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ON THE NUMBER OF SOLUTIONS OF SYSTEMS OF CERTAIN

DIAGONAL EQUATIONS OVER FINITE FIELDS

MARIANA PÉREZ1,3 AND MELINA PRIVITELLI1,2

Abstract. In this paper we obtain explicit estimates and existence results on the number
of Fq-rational solutions of certain systems defined by families of diagonal equations over
finite fields. Our approach relies on the study of the geometric properties of the varieties
defined by the systems involved. We apply these results to a generalization of Waring’s
problem and the distribution of solutions of congruences modulo a prime number.

1. Introduction

Let Fq be the finite field of q elements. It is a classical problem to determine or to
estimate the number N of Fq–rational solutions (i.e. solutions with coordinates in Fq)
of systems of polynomial equations over Fq (see, e.g., [24]). Particularly, the systems of
diagonal equations

(1.1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11X
d1
1 +a12X

d2
2 + · · ·+ a1tX

dt
t = b1

a21X
d1
1 +a22X

d2
2 + · · ·+ a2tX

dt
t = b2

...
...

an1X
d1
1 +an2X

d2
2 + · · ·+ antX

dt
t = bn,

with b1, . . . , bn ∈ Fq, have been considered in the literature because the study of its set
of Fq–rational solutions has several applications to different areas of mathematics, such as
the theory of cyclotomy, Waring’s problem and the graph coloring problem (see, e.g. [21]
and [24]). Additionally, information on the number N is very useful in different aspects of
coding theory such as the weight distribution of some cyclic codes ([36] and [37]) and the
covering radius of certain cyclic codes ([16] and [23]).

The case n = 1 has been extensively studied. In general, there are no explicit formulas
for the number N , except for some very particular diagonal equations satisfying some
conditions over the exponents and the coefficients (see, e.g., [24]). For this reason, many
articles focus on providing estimates on the number N (see, e.g. [21, 24, 34]). In [25],
we obtain existence results and estimates on the number of Fq-rational solutions of some
variants of diagonal equations.

In comparison with a (single) diagonal equations, there are much fewer results about the
number of Fq–rational solutions of systems of the type (1.1). There are explicit formulas
for the number N for some very particular cases (see, e.g., [3] and [35]). A. Tietäväinen
provides existence results for some special families of systems of type (1.1) (see [29, 30, 31,
32]). In [27] and [28] K. Spackman, using elementary methods involving character sums,
obtains the following estimate which holds under certain conditions on a parameter which
measures the extent to which the coefficients’ matrix is non–singular over Fq:

N = qt−n +O(q(t−1)/2),
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2 M. PÉREZ AND M. PRIVITELLI

where the implied constant depends only on d1, . . . , dt, n and t, but it is not explicitly
given.

In this article we obtain an explicit estimate on the number N using tools of algebraic
geometry. More precisely, for n, k ≤ t, we consider the following more general system:

(1.2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11X
d1
1 +a12X

d2
2 + · · ·+ a1tX

dt
t = g1(X1, . . . , Xk)

a21X
d1
1 +a22X

d2
2 + · · ·+ a2tX

dt
t = g2(X1, . . . , Xk)

...
...

an1X
d1
1 +an2X

d2
2 + · · ·+ antX

dt
t = gn(X1, . . . , Xk),

where g1, . . . , gn ∈ Fq[X1, . . . , Xk] are such that gj ∈ Fq for 1 ≤ j ≤ n or 0 ≤ deg(gj) < dt for
1 ≤ j ≤ n and there exists 1 ≤ i ≤ n such that 0 < deg(gi). Let V ⊂ A

n be the Fq–variety

defined by the polynomials fj := aj1X
d1
1 + aj2X

d2
2 + · · · + ajtX

dt
t − gj(X1, . . . , Xk), 1 ≤

j ≤ n. In order to estimate the number of Fq–rational points of V we consider pcl(V ), the
projective closure of V . We provide a suitable bound for the dimension of the singular
locus of pcl(V ) which allows us to prove that pcl(V ) is a singular complete intersection
whose singular locus has codimension al least 2. Then, applying estimates on the number
of Fq–rational points of projective singular complete intersections [13], we provide the main
result of this paper.

Theorem 1.1. Let d1 ≥ · · · ≥ dt ≥ 2, and char(Fq) does not divide di for 1 ≤ i ≤ t.
Suppose that every (n× n)–submatrix of the coefficients’ matrix has rank n. We have the
following estimates on N :

• If gj ∈ Fq and n ≤ t− 2, then:
∣
∣N − qt−n

∣
∣ ≤ q

t−n+1
2 (6nd1)

t+1.

• If 0 ≤ deg(gj) < dt and there exists 1 ≤ i ≤ n such that deg(gi) > 0, n ≤ t− k − 1
and k ≤ t− 2 then:

∣
∣N − qt−n

∣
∣ ≤ q

t−n+k
2 (6nd1)

t+1.

We also show that we can replace Xdi
i by hi(Xi) for 1 ≤ i ≤ t where hi ∈ Fq[T ] and

deg(hi) = di. In particular, we examine the case where hi(Xi) is the Dickson’s polynomial
Ddi(Xi, a) over Fq of degree di with parameter a ∈ Fq and we obtain a similar result to
Theorem 1.1 for this case.

The paper is organized as follows. In Section 2 we collect the notions of algebraic
geometry we use throughout the article. In Section 3 we study the geometric properties of
the varieties associated to the system (1.2) and we settle Theorem 1.1. As a consequence,
we obtain existence results of Fq–rational solutions of these type of systems. We also study

a particular example when gi = biX
ci1
1 · · ·Xcin

n − ai (the generalized Markoff-Hurwitz-
type equations systems). In Section 4 we consider some variants of systems of diagonal
equations, such as the Dickson’s equations. Finally, in Section 5 we study two applications
of our estimates: a generalized Waring’s problem over finite fields and the distribution of
solutions of systems of congruences module a prime number.

2. Basic notions of algebraic geometry

In this section we collect the basic definitions and facts of algebraic geometry that we
need in the sequel. We use standard notions and notations which can be found in, e.g.,
[19], [26].

Let K be any of the fields Fq or Fq, the closure of Fq. We denote by A
r the affine r–

dimensional space Fq
r and by P

r the projective r–dimensional space over Fq. Both spaces
are endowed with their respective Zariski topologies over K, for which a closed set is the
zero locus of a set of polynomials of K[X1, . . . , Xr], or of a set of homogeneous polynomials
of K[X0, . . . , Xr].
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A subset V ⊂ P
r is a projective variety defined over K (or a projective K–variety for

short) if it is the set of common zeros in P
r of homogeneous polynomials F1, . . . , Fm ∈

K[X0, . . . , Xr]. Correspondingly, an affine variety of Ar defined over K (or an affine K–
variety) is the set of common zeros in A

r of polynomials F1, . . . , Fm ∈ K[X1, . . . , Xr]. We
think a projective or affine K–variety to be equipped with the induced Zariski topology. We
shall denote by {F1 = 0, . . . , Fm = 0} or V (F1, . . . , Fm) the affine or projective K–variety
consisting of the common zeros of F1, . . . , Fm.

In the remaining part of this section, unless otherwise stated, all results referring to
varieties in general should be understood as valid for both projective and affine varieties.

A K–variety V is irreducible if it cannot be expressed as a finite union of proper K–
subvarieties of V . Further, V is absolutely irreducible if it is Fq–irreducible as a Fq–variety.
Any K–variety V can be expressed as an irredundant union V = C1 ∪ · · · ∪ Cs of irre-
ducible (absolutely irreducible) K–varieties, unique up to reordering, called the irreducible
(absolutely irreducible) K–components of V .

For a K–variety V contained in P
r or Ar, its defining ideal I(V ) is the set of polynomials

of K[X0, . . . , Xr], or of K[X1, . . . , Xr], vanishing on V . The coordinate ring K[V ] of V is
the quotient ring K[X0, . . . , Xr]/I(V ) or K[X1, . . . , Xr]/I(V ). The dimension dimV of V
is the length n of a longest chain V0 � V1 � · · · � Vn of nonempty irreducible K–varieties
contained in V . We say that V has pure dimension n if every irreducible K–component of
V has dimension n. If W is a subvariety of V , then the number dimV − dimW is called
the codimension of W in V . A K–variety of Pr or A

r of pure dimension r − 1 is called a
K–hypersurface. A K–hypersurface of Pr (or Ar) can also be described as the set of zeros
of a single nonzero polynomial of K[X0, . . . , Xr] (or of K[X1, . . . , Xr]).

The degree deg V of an irreducible K–variety V is the maximum of |V ∩L|, considering
all the linear spaces L of codimension dimV such that |V ∩ L| < ∞. More generally,
following [17] (see also [11]), if V = C1 ∪ · · · ∪ Cs is the decomposition of V into irreducible
K–components, we define the degree of V as

deg V :=
s∑

i=1

deg Ci.

