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Abstract: In this article we present a short proof of a duality principle concerning frame and Riesz sequences due
to Ulanovskii and Olevskii. Our proof is derived from a result on compression on orthogonal projections. As a
consequence, we get a better lower frame (Riesz) bound for the sequences than the one deduced from the original
proof.
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1 INTRODUCTION

Let H be a Hilbert space and I a countable index set. A family {fi}i∈I of vectors in H is a frame for H
if there exists a, b > 0 such that

a‖f‖2 ≤
∑
i∈I
| 〈f, fi〉 |2 ≤ b‖f‖2, for all f ∈ H (1)

The optimal constants a, b for which (1) is satisfied are called frame bounds. If only the upper inequality is
satisfied, we say that {fi}i∈I is a Bessel sequence forH.

Frames constitutes a very useful tool in several areas of mathematics, such as signal processing, har-
monic analysis, among others. Roughly speaking, their importance is based in that they conserve some
properties of the orthonormal basis (basis expansion for example), but relaxing the uniqueness on the ba-
sis decomposition. For a detailed treatment of frame theory, we refer the reader to [1] and the references
therein.

In the special case in which such redundancy does not occur, we say that the frame is a Riesz basis.
Namely, a Riesz basis is a complete sequence {fi}i∈I inH such that there exists a, b > 0 such that

a
∑
i∈J
|ci|2 ≤ ‖

∑
i∈J

cifi‖2 ≤ b
∑
i∈J
|ci|2, (2)

for each finite sequence {ci}i∈J of scalars.
If the inequalities in (1) are satisfied only for f in the closure of the linear span of {fi}i∈I , we say that

{fi}i∈I is a frame sequence. Similarly, if a sequence {fi}i∈I satisfies (2) but it is not necessary complete in
H, it is called Riesz sequence.

There are bounded linear operators between the Hilbert space `2(I) := {{ci}i∈I :
∑

i∈I |ci|2 <∞} and
H, that can be associated to a Bessel sequence :

The synthesis operator T : `2(I)→ H, defined as

T ({ci}i∈I) =
∑
i∈I

cifi,

which is a well defined bounded linear operator whose operator norm is bounded by
√
b. The adjoint of T

is the analysis operator which sends f ∈ H to the sequence {〈f, fi〉}i∈I ∈ `2(I).
Finally, the frame operator is the composition S = TT ∗, which is a bounded linear operator in H. It is

easy to see that {fi}i∈I is a frame for H if and only if S is a positive definite operator whose spectrum lies
in the interval [a, b]. Moreover, {fi}i∈I is a Riesz basis if and only its synthesis operator is invertible.

Let us establish some notation used throughout the paper: given T a bounded operator inH, byN(T ) and
R(T ) we denote its nullspace and range respectively. By IdH we denote the identity operator inH. IfM is



a closed subspace ofH, then by PM we mean the orthogonal projection ontoM, that is PM = P 2
M = P ∗M

andR(PM) =M. Finally, we consider the usual order in bounded operators: ifA,B are bounded operators
inH, B ≥ A iff B −A is a semidefinite operator.

There is a well-known characterization of being a Riesz (resp. frame) sequence in terms of the synthesis
and analysis operators

Lemma 1 Let {fi}i∈I be a Bessel sequence in a Hilbert spaceH, with synthesis operator T . Then,

1. {fi}i∈I is a Riesz sequence iff there exists a > 0 such that

T ∗T ≥ aId`2(I)

2. {fi}i∈I is a frame sequence iff there exists a > 0 such that

TT ∗ ≥ aPN(T ∗)⊥

where N(T ∗) is the nullspace of T ∗.

Proof. Suppose that {fi}i∈I is a Riesz sequence inH, with synthesis operator T . Then, there exist a, b > 0
such that (2) holds for each {ci}i∈I ∈ `2(I) finite. Since T is bounded, it is easy to see that (2) is satisfied
for all {ci}i∈I in `2(I). Therefore, if {ci}i∈I then

〈T ∗T{ci}i∈I , {ci}i∈I〉 = ‖T{ci}i∈I‖2 ≥ a‖{ci}i∈I‖2 = a 〈{ci}i∈I , {ci}i∈I〉

The converse is clear from the previous inequalities.
On the other hand, if {fi}i∈I is a frame sequence then, T is a closed range operator simply from (1).

