v({i}) and by Definition 1,
v({i}) = ¢ a(n) > 0 we have v(S U {i}) > v(S) + ca(n) > v(S). Now using
repeatedly the above result it follows that: v(S) < v(T') for all S C T'. It completes
the proof. |

The following Lemma gives a property of v that will be used in Subsection 4.1.

Lemma 1. Let (N,v) € MGY where v is given by Definition 1 and S is an
informed players coalition (1 € S), then: v(N)—v(S) = 3 ;e p s (V(V) —v(N\{i})).

It implies that for every coalition not containing i = 1, its contribution to the
grand coalition is equal than the sum of the contributions of its players to the grand
coalition.

Proof. Let 1 € S and ¢ # 1. Then by Definition 1, we have: 3,y g(v(N) —
v(N\{i})) = Yiems(na(n) — (n = 1a(n)) = > cpsaln) = (n+1 = s)a(n),
at the same time v(N) — v(S) = n a(n) — (s — Da(n) = (n + 1 — s)a(n), thus
o(N) = 0(5) = 2 iep s (W) — v(N\{i})). O
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3. Solution of the Cooperative Game

We compute the Shapley value (Shapley (1953)) for the given characteristic function
v. It is defined by:

Definition 4. Given a game (N, v), the Shapley value is defined by the following
vector p(v) = (p1(v), ..., pnt1(v)) where:

Gl = 3 (S U () - o(S)

SCN\{i}
with [S| = s and [N| =n+ 1.

In the following theorem we give an explicit formulation for the Shapley value,
when v is given as in Definition 1.

Theorem 4. Given a game (N,v), where v is giwen by Definition 1, with S C U
and 0 < ¢ < 1, then:

The Shapley value for the users (i # 1) is given by: ¢;i(v) = ia(n) +
Yol wi (w(S U{i}) —w(S)).
The Shapley wvalue for the innovator is given by: ¢1(v) = Su(N) —

TLLH ZZ:O w(S).

Proof. Let ¢ # 1, splitting the sums in informed and uninformed coalitions, and
by Definition 1 we have:

sl(n—s)!
pilv) = Y IS U{id) - u(S)]
s

Lyl )' w(S U {i}) — w(s)] (®)
sc&{}

Now we analyzes how many subsets S are in each sum (8):

1. If S C N\{i}, with 1 € S, we count how many subsets we have of the type
S\{1} € N\{1,i}. The innovator is a fixed player in all the coalitions S we could

form, they are (~]). Then (7~}) s('(#—{;?' = 2oy With S| =s5=1,.
2. If S C N\{i}, with 1¢ S, then there exists (" ") subsets with S C N\{z, 1}, S0
that (" )SES:_S)' = sl With [S[=s=0,...,n— 1.

3. As the functlon v(S) depends only on the cardlnality s of the set S, (Remark 1),
we denotes u(s) and u(s + 1) instead of u(S) and u(S U {i}) respectively, and
w(s) and w(s + 1) instead of w(S) and w(S U {i}).
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Using 1, 2 and 3 in (8) we have:

n n—1
pilv) =Y ————fuls +1) - +ZM w(s +1) —w(s)].  (9)
fes e Tgs +1

As a consequence of Definition 1 (u(s + 1) — u(s)) = a(n) and D = 1/2
s=1
in (9). Thus we have:

n—1
i 1 .
@i(v) )+ ZO S+~ w(s)
Now consider i = 1. Working as in the previous, we have that: ¢1(v) = 2u(N)—
%ﬂ Do w(s)- |

We will prove that under certain conditions, ¢ results a payoff distribution for
the game (N, v).

Definition 5. An imputation or payoff distribution for the game (V,v) is a vector
= (21,...,2nq1) satisfying: >~ va; = v(N) and z; > v({i}) for each i € N.

When the game is superadditive it is well known that ¢ results an imputation
(Shapley (1953)). We will show that it is also true when v is O-monotonic.

Theorem 5. Given a game (N,v), where v given by Definition 1, with 0 < ¢ < 1
then, p(v) = (p1(v), ..., Pns+1(v)) is an imputation for the game (N,v).

The proof appears in the Appendix.

3.1. Comparison of the Shapley value with the equilibrium
outcome in the noncooperative game

The cooperative game studied in this paper was analyzed by Quintas (1995) form a
noncooperative point of view and it was observed that the innovator obtained a neat
profile by selling the information to the n firms. However the situation was not so
appealing for the buyers. The expected utility each one finally obtained after buying
the information was that one he would have obtained if he was the only uninformed
agent. Nevertheless they couldn’t ignore the existence of the information and they
should buy it. The main result of the noncooperative study mentioned above states
as follows:

Theorem 6. Given N = IUU the set of players, if pj = ¢ for all j € U (5.4), then
the price P that the innovator can ask to the n users such that all them acquire
the information, is determined by an € — Nash equilibrium of the noncooperative
game. This price is: P = (1—c)a(n) —e, with € > 0 arbitrarily small, and the payoff
(n+1)— upla is: (1 —c)na(n) —ne,ca(n)+e¢,...,ca(n) +¢).
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As the innovator can choose ¢ — 0, then the payoff utilities converge to the
(n 4+ 1) — upla: ((1 — ¢)na(n),ca(n),...,ca(n)). We compare it with the utilities
obtained in the cooperative model.