The degree of a K–hypersurface V is the degree of a polynomial of minimal degree defining
V . We shall use the following Bézout inequality (see [11, 17, 33]): if V and W are K–
varieties of the same ambient space, then

(2.1) deg(V ∩W ) ≤ deg V · degW.

Let V ⊂ A
r be a K–variety, I(V ) ⊂ K[X1, . . . , Xr] its defining ideal and x a point of

V . The dimension dimx V of V at x is the maximum of the dimensions of the irreducible
K–components of V containing x. If I(V ) = (F1, . . . , Fm), the tangent space TxV to V
at x is the kernel of the Jacobian matrix (∂Fi/∂Xj)1≤i≤m,1≤j≤r(x) of F1, . . . , Fm with
respect to X1, . . . , Xr at x. We have dim TxV ≥ dimx V (see, e.g., [26, page 94]). The
point x is regular if dim TxV = dimx V ; otherwise, x is called singular. The set of singular
points of V is the singular locus of V ; it is a closed K–subvariety of V . A variety is called
nonsingular if its singular locus is empty. For projective varieties, the concepts of tangent
space, regular and singular point can be defined by considering an affine neighborhood of
the point under consideration.

2.1. Rational points. Let Pr(Fq) be the r–dimensional projective space over Fq and A
r(Fq)

the r–dimensional Fq–vector space F
r
q . For a projective variety V ⊂ P

r or an affine variety
V ⊂ A

r, we denote by V (Fq) the set of Fq–rational points of V , namely V (Fq) := V ∩P
r(Fq)

in the projective case and V (Fq) := V ∩ A
r(Fq) in the affine case. For an affine variety V

of dimension n and degree δ, we have the following bound (see, e.g., [1, Lemma 2.1]):

(2.2) |V (Fq)| ≤ δ qn.
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On the other hand, if V is a projective variety of dimension n and degree δ, then we have
the following bound (see [13, Proposition 12.1] or [2, Proposition 3.1]; see [20] for more
precise upper bounds):

|V (Fq)| ≤ δ pn,

where pn := qn + qn−1 + · · ·+ q + 1 = |Pn(Fq)|.

2.2. Complete intersections. Elements F1, . . . , Fm in K[X1, . . . , Xr] or K[X0, . . . , Xr]
form a regular sequence if F1 is nonzero and no Fi is zero or a zero divisor in the quotient
ring K[X1, . . . , Xr]/(F1, . . . , Fi−1) or K[X0, . . . , Xr]/(F1, . . . , Fi−1) for 2 ≤ i ≤ m. In such a
case, the (affine or projective) variety V := V (F1, . . . , Fm) they define is of pure dimension
r − m, and is called a set–theoretic complete intersection. Furthermore, V is called an
(ideal–theoretic) complete intersection if its ideal I(V ) over K can be generated by m
polynomials. We shall frequently use the following criterion to prove that a variety is a
complete intersection (see, e.g., [10, Theorem 18.15]).

Theorem 2.1. Let F1, . . . , Fm ∈ K[X1, . . . , Xr] be polynomials which form a regular se-
quence and let V := V (F1, . . . , Fm) ⊂ A

r. Denote by (∂F /∂X) the Jacobian matrix of
F1, . . . , Fm with respect to X := (X1, . . . , Xr). If the subvariety of V defined by the set
of common zeros of the maximal minors of (∂F /∂X) has codimension at least one in V ,
then F1, . . . , Fm define a radical ideal. In particular, V is a complete intersection.

If V ⊂ P
r is a complete intersection defined over K of dimension r−m, and F1, . . . , Fm is

a system of homogeneous generators of I(V ), the degrees d1, . . . , dm depend only on V and
not on the system of generators. Arranging the di in such a way that d1 ≥ d2 ≥ · · · ≥ dm,
we call (d1, . . . , dm) the multidegree of V . In this case, a stronger version of (2.1) holds,
called the Bézout theorem (see, e.g., [15, Theorem 18.3]):

(2.3) deg V = d1 · · · dm.

A complete intersection V is called normal if it is regular in codimension 1, that is, the
singular locus Sing(V ) of V has codimension at least 2 in V , namely dimV −dimSing(V ) ≥
2 (actually, normality is a general notion that agrees on complete intersections with the
one we define here). A fundamental result for projective complete intersections is the
Hartshorne connectedness theorem (see, e.g., [19, Theorem VI.4.2]): if V ⊂ P

r is a complete
intersection defined over K and W ⊂ V is any K–subvariety of codimension at least 2,
then V \W is connected in the Zariski topology of Pr over K. Applying the Hartshorne
connectedness theorem with W := Sing(V ), one deduces the following result.

Theorem 2.2. If V ⊂ P
r is a normal complete intersection, then V is absolutely irre-

ducible.

3. Systems of diagonal equations

Let t, n, d1, . . . , dt, k be positive integers such that n, k ≤ t, d1 ≥ · · · ≥ dt ≥ 2, and
char(Fq) does not divide di for 1 ≤ i ≤ t. Let X1, . . . , Xt be indeterminates over Fq and
let g1, . . . , gn ∈ Fq[X1, . . . , Xk] such that gj ∈ Fq for 1 ≤ j ≤ n or 0 ≤ deg(gj) < dt for
1 ≤ j ≤ n and there exists 1 ≤ i ≤ n such that 0 < deg(gi).

We consider the following system of n deformed diagonal equations with t unknowns

(3.1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11X
d1
1 +a12X

d2
2 + · · ·+ a1tX

dt
t = g1(X1, . . . , Xk)

a21X
d1
1 +a22X

d2
2 + · · ·+ a2tX

dt
t = g2(X1, . . . , Xk)

...
...

an1X
d1
1 +an2X

d2
2 + · · ·+ antX

dt
t = gn(X1, . . . , Xk).

Let A = [aij ] ∈ F
n×t
q be the coefficients’ matrix of the above system. Assume that A

satisfies the following hypothesis:

(H) Every (n× n)–submatrix of A has rank n.
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Let N denote the number of Fq–rational solutions of (3.1). The purpose of this paper is
to give an estimate on the number N . To do this, we consider the following polynomials
fj ∈ Fq[X1, . . . , Xt]

fj := aj1X
d1
1 + aj2X

d2
2 + · · ·+ ajtX

dt
t − gj(X1, . . . , Xk), 1 ≤ j ≤ n.

Without loss of generality and in order to be more clear in the exposition of the proofs,
throughout this section we can assume that deg(gj) > 0, 1 ≤ j ≤ n or gj ∈ Fq, 1 ≤ j ≤ n .
Let V := V (f1, . . . , fn) ⊂ A

t be the Fq–affine variety defined by f1, . . . , fn. We shall study
some facts concerning the geometry of V . From hypothesis (H), the principal minor of A

⎛

⎜
⎝

a11 · · · a1n
...

. . .
...

an1 · · · ann

⎞

⎟
⎠ ,

has rank n. Therefore, there exist an invertible matrix M ∈ F
n×n
q and a matrix B ∈ F

n×t
q

such that M ·A = B and

B =

⎛

⎜
⎝

b11 · · · b1n · · · b1t
...

. . .
...

...
0 · · · bnn · · · bnt

⎞

⎟
⎠ .

Let V̂ ⊂ A
t be the Fq– affine variety defined by

V̂ :=

{

(x1, . . . , xt) ∈ A
t : B ·

⎛

⎜
⎝

xd11
...

xdtt

⎞

⎟
⎠ =

⎛

⎜
⎝

ĝ1
...
ĝn

⎞

⎟
⎠

}

,

where

⎛

⎜
⎝

ĝ1
...
ĝn

⎞

⎟
⎠ = M ·

⎛

⎜
⎝

g1
...
gn

⎞

⎟
⎠, namely V̂ = V (f̂1, . . . , f̂n) ⊂ A

t is the Fq–affine variety defined

by f̂j := bjjX
dj
j + · · ·+ bjtX

dt
t − ĝj , for 1 ≤ j ≤ n.

Remark 3.1. It is clear that V = V̂ and (f1, . . . , fn) = (f̂1, . . . , f̂n). Indeed, if x ∈ V then

A ·

⎛

⎜
⎝

xd11
...

xdtt

⎞

⎟
⎠ =

⎛

⎜
⎝

g1
...
gn

⎞

⎟
⎠ .