Thus, as we did above, the frame inequalities in R(T ) = N(T ∗)⊥ implies TT ∗ ≥ aPN(T ∗)⊥ . The proof of
the reverse implication is also similar.

�
In a finite dimensional Hilbert space, H = Cn, it is easy to see that a frame {fi}mi=1 for H is just a set

of generators. Also, by considering the canonical basis, we can consider the synthesis, analysis and frame
operators as n×m,m×n and n×nmatrices over C, respectively. Notice that in the finite case, the ratio b/a,
of the (optimal) frame bounds is the condition number of the frame matrix. It is clear then that, for practical
purposes, it is important to have good estimates for the optimal bounds for frame (Riesz) sequences.

2 MAIN RESULT

Proposition 1 LetH be a complex separable Hilbert space and let P and Q denote two orthogonal projec-
tions onto closed subspaces ofH. Let 0 < a ≤ 1. Then the following are equivalent

i. PQP ≥ aP .

ii. Q⊥P⊥Q⊥ ≥ aQ⊥.

Proof. Suppose that PQP ≥ aP . Then, PQ⊥P = P (I −Q)P ≤ (1− a)P , which helds

(Q⊥PQ⊥)2 = Q⊥PQ⊥PQ⊥ ≤ (1− a)Q⊥PQ⊥. (3)

Since Q⊥PQ⊥ is semidefinite positive, this implies Q⊥PQ⊥ ≤ (1− a)I . In particular,

Q⊥PQ⊥ ≤ (1− a)Q⊥,

which yields
Q⊥P⊥Q⊥ = Q⊥ −Q⊥PQ⊥ ≥ aQ⊥

as it was claimed. The other implication is identical. �
Now we are ready to present an alternative proof of the following result, due to A. Olevskii and A. Ulanovskii
([2, Prop. 1.23]):



Theorem 1 Let {ei}i∈I be a orthonormal basis ofH and letM be a closed subspace ofH. Let us consider
σ ⊂ I . Denote by PM the orthonormal projection ontoM. Then, the following are equivalent

i. {PM(ei)}i∈σ is a Riesz sequence, with lower bound a > 0.

ii. {P⊥M(ei)}i∈σc is a frame sequence, with lower bound a > 0.

Proof. It is clear from definitions that {ei}i∈I is a Riesz basis for H, whose synthesis operator is an
isometric isomorphism U : `2(I) → H. Denote by Pσ the orthonormal (diagonal) projection onto the
closed space spanned by {bi}i∈σ, where {bi}i∈I is the canonical orthonormal basis in `2(I).

Suppose that {PM(ei)}i∈σ is a Riesz sequence, with lower bound a > 0. Let W be an isometric
isomorphism between `2(σ) and span{ei}i∈σ ⊂ H. Therefore, a synthesis operator T for the sequence
{PM(ei)}i∈σ is given by T = PMUW . It is clear that PMUW = PMUPσW . Then, by Lemma 1, we
have that

T ∗T =W ∗PσU
∗PMUPσW ≥ aId`2(σ) = aW ∗W

Thus
PσU

∗PMUPσ ≥ aPσ.

If we put Q = U∗PMU and P = Pσ then, by Prop. 1, we can conclude that Q⊥P⊥Q⊥ ≥ aQ⊥, which
means that

U∗PM⊥UPσcU∗PM⊥U ≥ aU∗PM⊥U,

so PM⊥UPσcU∗PM⊥ ≥ aPM⊥ . Then, by using again Lemma 1, we have that {P⊥M(ei)}i∈σc is a frame
sequence, with lower bound a > 0. The proof of the reverse implication is identical. �

Remark 2 Our presentation of the previous result differs from [2] since we establish the equality of the
lower frame bound a in both sequences.

As we can derive from the proof of Olevskii and Ulanovskii, in their proof it is shown that if the lower
constant of the frame sequence {PMei}i∈σ is a, then {PM⊥ei}i∈σc is a Riesz sequence with lower constant
a
a+1 which is smaller than a.

It turns out that our result is sharp, as it is shown in the following example:

Example 1 Let {ei}i∈I be a orthonormal basis of H. Consider M = span{ei}i∈σ, for some σ ⊂ I .
Then, it is clear that {PMei}i∈σ = {ei}i∈σ and {PM⊥ei}i∈σc = {ei}i∈σc are orthonormal basis on their
respective generated subspaces so in both cases their lower frame bound is 1.
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