Theorem 7. Given a game (N,v), with v given by Definition 1 and 0 < ¢ < 1
then:

(1) The innovator prefers the noncooperative model. It is: p1(v) < n (1 —c)a(n).
(2) The users prefer the cooperative model. It is: p;(v) > ca(n).

Proof. Let us prove 1: As ¢(v) = (p1(v),...,ont1(v)) is an imputation for the
game (V,v), it satisfies.

(D). > en wi = v(N) = na(n) and (II). p; > v({i}) for each i € N.

If i € U by (II) and Definition 1: ¢; > v({i}) = ca(n). Then in (I) we have:
na(n) =3 ey i = 91+ 2 en (1) Pi = p1+nca(n). The inequality holds because
@; is the same for all the users. Then na(n) > ¢1 + nca(n). We have that ¢ <
n (1 — ¢)a(n). Then the Shapley value gives a lower utility for the innovator than
the utility obtained in the noncooperative model.

Let us prove 2: We give the Shapley value for the users and using Theorem 2,

we have:
1 s
i(v) = sa(n)+ )  ———=(w(SU{i}) —w(S))
7 2 go n(n+1) '
n—1

1 . n—s
> g aln) + (i) Y o=y

by Definition 1 w({i}) = ca(n) and 22;01 7tiin = 1/2 we have that: ¢;(v) >
ta(n) + 1 ca(n) = (1 +c)a(n). As 0 < ¢ < 1 then: £(1 + c)a(n) > ca(n). Then
the Shapley value gives a better utility for the users than the utility obtained in

the noncooperative model. O

4. Limit Cases

In this subsection we will study two limits cases: completely uninformed users
(¢ = 0) and completely informed users (¢ = 1).

4.1. Users with no previous information (c = 0). Big Boss Games

We will show that in this case the game (N,v) is a Big Boss Games (Muto,
Nakayama, Potters and Tijs (1988)).

Definition 6. Let (N,v) be a game in MGY, is called a Big Boss Games if there
is one player, denoted by i*, satisfying the following two conditions. (B1) v(S) =0
if i* ¢ S, and (B2) vo(N) — v(5) = 3oicn s (0(N) —o(N\{i})) if i* € S.
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The Big Boss Games are denoted by BBGY . (B1) implies that one player i* is
very powerful; it is, coalitions not containing i* cannot get anything. (B2) implies
that for every coalition not containing i*, its contribution to the grand coalition is
not less than the sum of the contributions of its players to the grand coalitions.
Hence, the weak players may increase their influences by forming coalitions. We
here notice that a Big Boss Games v is superadditive (Definition 2), because of the
monotonicity of v and B1. The characteristic function v : 2 — R results:

u(S)=(s—1a(n) ifl1es

v(S) = for all S C N and |S] = s. (10)
w(S) =0 if1¢ S

Here player ¢* is the innovator ¢* = 1.

Theorem 8. Let (N,v) with v is given by (10), then (N,v) € BBGY.

Proof. We observe that v(S) < v(T) for all S C T, By (10), then (N,v) € MGV.
Condition B1 follows immediately by (10). Let us prove B2. If 1 € S and ¢ # 1,
then by Lemma 1, we have: v(N) — v(S) = 3Z,cn\s(0(NV) — v(N\{i})). Thus it
holds with equality. O

4.1.1. The Shapley value

Theorem 9. Given a game (N,v) € MGV, with v given by (10), then:

(
).
3

The Shapley value for the users is given by: p;(v) = %a(n
The Shapley value for the innovator is given by: v1(v) =

It is similar to the proof of Theorem 4, using (10).

4.1.2. Comparison of the Shapley value with the noncooperative case.

If the users have no previous information (¢ = 0) then the equilibrium payoff
utilities of the noncooperative game is given by: ("az(n), za(n),..., za(n)), while
in the cooperative games we have: (na(n),0,...,0). Thus, in the noncooperative

game the users are pushed down to 0 while in the cooperative case they obtain

za(n). On the other hand the innovator looses 1 of his utilities obtained in the

noncooperative model.

4.2. Completely informed users (¢ = 1)
In this case the characteristic function v : 2V — R results:

o(S) = {u(S) =(s—1a(n) ifles

] for all S C N and |S| = s. (11)
w(S) = sa(n) if1¢ S
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As an immediate consequence of (11) we have:

Remark 3. (N,v) € MG" and v is superadditive. If ¢ = 1 the users have
much previous information and then the payoff vector in the cooperative game
is: (0,a(n),...,a(n)). It is also so in the noncooperative game. The users obtain
the same payoff in both cases and the role of the innovator is not relevant.