Multiplying both sides of the last equality by M and taking into account that M ·A = B

and

⎛

⎜
⎝

ĝ1
...
ĝn

⎞

⎟
⎠ = M ·

⎛

⎜
⎝

g1
...
gn

⎞

⎟
⎠, we have that x ∈ V̂ . On the other hand, the proof of V̂ ⊂ V is

similar. Finally, (f1, . . . , fn) = (f̂1, . . . , f̂n) follows from that M ·

⎛

⎜
⎝

f1
...
fn

⎞

⎟
⎠ =

⎛

⎜
⎝

f̂1
...

f̂n

⎞

⎟
⎠ , and M

is an invertible matrix.

Theorem 3.2. V is a set-theoretic complete intersection of pure dimension t− n.

Proof. Observe that f̂1, . . . , f̂n form a regular sequence of Fq[X1, · · · , Xt]. Indeed, consider
the graded lexicographic order of Fq[X1, · · · , Xt] with X1 > · · · > Xt. With this order

we have that Lt(f̂j) = bjjX
dj
j , where Lt(f̂j) denotes the leading term of the polynomial

f̂j . Thus Lt(f̂1), . . . , Lt(f̂n) are relatively prime and then they form a Gröbner basis of

the ideal J generated by f̂j , 1 ≤ j ≤ n (see, e.g., [8, §2.9, Proposition 4]). Hence, the
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initial of the ideal J is generated by Lt(f̂1), . . . , Lt(f̂n), which form a regular sequence

of Fq[X1, . . . , Xt]. Therefore, by [10, Proposition 15.15], the polynomials f̂1, . . . , f̂n form

a regular sequence of Fq[X1, . . . , Xt]. We conclude that V (f̂1, . . . , f̂n) is a set complete
intersection of At of pure dimension t− n. �

Let C be the following set of At:

(3.2) C :=

{

x ∈ V : rank

(
∂f

∂X

)

(x) < n

}

,

where the (n× t)–matrix ∂f
∂X is the Jacobian matrix of the polynomials fj , 1 ≤ j ≤ n, with

respect to X := (X1, . . . , Xt). Suppose that gj ∈ Fq or 0 < deg(gj) < dt, 1 ≤ j ≤ n.
Assume that A, the coefficients’ matrix of the system (3.1), satisfies the hypothesis (H).

Observe that
∂f

∂X
=

(
M1 M2

)
,

where M1 is a (n× k)–matrix defined by

M1 :=

⎛

⎜
⎝

a11d1X
d1−1
1 + ∂g1

∂X1
· · · a1kdkX

dk−1
k + ∂g1

∂Xk
...

...
...

an1d1X
d1−1
1 + ∂gn

∂X1
· · · ankdkX

dk−1
k + ∂gn

∂Xk

⎞

⎟
⎠

and M2 is a n× (t− k)–matrix defined by

M2 :=

⎛

⎜
⎝

a1k+1dk+1X
dk+1−1
k+1 · · · a1tdtX

dt−1
t

...
...

...

ank+1dk+1X
dk+1−1
k+1 · · · antdtX

dt−1
t

⎞

⎟
⎠ .

Proposition 3.3. Assume that n < t − k + 1. The dimension of C is at most k − 1 if
deg(gj) > 0 for 1 ≤ j ≤ n and this dimension is 0 if gj ∈ Fq for 1 ≤ j ≤ n. In particular,
if V is a singular variety, the dimension of the singular locus of V is at most k − 1 or it
is 0 respectively.

Proof. Let x ∈ C. We claim that x has at least t−k−n+1 coordinates equal to zero among
the coordinates xk+1, . . . , xt. Indeed, if x has at most t− k − n coordinates equal to zero
among the coordinates xk+1, . . . , xt then x has at least n nonzero coordinates. Suppose that
these coordinates are xk+1, . . . , xk+n. Then, we consider the following (n× n)–submatrix
of M2(x):

M2,n(x) =

⎛

⎜
⎝

a1k+1dk+1x
dk+1−1
k+1 · · · a1k+ndk+nx

dk+n−1
k+n

...
...

...

ank+1dk+1x
dk+1−1
k+1 · · · ank+ndk+nx

dk+n−1
k+n

⎞

⎟
⎠ .

We have that M2,n(x) can be written as follows:

(3.3) M2,n(x) =

⎛

⎜
⎝

a1k+1dk+1 · · · a1k+ndk+n
...

...
...

ank+1dk+1 · · · ank+ndk+n

⎞

⎟
⎠ ·

⎛

⎜
⎝

x
dk+1−1
k+1 · · · 0
...

. . .
...

0 · · · x
dk+n−1
k+n

⎞

⎟
⎠ .

From (H) and the fact of di 	= 0 for all 1 ≤ i ≤ t, the determinant of
⎛

⎜
⎝

a1k+1dk+1 · · · a1k+ndk+n
...

...
...

ank+1dk+1 · · · ank+ndk+n

⎞

⎟
⎠
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is nonzero. On the other hand, since xi 	= 0 for k + 1 ≤ i ≤ k + n we have that the
determinant of the diagonal matrix of the right side of (3.3) is nonzero. Hence M2(x) has

rank n and so ∂f
∂X(x) does.

Therefore, we observe that

(3.4) C =
⋃

I⊂{k+1,...,t}
|I|>t−k−n

C(I),

where C(I) := {x ∈ C : xi = 0, i ∈ I}. In order to estimate the dimension of C,
we first consider C(I) with |I| = t − n − k + 1. We take x ∈ C(I). Without loss of
generality, suppose that the null coordinates of x are xk+1, . . . , xt−n+1. Now, we replace
Xk+1 = · · · = Xt−n+1 = 0 in (3.1) and we obtain a new system of n equations and k+n−1
unknowns. From hypothesis (H) and following the arguments of the proof of Theorem 3.2,
we deduce that x belongs to a subvariety of V of dimension k + n − 1 − n = k − 1. We
conclude that the dimension of C(I) is at most k − 1. Let C(I) with |I| > t− n− k + 1,
with the same arguments as above we obtain that the dimension of C(I) is at most k− 2.
Finally, since the union (3.4) is finite, we have that the dimension of C is at most k − 1.

On the other hand, if gj ∈ Fq for 1 ≤ j ≤ n, with similar arguments, x has at least
t − n + 1 coordinates equal to zero. From hypothesis (H) and with similar arguments as
above we conclude that x belongs to a subvariety of V of dimension 0. �

From Proposition 3.3 and Theorem 2.1, we have the following result.

Corollary 3.4. Let k, n, t be positive integers such that n ≤ t, k ≤ t − 2 and A satisfies
the hypothesis (H). If gj ∈ Fq for 1 ≤ j ≤ n and n ≤ t− 2 or deg(gj) ≥ 0 for 1 ≤ j ≤ n,
there exists 1 ≤ i ≤ n such that 0 < deg(gi) and n ≤ t− k − 1, then the singular locus of
V has codimension at least 2 in V and (f1, . . . , fn) is a radical ideal.

Then, we obtain the following result.

Theorem 3.5. With the same hypotheses as in Corollary 3.4, V = V (f1, . . . , fn) ⊂ A
t is

a complete intersection of degree at most d1 · · · dn.

3.1. The geometry of the projective closure. Consider the embedding of At into the
projective space P

t which assigns to any x := (x1, . . . , xt) ∈ A
t the point (1 : x1 : · · · :

xt) ∈ P
t. Then the closure pcl(V ) ⊂ P

t of the image of V under this embedding in the
Zariski topology of Pt is called the projective closure of V . The points of pcl(V ) lying in
the hyperplane {X0 = 0} are called the points of pcl(V ) at infinity.

It is well–known that pcl(V ) is the Fq–variety of Pt defined by the homogenization F h ∈
Fq[X0, . . . , Xt] of each polynomial F belonging to the ideal (f1, . . . , fn) ⊂ Fq[X1, . . . , Xt]

(see, e.g., [19, §I.5, Exercise 6]). Denote by (f1, . . . , ft)
h the ideal generated by all the

polynomials F h with F ∈ (f1, . . . , fn). Since (f1, . . . , fn) is radical it turns out that
(f1, . . . , fn)

h is also a radical ideal (see, e.g., [19, §I.5, Exercise 6]). Furthermore, pcl(V )
has pure dimension t − n (see, e.g., [19, Propositions I.5.17 and II.4.1]) and degree equal
to deg V (see, e.g., [4, Proposition 1.11]).

Now we discuss the behaviour of pcl(V ) at infinity. Recall that V = V (f̂1, , . . . , , f̂n) ⊂
A
t, where f̂j := bjjX

dj
j +· · ·+bjtX

dt
t − ĝj with ĝj ∈ Fq[X1, . . . , Xk], k ≤ t and 0 ≤ deg(ĝj) <

dt. Hence, the homogenization of each f̂j is the following polynomial of Fq[X0, . . . , Xt] :

f̂h
j := bjjX

dj
j +X0 · hj , 1 ≤ j ≤ n,

where hj ∈ Fq[X0, X1, . . . , Xt], deg(hj) < dj , 1 ≤ j ≤ n.

