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A minimalistic approach to identify substrate binding features
in B1 Metallo-b-lactamases
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Abstract—The 2-oxoazetidinylacetate sodium salt was synthesized as a model of a minimal b-lactam drug. This compound and the
monobactam aztreonam were assayed as substrates of the Metallo-b-lactamase BcII. None of them was hydrolyzed by the enzyme.
While the azetidinone was not able to bind BcII, aztreonam was shown to bind in a nonproductive mode. These results provide an
explanation for the unability of Metallo-b-lactamases to inactive monobactams and give some clues for inhibitor design.
� 2007 Elsevier Ltd. All rights reserved.
Figure 1. Representative examples for the most common b-lactam
Metallo-b-lactamases (MbLs) are zinc enzymes that
hydrolyze b-lactam antibiotics, representing one of the
main resistance mechanisms developed by bacteria
toward antibiotics.1 These enzymes differ from the
well-known serine-b-lactamases in that they display a
broad substrate range, being capable of inactivating
penicillins (1), carbapenems (2), and cefalosporins (3)
(Fig. 1).2 Despite sharing a conserved fold, MbLs are
quite diverse in active site structure, and (possibly)
catalytic mechanisms.3,4 MbLs can bind up to two zinc
ions, which are essential for substrate binding and
hydrolysis.5 The broad structural variation among
substrates and enzymes has impeded the identification
of common structural determinants of substrate
recognition, thus thwarting inhibitor design.6

MbL substrates share the b-lactam ring and a carboxyl-
ate moiety a to the b-lactam nitrogen, which we tenta-
tively define as the ‘minimal b-lactam substrate’. This
carboxylate group is supposed to interact with Zn2
and a positively charged residue in the active site, while
Zn1 delivers the attacking nucleophile.7,8 On the other
antibiotic families. Penicillin (1), carbapenem (2), cefalosporin (3), and

monobactam (4), and 2-oxo-azetidin-1-yl-acetate sodium salt (5), the

proposed ‘minimal b-lactam substrate’ structure.
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hand, monobactams, such as aztreonam (4), are the only
family of b-lactam antibiotics that are not efficiently
hydrolyzed by MbLs. So far, the reasons that make
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Figure 2. Corresponding 15N,1H HSQC spectra for free BcII (red) and

BcII plus 40 mM aztreonam (green). The signal labeled as N233 is

assigned to the NH sidechain of the corresponding residue.The NMR

data processing and graphic rendering was done with Sparky (T. D.

Goddard and D. G. Kneller, SPARKY 3, University of California, San

Francisco).
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aztreonam resistant to MbL-mediated hydrolysis are not
known.3 Here we decided to test whether aztreonam is
able to bind MbLs, and in so doing, to compare its
behavior with that of the model azetidinone compound
(5), representing the ‘minimal b-lactam substrate’.

Substrate hydrolysis. Hydrolysis of aztreonam (4) and
the azetidinone (5) by the MbL BcII was studied by
UV spectroscopy.9 None of these compounds showed
a noticeable hydrolysis over a long time (16 h), even
when adding high enzyme concentrations (10–20 lM).
The absence of hydrolysis was also verified by 1H
NMR spectroscopy. These assays reveal that neither
aztreonam nor azetidinone (5) are suitable substrates
of BcII. This may be attributed to either lack of binding
of these compounds at all to the enzyme, or to a nonpro-
ductive binding mode. Since the finding of a binding,
nonhydrolyzable compound could be exploited to de-
sign a possible inhibitor, we explored binding by differ-
ent biophysical methods.

Binding to Co(II)-BcII monitored by UV–vis and fluores-
cence spectroscopy. Co(II)-substitution has been largely
exploited in zinc enzymes as a probe of the metal site
structure, and to follow changes upon exogenous
ligand binding. The spectral features of Co(II)-BcII
have been already characterized in detail.10 The
spectrum is composed of ligand-field bands in the
visible region attributed to the Co1 site and stronger
absorption bands from the Co2 site in the UV region
due to ligand! metal charge transfer. Addition of aze-
tidinone (5) did not induce spectral changes in the
absorption spectrum of Co(II)-BcII. A steady decrease
in the intensity of all bands was observed at high con-
centrations of added azetidinone (5), suggesting metal
ion dissociation. When aztreonam was added, no
changes could be observed in the visible features of the
spectrum. The charge transfer band of Co(II) BcII at
343 nm was obscured by an intense band of aztreonam
in this range, and could not be followed during this
titration.

Ligand binding to BcII can also be followed by confor-
mational changes in the enzyme that induce variations
in the intrinsic Trp fluorescence.11 No changes in the
fluorescence intensity could be monitored upon addition
of azetidinone (5) in a stopped flow instrument. More-
over, the addition of azetidinone (5) was unable to mod-
ify nitrocefin binding parameters. In the case of
aztreonam, the absorption of this compound limited
the detection of this phenomenon, suggesting that it
binds very weakly or does not bind at all.