5. Conclusions

We observe that the Shapley value gives a better utility for the users that what they
obtained in the equilibrium of the noncooperative model. It means that they avoid
being exploited by the innovator. An opposite situation is observed from the inno-
vator point of view because his utility is lower than in the noncooperative model.
Using a characteristic function that takes into account condition S.2 (saying that
the players that acquire the information always make use of it), avoids monopolies
formation. It models real situations where there exists antimonopoly laws. The
resulting games can be nonsuperadditive. The superadditivity assumptions is usual
in cooperative studies, however we show that under a weaker form of superadditivity
it is still possible to use the Shapley value. It is used in Theorem 2, and it reinforces
the relevance of Theorem 5. The study on the conditions for the 0-monotonicity
helps understanding the implications of those conditions on the resulting market.
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Appendix

Proof of Proposition 1. In order to solve the system we use the Fourier method. It
consists of eliminating one variable in each step, obtaining a new system equivalent
to the previous one but with one variable less.

1st step: We eliminate a(n).

1. We reorder the system (6) as follows:

a(n) >0
a(n) — 1+Ca(n— 1)>0
2
2 (1 —c)?Ja(n—
> (%)) -0 atn -3+
a(n 3 >0
?;}” (A1)
n—1 n—1 N
(3 - 1) t-a ") c(l—c)n 2
CL(?’Z) = n—1 =z n—1
S 3
J=0 Jj=0

With 0 < a(n) <a(n—1)<---<a(2) <1,
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2. We determine the variation of a(n). We also have a(n) < a(n — 1), then (A.1)
is equivalent to:

2/ 2
Z (j - 1) d(1—c)?Ja(n—3+7)
c j=1
0, 1_i_ca(n—l) 5 e
>
=0
max
n—1 n—1 '
( . 1) (1 —c)"=i=1a(y)
= (L—c)?
n—1 + -1
> >
=0

<a(n) <a(n-—1).

3. As 0 < ¢ < 1 and a(n — 1) < 1 the variation of a(n), is bounded. Then
analyzing the upper and lower bound we obtain a new system in the variable
aln—1),...,a(2):

aln—1)>0

c(l —c)n2

Jj=2

5 (j21) e -amsa)
>

aln—1) —

n—1

Ecﬂ (n—=1)er1 Ecﬂ (n—=1)er1

2nd step: Eliminating a(n — 1) and working as in the first step we obtain the
following system:

5 (’? - 1) ¢i(1— "I Ta(j) + e (1 - )2

n—1

ch —(n—=1)c"t = (n—-2)c"2

J=0
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which 0 < a(n —2) < --- < a(2) < 1. We observe that in each step we obtain an
equivalent system with one variable less.

Step (n-3): Here we have the following system:

a(3) >0

c(l —c)n 3
0> T )

(n - 1) A(1—c)"3a(2) +c(1 - c)"‘2+

Zc] 5 ( D ¢l — eyt

7j=3

a(3) >

We want to eliminate a(3). Using properties of combinatorics numbers and operat-
ing we have:

c(l—e)n2
2)> ——-——
a(2) 2 1+ ¢(l—c¢)n2
As 0 < a(2) < 1, the variation of a(2) is bounded by: "2 <a(2) <1.

1+c(l—c)n—2
Working backwards we obtain the variation of the others variables: %
aln) <---<a(2) <1

O IA

Proof of Theorem 5. We should prove that:

LY ienwi(v) =v(N) and 2. p;(v) > v({i}) for each i € N.
Let us prove 1. Splitting the sums in the Shapley value for the innovator and
using that all the ¢;(v) have the same value, we obtain:

> pi(v) = ¢1(v) + nei(v). (A.2)

iEN

Using Theorem 4 in (A.2),

n

1 1
§na(n) e, ;w(S) +n

+Z w(S U {i}) — ())] with i € U. (A.3)

As the function w(S U {i}) depends only on the cardinality s of the set S,
(Remark 1), we denotes w(s) and w(s + 1), and replacing in (A.3) we have:

n—1

Z w(s+1) —w(s ))] . (A.4)

0

s=0
Operating in (A.4) we have: ),y @i(v) = na(n) — 0 and na(n) = v(N), thus we
have: ), y@i(v) = v(N).
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Let us prove 2. ¢; > v({i}) for each i € N. Let us consider the Shapley value
for the innovator (i = 1):

A) =Y (S U () 2 Y

s=0 n+1 s=0

(w(S) +w({1}) —w(s)) = 0.

The last inequality follows from Theorem 2.
By the Definition 1: v({1}) = 0, we obtain: @1 (v) > v({1}).

Let us consider the Shapley value for the users,( ¢ = 2,...,n + 1). Uusing

Theorem 2 and by the Definition 1, we have: ¢;(v) > fa(n) + m 22;01 (n—s)

ca(n). Using that ZZ;& (n—s)= "("TH) and 0 < ¢ < 1 in the last sum ¢;(v) >
ca(n). Then by the Definition 1, w({i}) = ca(n) we have that: p;(v) > v({i}). O