In particular, it follows that f̂h
j (0, X1, . . . , Xt) = bjjX

dj
j for 1 ≤ j ≤ n.

Proposition 3.6. V ∞ := pcl(V ) ∩ {X0 = 0} ⊂ P
t−1 is a non-singular linear complete

intersection of pure dimension t− n− 1 and V ∞ = V (X1, . . . , Xn).
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Proof. Recall that the projective variety pcl(V ) has pure dimension t − n. Hence, each
irreducible component of pcl(V ) ∩ {X0 = 0} has dimension at least t − n − 1. On the

other hand, from the definition of f̂h
j , 1 ≤ j ≤ n, we deduce that pcl(V ) ∩ {X0 = 0} ⊂

V (X1, . . . , Xn). Since V (X1, . . . , Xn) is a nonsingular irreducible variety of Pt−1 of pure
dimension t−n− 1 we obtain that pcl(V )∩{X0 = 0} = V (X1, . . . , Xn) and therefore, the
proposition follows. �
Corollary 3.7. pcl(V ) has not singular points at infinity.

Proof. From [13, Lemma 1.1] we have that the set of singular points of pcl(V ) lying in
{X0 = 0} is contained in the set of singular points of the variety pcl(V )∩{X0 = 0}. Then,
taking into account the above proposition we have that pcl(V ) has not singular points at
infinity. �

From Proposition 3.3 and Corollary 3.7, we obtain the following result.

Proposition 3.8. Let n ≤ t− 2 and gj ∈ Fq for 1 ≤ j ≤ n. If V is a singular variety then
the singular locus of pcl(V ) ⊂ P

t has dimension 0. On the other hand, let k ≤ t − 2 and
n ≤ t − k − 1. If 0 ≤ deg(gj) and there exists gi such that deg(gi) > 0 for 1 ≤ i ≤ n, the
singular locus of pcl(V ) has dimension at most k − 1.

We conclude this section with a statement that summarizes all the facts we need con-
cerning the geometry of the projective closure pcl(V ).

Theorem 3.9. With the same hypotheses as above, pcl(V ) ⊂ P
t is an absolutely irreducible

complete intersection of dimension t− n and degree d1 · · · dn.
Proof. Observe that the following inclusions hold:

V (f̂1
h
, . . . , f̂n

h
)∩{X0 	= 0} ⊂ V (f̂1, . . . , f̂n),

V (f̂1
h
, . . . , f̂n

h
)∩{X0 = 0} ⊂ V (X1, . . . , Xn).(3.5)

From Theorem 3.2 and Remark 3.1, we have that V (f̂1, . . . , f̂n) ⊂ A
t has pure dimension

t − n. The Fq–variety V (X1, . . . , Xn) ⊂ A
t is an affine cone of pure dimension t − n;

hence the dimension of V (X1, . . . , Xn) ⊂ P
t−1 is t − n − 1. Therefore the dimension of

V (f̂1
h
, . . . , f̂n

h
) ⊂ P

t is at most t− n. On the other hand, since pcl(V ) ⊂ V (f̂1
h
, . . . , f̂n

h
)

is (t− n)-dimensional we conclude that V (f̂1
h
, . . . , f̂n

h
) has dimension t− n.

From Remark 3.1 and Proposition 3.6 the following equalities pcl(V ) ∩ {X0 	= 0} =

V (f̂1, . . . , f̂n) and pcl(V ) ∩ {X0 = 0} = V (X1, . . . , Xn) hold. Furthermore, from (3.5),

V (f̂1
h
, . . . , f̂n

h
) ∩ {X0 = 0} = V (X1, . . . , Xn). Then, from Corollary 3.4 and taking into

account that the variety V (X1, . . . , Xn) is nonsingular we have that the codimension of

the singular locus of V (f̂1
h
, . . . , f̂n

h
) is at least 2. On the other hand, (f̂1

h
, . . . , f̂n

h
)

is a radical ideal since (f̂1, . . . , f̂n) = (f1, . . . , fn) is radical by Corollary 3.4. We con-

clude that V (f̂1
h
, . . . , f̂n

h
) is a normal complete intersection. Hence, from Theorem 2.2

V (f̂1
h
, . . . , f̂n

h
) is absolutely irreducible and thus pcl(V ) = V (f̂1

h
, . . . , f̂n

h
). Finally, from

(2.3) pcl(V ) has degree d1 · · · dn. �
Remark 3.10. d1 = · · · = dt = d ≥ 2. We consider the following system:

(3.6)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11X
d
1 +a12X

d
2 + · · ·+ a1tX

d
t = 0

a21X
d
1 +a22X

d
2 + · · ·+ a2tX

d
t = 0

...
...

an1X
d
1 +an2X

d
2 + · · ·+ antX

d
t = 0.

In this case the system defines a projective variety V = V (f1, . . . , fn) ⊂ P
t−1, where fi :=

ai1X
d
1 + ai2X

d
2 + · · ·+ aitX

d
t , 1 ≤ i ≤ n. Suppose that the coefficients’ matrix of the above
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system satisfies hypothesis (H) and n ≤ t − 2. From Theorem 3.2, V = V (f1, . . . , fn) ⊂
P
t−1 is a set theoretic projective complete intersection of dimension t−n−1. On the other

hand, we consider the set C ⊂ A
t defined as in (3.2). From the arguments of Proposition

3.3 when gj ∈ Fq, 1 ≤ j ≤ n, we have that C is an affine cone of dimension 0. Then, we
deduce that V ⊂ P

t−1 is a nonsingular projective variety. From Theorem 2.1 and n ≤ t−2,
we have that (f1, . . . , fn) is a radical ideal then V is a complete intersection.

3.2. Estimates on the number of Fq–rational solutions of systems of diagonal
equations. Let t, n, d1, . . . , dt, k be positive integers such that n, k ≤ t, and d1 ≥ · · · ≥
dt ≥ 2. Let X1, . . . , Xt be indeterminates over Fq and let g1, . . . , gn ∈ Fq[X1, . . . , Xk] such
that 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n.

In what follows, we shall use an estimate on the number of Fq–rational points of a
projective complete intersection due to S. Ghorpade and G. Lachaud ([13]; see also [14]).
In [13, Theorem 6.1], the authors prove that, for an irreducible Fq–complete intersection
V ⊂ P

m of dimension r, multidegree d = (d1, . . . , dm−r) and singular locus of dimension
at most s with 0 ≤ s ≤ r − 1, the number |V (Fq)| of Fq–rational points of V satisfies the
estimate:

(3.7)
∣
∣|V (Fq)| − pr

∣
∣ ≤ b′r−s−1(m− s− 1,d) q

r+s+1
2 + Cs(V )q

r+s
2 ,

where pr := qr + qr−1+ · · ·+1, b′r−s−1(m− s− 1,d) is the (r− s− 1)–th primitive Betti of
a nonsingular complete intersection in P

m of dimension r − s− 1 and multidegree d, and
Cs(V ) :=

∑r+s
i=r bi,�(V ) + εi, where bi,�(V ) denotes the i–th �–adic Betti number of V for a

prime � different from p := char(Fq) and εi := 1 for even i and εi := 0 for odd i. From [13,
Proposition 4.2]

(3.8) b′r−s−1(m− s− 1,d) ≤
(

m− s

r − s− 1

)

· (d+ 1)m−s−1,

where d := max{d1, . . . , dm−r}. On the other hand, from [13, Theorem 6.1], we have that

Cs(V ) ≤ 9 · 2m−r · ((m− r)d+ 3)m+1.

Denote by pcl(V )(Fq) the set Fq–rational points of pcl(V ). We start by considering that
the system is not of the form (3.6).

From Proposition 3.8 and Theorem 3.9 and the estimate (3.7), we have that, on one
hand, if gj ∈ Fq for 1 ≤ j ≤ n and n ≤ t− 2 then

(3.9)
∣
∣|pcl(V )(Fq)| − pt−n

∣
∣ ≤ b′t−n−1(t− 1,d)q(t−n+1)/2 + 9 · 2n(nd1 + 3)t+1q(t−n)/2,

on the other hand, if n ≤ t − k − 1, k ≤ t − 2, 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n and there
exists 1 ≤ i ≤ n such that deg(gi) > 0, then

(3.10)
∣
∣|pcl(V )(Fq)| − pt−n

∣
∣ ≤ b′t−n−k(t− k,d)q(t−n+k)/2 + 9 · 2n(nd1 + 3)t+1q(t−n+k−1)/2,

where d = (d1, . . . , dn).
Now we estimate the number of Fq-rational points of V

∞ = pcl(V ) ∩ {X0 = 0} ⊂ P
t−1.