Binding to BcII monitored by NMR spectroscopy.12

Finally, we employed NMR spectroscopy to follow
ligand binding by chemical shift perturbation (CSP) of
the backbone amide residues of BcII.13 Consequently,
15N-BcII was expressed in Escherichia coli BL21(DE3)
pLysS’ cells transformed with the pET-Term-BcII
plasmid.10 The corresponding 15N, 1H HSQC spectra
were recorded upon additions of increasing concentra-
tions of 4 and 5. The HSQC spectrum displayed no
changes when azetidinone (5) was added up to 100 mM
final concentration, revealing no binding at all, in agree-
ment with the UV–vis and fluorescence studies.

Addition of aztreonam (4) induced spectral changes at
very high concentrations (>40 mM) (Fig. 2), that are
summarized in Table 1. These changes are small but sig-
nificant. The nature of the resulting shifts indicates a fast
exchange regime, typical of weak ligand binding. The
perturbed residues include the three Zn2 ligands
(D120, C221, H263), K224 (that usually interacts with
the carboxylate moiety of bicyclic b-lactams), S69 (a sec-
ond-shell ligand of the Zn2 site, which is involved in a
hydrogen bond with D120), and residues belonging to
loops 3 and 12, that flank the active site.7 The behavior
of the loops resembles that observed upon inhibitor
binding for the enzyme CcrA,14 which is another B1 sub-
class partner of BcII. In contrast to the situation of
CcrA, there is a neat discrimination between the two
zinc binding sites, since Zn1 ligands appear largely
nonperturbed while Zn2 is involved on aztreonam
binding.

We docked aztreonam in the active site of BcII based
on the CSP map and positioning the sulfonate moiety
on the Zn2 coordination sphere lying away from Zn1
site.15 As a result, the b-lactam moiety is at �5.5 Å
from the attacking nucleophile at the Zn1 site and
in an improper orientation, in a nonproductive bind-
ing mode. The NMR data fully agree with the Co(II)
substitution experiments, that show no interaction of
the ligand with the Co1 site (as results from the ab-
sence of changes in the absorption features in the vis-
ible range). Thus, we can conclude that aztreonam
binds poorly and in a nonproductive way to BcII.
The same result can be extrapolated to all B1 MbLs.
Since aztreonam was designed with 4-methyl substitu-
ent to escape the hydrolysis by serine-b-lactamases, we
cannot completely discard that this moiety is also
effective in this case.



Table 1. Most significant chemical shift perturbations on BcII residues

upon addition of aztreonam (4)

Residuea CSP (ppm) Locationb

N233c 0.64 Loop 12

S69 0.61 S4, Zn2 second-shell ligand

F61 0.53 Loop 3

G232 0.51 Loop 12

L58 0.51 S3

N51 0.51 S3

L231 0.44 Loop 12

H263 0.39 S12, Zn2 ligand

Y238 0.33 Loop 12

H55 0.33 S3

D120 0.31 Zn2 ligand

A235 0.29 Loop 12

D230 0.29 Loop 12

K224 0.29 Loop 12

G63 0.26 Loop 3

C221 0.20 Zn2 ligand

H116 0.10 Zn1 ligand

H118 0.04 Zn1 ligand

H196 0.00 Zn1 ligand

The three His ligands of the Zn1 site are included for comparison.
a BBL numbering.
b S, b-strand; Zn1, zinc 1 coordination site; Zn2, zinc 2 coordination

site, for loops’ numbering, see Dal Peraro et al.7

c The perturbed signal corresponds to the Nd2–Hd21 of residue N233.
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Regarding azetidinone (5), the ‘minimal b-lactam sub-
strate’, it is striking that this compound is not able to
bind BcII. This may be attributed to the mobility of
the carboxylate moiety when the second ring is not pres-
ent, or to the absence of other substituents that (not
being conserved) may provide additional nonspecific
anchoring points in the enzyme structure. Analyzing
KM from several substrates it is clear that substrates
without a substituent chain in position 6 of the penicil-
lanic nucleus, or position 7 of the cephalosporanic nu-
cleus, have the highest KM values.2,16 Overall, this
suggests that the disparate substituents in this position
help in providing nonspecific, hydrophobic anchoring
points to b-lactam substrates. Given that azetidinone
(5) and aztreonam (4) are both susceptible to alkaline
hydrolysis, the lack of an efficient binding mode is the
principal factor for the absence of enzymatic hydrolysis
for both compounds.

Here we show that the minimal b-lactam substrate is lar-
ger than expected, suggesting that some seemingly ancil-
lary, hydrophobic, substituents may play a role in
assisting substrate binding. This should be taken into
account for future inhibitor design efforts.
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