From Proposition 3.6, we have that V ∞ is a nonsingular complete intersection. We can
apply the following result due to P. Deligne (see, e.g., [9]): for a nonsingular complete
intersection V ⊂ P

m defined over Fq, of dimension r and multidegree d = (d1, . . . , dm−r),
the following estimate holds:

(3.11)
∣
∣|V (Fq)| − pr| ≤ b′r(m,d)qr/2,

where b′r(m,d) is the rth-primitive Betti number of any nonsingular complete intersection
of Pm of dimension r and multidegree d. Thus, by Proposition 3.6

(3.12)
∣
∣|V ∞(Fq)| − pt−n−1

∣
∣ ≤ b′t−n−1(t− 1,d)q(t−n−1)/2.



10 M. PÉREZ AND M. PRIVITELLI

If gj ∈ Fq, 1 ≤ j ≤ n and n ≤ t − 2, from estimates (3.9) and (3.12) and the fact that
pcl(V )(Fq) \ V ∞(Fq) = V (Fq), we conclude that

∣
∣|V (Fq)| − qt−n

∣
∣ ≤

∣
∣|pcl(V )(Fq)| − pt−n

∣
∣+

∣
∣|V ∞(Fq)| − pt−n−1

∣
∣(3.13)

≤b′t−n−1(t− 1,d)q(t−n+1)/2 + 9 · 2n(nd1 + 3)t+1q(t−n)/2

+ b′t−n−1(t− 1,d)q(t−n−1)/2.

If 0 ≤ deg(gj) < dt, 1 ≤ j ≤ n and there exists 1 ≤ i ≤ n such that deg(gi) > 0,
1 ≤ j ≤ n, n ≤ t− k− 1 and k ≤ t− 2, from estimates (3.10) and (3.12) and the fact that
pcl(V )(Fq) \ V ∞(Fq) = V (Fq), we obtain that

∣
∣|V (Fq)| − qt−n

∣
∣ ≤

∣
∣|pcl(V )(Fq)| − pt−n

∣
∣+

∣
∣|V ∞(Fq)| − pt−n−1

∣
∣(3.14)

≤b′t−n−k(t− k,d)q(t−n+k)/2 + 9 · 2n(nd1 + 3)t+1q(t−n+k−1)/2

+ b′t−n−1(t− 1,d)q(t−n−1)/2.

We have the following result.

Theorem 3.11. Let t, n, d1, . . . , dt, k be positive integers such that k, n ≤ t, d1 ≥ · · · ≥
dt ≥ 2 and the coefficients’ matrix of (3.1) satisfies hypothesis (H). Let g1, . . . , gn ∈
Fq[X1, . . . , Xk] such that 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n. Let |V (Fq)| be the number of
Fq–rational points of V .

• If gj ∈ Fq for 1 ≤ j ≤ n and n ≤ t− 2, then |V (Fq)| satisfies:
∣
∣|V (Fq)| − qt−n

∣
∣ ≤ q

t−n+1
2 (6nd1)

t+1.

• If 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n, there exists 1 ≤ i ≤ n such that deg(gi) > 0,
n ≤ t− k − 1 and k ≤ t− 2, then |V (Fq)| satisfies:

∣
∣|V (Fq)| − qt−n

∣
∣ ≤ q

t−n+k
2 (6nd1)

t+1.

Proof. Suppose that gj ∈ Fq for 1 ≤ j ≤ n, from (3.13) we need to obtain an upper bound

for the number b′t−n−1(t−1,d). From (3.8) we have that b′t−n−1(t−1,d) ≤
(

t
n+1

)
·(d1+1)t−1.

On the other hand, taking into account that
(

t
n+1

)
≤ 2t we deduce that

b′t−n−1(t− 1,d) ≤ (d1 + 1)t−12t.

Replacing in (3.13) we obtain that

∣
∣|V (Fq)| − qt−n

∣
∣ ≤q(t−n−1)/2(nd1 + 3)t+12t

(
q +

9

4
q

1
2 + 1

)

≤2t+2q
t−n+1

2 (nd1 + 3)t+1

≤q
t−n+1

2 (6nd1)
t+1.

If 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n and there exists 1 ≤ i ≤ n such that deg(gi) > 0, from
(3.14), the estimate can be obtained by using similar arguments as above. �

From Theorem 3.11 we obtain Theorem 1.1, furthermore we can provide the following
existence results.

Theorem 3.12. Let N be the number of Fq–rational solutions of the system (3.1).

• Let gj ∈ Fq for 1 ≤ j ≤ n, n ≤ t− 2 and q > (6nd1)
2t+2

t−n−1 , then N > 0.

• Let 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n and there exists 1 ≤ i ≤ n such that deg(gi) > 0,

n ≤ t− k − 1, k ≤ t− 2 and q > (6nd1)
2t+2

t−n−k , then N > 0.

In particular, if t is sufficiently larger than n+1 or n+k respectively, then we can guarantee
the existence of an Fq–rational solution if q > (6nd1)

2.
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We consider now the system (3.6). Let N be the number of Fq–rational projective points
of V , where V is the projective variety that this system defines. From Remark 3.10 and
(3.11) the following estimate holds:

∣
∣N − pt−n−1

∣
∣ ≤ b′t−n−1(t− 1,d)q

t−n−1
2 ,

where d = (d1, . . . , dn). Since |V (Fq)| = N(q − 1) + 1 we conclude that

(3.15)
∣
∣|V (Fq)| − qt−n

∣
∣ ≤ (q − 1)2t(d+ 1)t−1q

t−n−1
2 .

In [31, Theorem 4] A. Tietäväinen studies the system (3.6). The author proves that if
c := (d, q−1) and t ≥ 2n(n+log2(c−1)) then there exists a nontrivial Fq–rational solution
of the system (3.6). From estimate (3.15), we obtain the following result.

Proposition 3.13. If q > (4d)2 and t > (n+ 1) log2(q)
log2(q)−2 log2(4d)

then the system (3.6) has

at least an Fq–rational solution.

It is easy to see that 1 < log2(q)
log2(q)−2 log2(4d)

≤ 256d4 for all q > 16d2 while Tietäväinen’s

result implies that n+1 ≤ n+log2(c−1) ≤ n+d−1. Hence, for n > (4d)4 and q > 16d2, our
condition over t is less restrictive than Tietäväinen’s. We can say that the Tietäväinen’s
result and ours are complementary.

Remark 3.14. Deformed Diagonal Equations. Let n = 1 and k = 1, we consider the
following deformed diagonal equation:

a11X
d1
1 + · · ·+ a1tX

dt
t = g1,

with g1 ∈ Fq[X1], 0 < deg(g1) < dt, d1 ≥ · · · ≥ dt ≥ 2 and char(Fq) does not divide di for
1 ≤ i ≤ t. From Theorem 1.1 we have that

∣
∣N − qt−1

∣
∣ ≤ q

t
2 (6d1)

t+1.

This result complements [25, Theorem 4.1] in the case that g is an univariate polynomial
because the exponents d1, . . . , dt are not necessarily the same.

Remark 3.15. In [27] and [28], K. W. Spackman studies the number N of Fq–rational
solutions of the system (3.1) when the polynomials gj ∈ Fq for 1 ≤ j ≤ n. Given μ a
positive integer he defines the parameter μ of nonsingularity. Indeed, for a given (n× t)–
matrix in F

n×t
q , he says that it is μ–weakly nonsingular if and only if for each natural

number k satisfying μ · (k − 1) + 1 ≤ min{t, μ · (n− 1) + 1}, the matrix has the property
that among any μ · (k− 1)+1 columns vectors there are at least k Fq–linearly independent
ones. If μ = 1, being 1–weakly nonsingular is equivalent to satisfying the hypothesis (H).
Furthermore, a 1–weakly nonsingular matrix is also μ–weakly nonsingular for μ ≥ 2. In
[27, Theorem 1.1] the author proves that if μ = 1, n ≥ 2 then

N = qt−n +O(q
t−1
2 ),

where the implied constant depends only on n, t, d1, . . . , dt, but it is not explicitly given.
Theorem 1.1 improved this result in several aspects. Indeed, on one hand, we give an

explicit estimate on the number N and we obtain that N = qt−n + O(q
t−1
2

−n−2
2 ). On

the other hand, we also study the case in which each equations can be matched to a
non-constant polynomial.

In [28, Theorem 3.2] the author obtains an explicit estimate on N when μ ≥ 2 and
gj ∈ Fq for 1 ≤ j ≤ n. More precisely, the following estimate holds

|N − qt−n| ≤ (d1 − 1) · · · (dt − 1) · (2t − 1) · q
t+(μ−2)(n−1)

2 ,

where n, t and μ are positive integers with μ ≥ 2 and t > μ · (n − 1) ≥ 2n − 2. Namely,

N = qt−n +O(q
t+ε
2 ), ε ≥ 0. On the other hand, if hypothesis (H) holds and t ≥ n+ 2 we

obtain that N = qt−n+O(q
t−(n−1)

2 ). Since the hypothesis (H) implies that the coefficients’



12 M. PÉREZ AND M. PRIVITELLI

matrix is μ–weakly nonsingular for all μ ≥ 2, if n ≥ 3, hypothesis (H) holds and t ≥ 2n−1,
we can apply both estimates but in this case our estimate improves Spackman’s.

3.3. Generalized Markoff-Hurwitz-type systems. A concrete example of a system
of the form (3.1) are the Markoff-Hurwitz systems. These equations have been very well
studied (see, e.g., [18, 22, 25]), but there are not results in the literature about this type
of systems.

Let t, n, d1, . . . , dt be positive integers, d1 ≥ · · · ≥ dt ≥ 2 and char(Fq) does not divide
di for 1 ≤ i ≤ t. Let cij be positive integers such that 1 ≤ i, j ≤ n and cj1 + · · · + cjn <
dt, 1 ≤ j ≤ n. We consider the following system of n generalized Markoff-Hurwitz-type
equations with t unknowns over Fq:

(3.16)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11X
d1
1 +a12X

d2
2 + · · ·+ a1tX

dt
t + a1 = b1X

c11
1 · · ·Xc1n

n

a21X
d1
1 +a22X

d2
2 + · · ·+ a2tX

dt
t + a2 = b2X

c21
1 · · ·Xc2n

n
...

...

an1X
d1
1 +an2X

d2
2 + · · ·+ antX

dt
t + an = bnX

cn1
1 · · ·Xcnn

n ,

where b1 · · · bn 	= 0 and aj ∈ Fq with 1 ≤ j ≤ n. Denote by N the number of Fq–rational
solutions of (3.16). Assume that the coefficients’ matrix of the above system satisfies the
hypothesis (H), t > 3 and n < t−1

2 . Let gj := bjX
cj1
1 · · ·Xcjn

n − aj , 1 ≤ j ≤ n. Since
deg(gj) < dt, 1 ≤ j ≤ n, from Theorem 1.1 we obtain the following result.

Theorem 3.16. With the same hypotheses as above, N satisfies the following estimate:
∣
∣N − qt−n

∣
∣ ≤ q

t
2 (6nd1)

t+1.

In what follows we obtain sufficient conditions for the existence of an Fq–rational solution
with nonzero coordinates namely, with coordinates in F

∗
q . Denote by N∗ the number of

this type of solutions of (3.16). Let N= be the number of Fq-rational solutions of (3.16)
with at least one coordinate equals to zero. Note that N∗ = N −N=.

By the inclusion-exclusion principle we obtain that

(3.17) N= =
t∑

i=1

(−1)i+1
∑

I⊂{1,...,t}
|I|=i

N(I),

where N(I) denotes the number of Fq–rational solutions of (3.16) satisfying Xi = 0 for all
i ∈ I.

We shall need the following estimate on the number N(I).

Proposition 3.17. With the same hypotheses as above, the number N(I) satisfies the
following estimate:

If 1 ≤ |I| ≤ t− 2n− 1, then

(3.18) |N(I)− qt−|I|−n| ≤ q
t−|I|

2 (6nd1)
t−|I|+1.

If t− 2n ≤ |I| ≤ t− n, then

N(I) ≤ dn1q
t−n−|I|.

If t− n+ 1 ≤ |I| ≤ t, then N(I) ≤ dn1 .

Proof. Suppose that |I| = i with 1 ≤ i ≤ t− 2n− 1. We observe that N(I) is the number
of Fq–rational solutions of a system of n deformed diagonal equations with t− i unknowns.
The coefficients’ matrix of the system satisfies hypothesis (H). Then we deduce (3.18)
from Theorem 1.1.

Suppose now t − 2n ≤ i ≤ t − n. In this case, N(I) is the number of Fq–rational
solutions of a system of n deformed diagonal equations with t − i ≥ n unknowns. We
observe that, since the coefficients’ matrix of the system satisfies hypothesis (H) we can
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follow the same arguments presented in the proof of Theorems 3.2 and 3.5, then Vi ⊂ A
t−i,

the set of solutions considered, is an Fq–affine complete intersection of dimension t− i− n
and deg(Vi) ≤ dn1 . Finally, from (2.2), we have that N(I) ≤ dn1 · qt−i−n.

Let t−n+1 ≤ i ≤ t. In this case n, the number of equations, is greater than the number
of unknowns t − i. Since the coefficients’ matrix of the system (3.1) satisfies hypothesis
(H) then, the coefficients’ matrix of the system of this case, has rank t− i. So, following
the arguments of the proof of Theorem 3.2, the set of solutions has dimension zero. Hence,
from (2.2), N(I) ≤ dn1 . �

Now, we can estimate the number of Fq–rational solutions of (3.16) which satisfy the
conditions x1 · · ·xn 	= 0.

Proposition 3.18. If q > 2, 1 ≤ n < t−1
2 , d1 ≥ · · · ≥ dt ≥ 2 and char(Fq) does not divide

di for 1 ≤ i ≤ t. Then, the number N∗ of Fq–rational solutions of (3.16) with nonzero
coordinates satisfies the following estimate:

∣
∣
∣
∣
∣
N∗ −

(
(q − 1)t

qn
−

t∑

i=t−2n

(−1)i
(
t

i

)

qt−n−i

)∣∣
∣
∣
∣
≤ (15nd1)

t+1q
t
2 .

Proof. From (3.17) and taking into account that N∗ = N −N=, we have that

N∗ = N +
t∑

i=1

(−1)i
∑

I⊂{1,...,t}
|I|=i

N(I) = N +
t−2n−1∑

i=1

(−1)i
∑

I⊂{1,...,t}
|I|=i

N(I) +
t∑

i=t−2n

(−1)i
∑

I⊂{1,...,t}
|I|=i

N(I)

= N +

t−2n−1∑

i=1

(−1)i
∑

I⊂{1,...,t}
|I|=i

(N(I)−qt−n−i)+

t−2n−1∑

i=1

(−1)i
∑

I⊂{1,...,t}
|I|=i

qt−n−i +

t∑

i=t−2n

(−1)i
∑

I⊂{1,...,t}
|I|=i

N(I)

= N +

t−2n−1∑

i=1

(−1)i
∑

I⊂{1,...,t}
|I|=i

(N(I)−qt−n−i)+

t−2n−1∑

i=1

(−1)i
(
t

i

)

qt−n−i +

t∑

i=t−2n

(−1)i
∑

I⊂{1,...,t}
|I|=i

N(I)

= N−qt−n+
t−2n−1∑

i=1

(−1)i
∑

I⊂{1,...,t}
|I|=i

(N(I)−qt−n−i)+
t−2n−1∑

i=0

(−1)i
(
t

i

)

qt−n−i+
t∑

i=t−2n

(−1)i
∑

I⊂{1,...,t}
|I|=i

N(I).

Thus, we deduce that

N∗−
t−2n−1∑

i=0

(−1)i
(
t

i

)

qt−n−i= (N−qt−n)+
t−2n−1∑

i=1

(−1)i
∑

I⊂{1,...,t}
|I|=i

(N(I)−qt−n−i)+
t∑

i=t−2n

(−1)i
∑

I⊂{1,...,t}
|I|=i

N(I).
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Therefore, from Theorem 3.16 and Proposition 3.17:

∣
∣
∣N∗−

t−2n−1∑

i=0

(−1)i
(
t

i

)

qt−n−i
∣
∣
∣≤|N − qt−n|+

t−2n−1∑

i=1

(
t

i

)

(6nd1)
t−i+1q(t−i)/2 +

t∑

i=t−2n

∑

I⊂{1,...,t}
|I|=i

N(I)

≤(6nd1)
t+1

(
q

t
2+

t−2n−1∑

i=1

(
t

i

)

q
t−i
2

)
+

t−n∑

i=t−2n

(
t

i

)

dn1q
t−n−i +

t∑

i=t−n+1

(
t

i

)

dn1

≤(6nd1)
t+1

(

q
t
2+2tq

t−1
2

)

+ 2tdn1 (q
n + 1)

≤(6nd1)
t+1q

t−1
2 (2t + q

1
2 )+2t+1dn1q

t−3
2

≤2t+2(6nd1)
t+1q

t
2

≤(15nd1)
t+1q

t
2 .

�

In [25] we study the following Markoff-Hurwitz’s equation:

a1X
d1
1 + a2X

d1
2 + · · ·+ atX

d1
t + a = bXc1

1 . . . Xct
t ,

where ai ∈ Fq, 1 ≤ i ≤ t and a, b ∈ Fq \ {0}. More precisely, in [25, Proposition 4.7], we
have that, if q > 2, then

∣
∣
∣
∣N

∗ − (q − 1)t − (−1)t

q

∣
∣
∣
∣ ≤ 7(2d1)

tq
t
2 .

In particular, Proposition 3.18 provides an estimate in the case n = 1, cn+1 = · · · = ct = 0
and c1 < dt. The error term of both estimates is of order O(qt/2) but 7(2d1)

t < (15d1)
t+1.

However, in Proposition 3.18 we obtain two new terms in the asymptotic development of

N∗ in terms of q. Indeed, we have thatN∗ = (q−1)t−(−1)t

q +(−1)tt+(−1)t−1 t(t−1)
2 q+O(qt/2).

In what follows, we provide an existence result for Fq–rational solutions with nonzero
coordinates.

Proposition 3.19. If q > (30nd1)
2t+2
t−2n and n < t−1

2 then the system (3.16) has at least one
solution in (F∗

q )
t. In particular, if t is sufficiently larger than 2n, then we can guarantee

the existence of an Fq–rational solution if q > (30nd1)
2.

Proof. Suppose that q > 2. From the above proposition we deduce that

(3.19) N∗ ≥ (q − 1)t

qn
−

t∑

i=t−2n

(−1)i
(
t

i

)

qt−n−i − (15nd1)
t+1q

t
2 .

We observe that
t∑

i=t−2n

(−1)i
(
t

i

)

qt−n−i = (−1)t
2n∑

j=0

(−1)j
(

t

2n− j

)

qn−j(3.20)

= (−1)t

(

q−n +
∑

l odd
l∈{1,...,2n}

qn−lAl

)

,

where Al :=
(

t
2n−l+1

)
q −

(
t

2n−l

)
.

Let l be an odd integer such that l ∈ {1, · · · , 2n}. We affirm that if q ≥ 2n
t−2n+1 , then

Al ≥ 0. Indeed, it is easy to see that Al ≥ 0 if and only if q ≥ 2n−l+1
t−2n+l . We consider the
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function f(l) := 2n−l+1
t−2n+l . Since f(l) is a decreasing function in l, we have that Al ≥ 0 if

q ≥ 2n
t−2n+1 .

Suppose that t is an odd number and q ≥ 2n
t−2n+1 . From (3.20) and since Al ≥ 0, we

deduce that
t∑

i=t−2n

(−1)i
(
t

i

)

qt−n−i ≤ 0.

Thus, from (3.19) we conclude that

(3.21) N∗ ≥ (q − 1)t

qn
− (15nd1)

t+1q
t
2

Now, suppose that t is an even number and q ≥ 2n
t−2n+1 . From (3.20) and taking into

account that Al ≥ 0, we have that

t∑

i=t−2n

(−1)i
(
t

i

)

qt−n−i ≥ 0.

On the other hand, since n < t−1
2 we deduce that

t∑

i=t−2n

(−1)i
(
t

i

)

qt−n−i =
2n∑

j=0

(−1)j
(

t

2n− j

)

qn−j ≤ qn
2n∑

j=0

(
t

2n− j

)

≤ 2tqn ≤ (15nd1)
t+1qt/2.

Thus, from (3.19) we conclude that

(3.22) N∗ ≥ (q − 1)t

qn
− 2(15nd1)

t+1q
t
2

From (3.21) and (3.22), we have that if q ≥ 2n
t−2n+1 , then

N∗ ≥ (q − 1)t

qn
− 2(15nd1)

t+1q
t
2

≥ qt−n

2t
− 2(15nd1)

t+1q
t
2

≥ q
t
2

(q
t−2n

2

2t
− 2(15nd1)

t+1
)
.

Therefore, (3.16) has at least one solution in F
t
q with nonzero coordinates if

q
t−2n

2

2t
− 2(15nd1)

t+1 > 0,

namely q
t−2n

2 > (30nd1)
t+1, this concludes the proof of the proposition. �

4. Generalization: variants of systems of diagonal equations

Let t, n, d1, . . . , dt, k be positive integers such that k, n ≤ t, d1 ≥ · · · ≥ dt ≥ 2, and
char(Fq) does not divide di for 1 ≤ i ≤ t. Let h1, . . . , ht ∈ Fq[T ] with deg(hi) = di and h

′
i 	= 0

for 1 ≤ i ≤ t. Let X1, . . . , Xt be indeterminates over Fq and let g1, . . . , gn ∈ Fq[X1, . . . , Xk]
such that gj ∈ Fq for 1 ≤ j ≤ n or 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n and there exists i such
that deg(gi) > 0.
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We consider the following system of n variants of Carlitz’s equations and t unknowns

(4.1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11h1(X1) +a12h2(X2) + · · ·+ a1tht(Xt) = g1(X1, . . . , Xk)
a21h1(X1) +a22h2(X2) + · · ·+ a2tht(Xt) = g2(X1, . . . , Xk)

...
...

an1h1(X1) +an2h2(X2) + · · ·+ antht(Xt) = gn(X1, . . . , Xk).

Assume that the coefficients’ matrix of the above system satisfies hypothesis (H). Carlitz’s
equations has been defined in [5]. In this article the author provides a non-explicit estimate
for the case n = 1 and g1 ∈ Fq. In [25] we improve his results in several aspects.

Let V := V (f1, . . . , fn) ⊂ A
t be the Fq–affine variety defined by fi := ai1h1(X1) +

ai2h2(X2) + · · ·+ aitht(Xt)− gi(X1, . . . , Xk), for 1 ≤ i ≤ n. With the same arguments of
Theorem 3.2, we obtain that V ⊂ A

t is a set-theoretic complete intersection of dimension
t− n. We consider the set C as in (3.2).

Observe that
∂f

∂X
=

(
M1 M2

)
,

where M1 is a (n× k)–matrix defined by

M1 :=

⎛

⎜
⎝

a11h
′
1(X1) +

∂g1
∂X1

· · · a1kh
′
k(Xk) +

∂g1
∂Xk

...
...

...

an1h
′
1(X1) +

∂gn
∂X1

· · · ankh
′
k(Xk) +

∂gn
∂Xk

⎞

⎟
⎠

and M2 is a n× (t− k)–matrix defined by

M2 :=

⎛

⎜
⎝

a1k+1h
′
k+1(Xk+1) · · · a1tdth

′
t(Xt)

...
...

...
ank+1h

′
k+1(Xk+1) · · · anth

′
t(Xt)

⎞

⎟
⎠ .

Proposition 4.1. Assume that n < t − k + 1. The dimension of C is at most k − 1 if
deg(gj) ≥ 0 for 1 ≤ j ≤ n and there exists i such that deg gi > 0. On the other hand, this
dimension is 0 if gi ∈ Fq for 1 ≤ i ≤ n. In particular, the dimension of the singular locus
of V is at most k − 1 or 0 respectively.

Proof. Let x ∈ C. We observe that M2 satisfies

M2 :=

⎛

⎜
⎝

a1k+1 · · · a1t
...

...
...

ank+1 · · · ant

⎞

⎟
⎠ ·

⎛

⎜
⎝

h′k+1(Xk+1) · · · 0
...

...
...

0 · · · h′t(Xt)

⎞

⎟
⎠ .

From hypothesis (H) we have that the diagonal matrix of right side can not have n
nonzero columns. Then, we deduce that the number of zero columns is at least t−n−k+1.
Suppose that x ∈ C is such that h′k+1(xk+1) = 0, . . . , h′t−n+1(xt−n+1) = 0. Then, we obtain

that the coordinates Xk+1, . . . , Xt−n+1 of x take finite values in Fq because the derivate h
′
i

is not identically null for all 1 ≤ i ≤ t. Then, we deduce that C is contained in a finite
union of Fq–linear varieties of dimension n+k−1. From hypothesis (H), the intersection of
each of these linear varieties with V is a subvariety of V of dimension k− 1, if deg(gj) > 0
for 1 ≤ j ≤ n, and the dimension is 0, if gj ∈ Fq for 1 ≤ j ≤ n.

�

Corollary 4.2. Let k, n, t be positive integers such that n, k ≤ t and A satisfies the hy-
pothesis (H). If gj ∈ Fq for 1 ≤ j ≤ n and n ≤ t− 2 or deg(gj) ≥ 0 for 1 ≤ j ≤ n, there
exists 1 ≤ i ≤ n such that 0 < deg(gi) and n ≤ t− k − 1, k ≤ t− 2 then the singular locus
of V has codimension at least 2 in V and (f1, . . . , fn) is a radical ideal.
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With the same arguments of the Section 3.1 we have that pcl(V ) ⊂ P
t is an absolutely

irreducible complete intersection of dimension t − n and degree d1 · · · dn and its singular
locus has dimension at most k − 1 if deg(gj) ≥ 0 for 1 ≤ j ≤ n and there exists 1 ≤ i ≤ n
such that 0 < deg(gi) or its dimension is 0 if gj ∈ Fq for 1 ≤ j ≤ n. From Theorem 1.1 if
N denotes the number of Fq–rational solutions of the system defined in (4.1), we deduce
the following result.

Theorem 4.3. With the same hypothesis as in the above theorem, N satisfies:

• If gj ∈ Fq for 1 ≤ j ≤ n and n ≤ t− 2 then N satisfies:
∣
∣N − qt−n

∣
∣ ≤ q

t−n+1
2 (6nd1)

t+1.

• If 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n and there exists i such that deg(gi) > 0, k ≤ t−2
and n ≤ t− k − 1 then N satisfies:

∣
∣N − qt−n

∣
∣ ≤ q

t−n+k
2 (6nd1)

t+1.

Corollary 4.4. Theorem 3.12 holds for system (4.1). In particular, if t is sufficiently
larger than n + 1 or n + k respectively, then we can guarantee the existence of an Fq–
rational solution if q > (6nd1)

2.

Remark 4.5. In [25] we study Carlitz’s equations. Let d, t be positive integers with d ≥ 2
and t ≥ 3. Let hi = ad,iT

d + · · · + a0,i ∈ Fq[T ], with deg(hi) = d, 1 ≤ i ≤ t. Let
g ∈ Fq[X1, . . . , Xt] such that deg(g) < d. Suppose that char(Fq) does not divide d. We
consider the following Carlitz’s equation:

h1(X1) + · · ·+ ht(Xt) = g.

We obtain an explicit estimate on the number N of Fq–rational solutions of Carlitz’s equa-
tions. Indeed, we have that

(4.2)
∣
∣N − qt−1

∣
∣ ≤ q(t−1)/2

(
2(d− 1)t−1q1/2 + 6(d+ 2)t

)
.

The result of Theorem 4.3 complements the estimate (4.2) when g is an univariate poly-
nomial and the degrees of the polynomials hi are not necessarily the same.

4.1. Systems of Dickson’s equations. These systems are a particular case of systems
of the form (4.1). Let d ∈ N and a ∈ Fq. The Dickson’s polynomial over Fq of degree d
with parameter a is the following:

Dd(X, a) =

�d/2	∑

i=0

d

d− i

(
d− i

i

)

(−a)iXd−2i.

Dickson’s polynomials have been extensively studied because they play very important
roles in both theoretical work as well as in various applications (see, [24, Chapter 7]).
The set of Fq–rational solution of Dickson’s equations has been very well studied in the
literature (see [25] and [7]). However, there are few results concerning the set of solutions
of systems of equations given by Dickson’s polynomials.

Let t, n, d1, . . . , dt, k be positive integers such that n ≤ t−k−1 , k ≤ t−2, d1 ≥ · · · ≥ dt ≥
2, and char(Fq) does not divide di for 1 ≤ i ≤ t. Let Dd1(T, a1), . . . , Ddt(T, at) ∈ Fq[T ] with
a1, . . . , at ∈ Fq. LetX1, . . . , Xt be indeterminates over Fq and let g1, . . . , gn ∈ Fq[X1, . . . , Xk]
such that gj ∈ Fq for 1 ≤ j ≤ n or 0 ≤ deg(gj) < dt for 1 ≤ j ≤ n and there exists i such
that deg(gi) > 0.

We consider the following system of n Dickson’s equations with t unknowns
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11Dd1(X1, a1) +a12Dd2(X2, a2) + · · ·+ a1tDdt(Xt, at) = g1(X1, . . . , Xk)
a21Dd1(X1, a1) +a22Dd2(X2, a2) + · · ·+ a2tDdt(Xt, at) = g2(X1, . . . , Xk)

...
...

an1Dd1(X1, a1) +an2Dd2(X2, a2) + · · ·+ antDdt(Xt, at) = gn(X1, . . . , Xk).
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Let A = [aij ] ∈ F
n×t
q be the coefficients’ matrix of the above system. Assume that A

satisfies hypothesis (H). From Theorem 4.3 we obtain an estimate on the number of
Fq–solutions of this type of systems.

5. Applications

5.1. Generalized Waring’s problems over finite fields. One of the most important
questions in number theory is to find properties on a system of equations that guarantee
solutions over a field, for example, the so called generalized Waring’s problem ( see, e.g.
[3, 6, 30]). Let S be the following system over Fq with n equations and t unknowns

(5.1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11X
d1
1 +a12X

d2
2 + · · ·+ a1tX

dt
t = b1

a21X
d1
1 +a22X

d2
2 + · · ·+ a2tX

dt
t = b2

...
...

an1X
d1
1 +an2X

d2
2 + · · ·+ antX

dt
t = bn,

where the coefficients’ matrix of the system satisfies the hypothesis (H), d1 ≥ · · · ≥ dt ≥ 2
and char(Fq) does not divide di for 1 ≤ i ≤ t.

Waring’s problem consists in finding γ(S) the least number of variables t such that (5.1)
has solution in F

t
q for every n-tuple (b1, . . . , bn) ∈ F

n
q . From Theorem 1.1 we have that N ,

the number of Fq–rational solutions of (5.1), satisfies that

N ≥ q
t−n+1

2

(

q
t−n−1

2 − (6nd1)
t+1

)

.

Then N > 0 provided that q
t−n−1

2 − (6nd1)
t+1 > 0, namely q

t−n−1
2 >

(
6nd1

)t+1
. Now if

q > (6nd1)
2 then, the last condition is equivalent to

t >
log(6nd1 · q

n+1
2 )

log( q1/2

6nd1
)

.

Then, if q > (6nd1)
2 we obtain that

γ(S) ≤
⌈
log(6nd1 · q

n+1
2 )

log( q1/2

6nd1
)

⌉

.

We observe that h(q) := log(6nd1·q
n+1
2 )

log( q1/2

6nd1
)

is a decreasing function and limq→∞ h(q) = n+1.

Therefore h(q) > n + 1 if q > (6nd1)
2. Then we deduce that if q sufficiently large,

γ(S) ≤ n+ 2. In particular if q ≥ (6nd1)
3 then γ(S) ≤ 3n+ 5.

5.2. Distribution of solutions to systems of congruences equations modulo a
prime number. In this section we apply our estimates to obtain asymptotic formulas for
the distribution of simultaneous solutions to congruences modulo p, a prime number. This
is a well studied problem, see, for example [28] and [32].

Let t, n, d1, . . . , dt be positive integers such that n ≤ t−2, d1 ≥ · · · ≥ dt ≥ 2, and p does
not divide di for 1 ≤ i ≤ t. We consider the following systems of congruences equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11X
d1
1 +a12X

d2
2 + · · ·+ a1tX

dt
t ≡ 0 (mod p)

a21X
d1
1 +a22X

d2
2 + · · ·+ a2tX

dt
t ≡ 0 (mod p)

...
...

an1X
d1
1 +an2X

d2
2 + · · ·+ antX

dt
t ≡ 0 (mod p).

Assume that the coefficients’ matrix satisfies the hypothesis (H). From Theorem 1.1 we
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have an estimate on Np, the number of solutions in [0, p−1]t. Indeed, the following estimate
holds:

(5.2)
∣
∣Np − pt−n

∣
∣ ≤ p

t−n+1
2 (6nd1)

t+1.

Let m << p1−δ and suppose that δ < t−n−1
2 . Our purpose is to obtain an estimate on

Nm, the number of solution in [0, p−m− 1]t. Let S1 and S2 the following intervals in Z:
S1 = [0, p−m− 1] and S2 = [p−m, p− 1]. From the well known Zippel–Schwartz Lemma
(see, e.g., [12]) we have that

|V ∩ St
2| ≤ dt1m

t−n,

where V ⊂ A
t is the Fp–variety defined by the polynomials fj := aj1X

d1
1 + aj2X

d2
2 + · · ·+

ajtX
dt
t ∈ Z[X1, . . . , Xt], 1 ≤ j ≤ n. Then from (5.2)
∣
∣|V ∩ St

1| − (p−m)t−n
∣
∣ ≤

∣
∣|V ∩ F

t
p | − pt−n

∣
∣+ |V ∩ St

2|+ (pt−n − (p−m)t−n)

≤ p
t−n+1

2 (6nd1)
t+1 + dt1m

t−n +m(t− n)pt−n−1

≤ 2pt−n−δ(6nd1)
t+1(t− n),

for δ > 0. Finally the number of solutions in the t–cube [0, p − m − 1]t satisfies Nm =
(p−m)t−n +O(pt−n−δ) with m << p1−δ and δ < t−n−1

2 .
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