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Abstract—This paper presents a novel characterization of controlla-
bility for linear time-invariant finite-dimensional systems. This charac-
terization relates eigenvalue controllability with the continuity of the
map that assigns to each closed-loop eigenvalue the smallest subspace
containing the set of corresponding closed-loop eigenvectors. Application
of the given characterization is illustrated on a specific case of controller-
driven sampling stabilization, where the sampled system is interpreted as
a discrete-time switched system and stability under arbitrary switching
is ensured via simultaneous triangularization (Lie-algebraic solvability).

Index Terms—Controllability, eigenvector assignment, subspace-valued
maps, continuity, gap metric.

I. INTRODUCTION

The concept of controllability for linear time-invariant (LTI) sys-
tems with finite-dimensional state space (i.e. systems identified by
constant matrices A and B) was introduced by Kalman in the late
50s and published in 1960 [1]. Since then, several characterizations of
controllability appeared, based on invariant subspaces [1], rank of the
controllability matrix [2], positive definiteness of the controllability
Grammian [2], pole assignability [3], eigenvalue controllability [4].

The standard definition of controllability involves the ability to
reach every state from arbitrary initial states in finite time by
application of a suitable input. Hautus [4] introduced the notion of
eigenvalue controllability and showed that controllability as per the
standard definition is equivalent to requiring that every eigenvalue of
the A matrix be controllable. Hautus also established the equivalence
between stabilizability and the requirement that every unstable eigen-
value of A be controllable [5]. Another well-known characterization
of controllability states that a system is controllable if and only if the
closed-loop eigenvalues can be placed arbitrarily by suitable choice
of linear feedback [3]. If an eigenvalue of A is not controllable, then
such a quantity will be a closed-loop eigenvalue for every choice of
linear feedback and hence no linear feedback can alter its position.

This paper introduces a characterization of eigenvalue controlla-
bility that is based on properties of closed-loop eigenvectors. It will
be shown that an eigenvalue A of A is controllable if and only
if a specific map is continuous at A. Such a map assigns to each
complex number A (closed-loop eigenvalue), the smallest subspace,
i.e. the subspace of lowest dimension, containing the closed-loop
eigenvectors corresponding to the closed-loop eigenvalue .

Properties of closed-loop eigenvectors are of importance in feed-
back control design for switched linear systems under arbitrary
switching [6], [7], [8], [9], in the case when Lie-algebraic solvability
is involved [10]. Indeed, the motivation for the characterization given
in this paper arises in feedback control design for switched linear
systems based on Lie-algebraic solvability [11], [12], [13]. Solvability
of a Lie algebra of matrices is equivalent to the simultaneous
triangularizability of the matrices. The latter property implies that
the matrices involved share a common eigenvector [14]. When a
switched control system has no control inputs, the property of Lie-
algebraic solvability is known to have little applicability because it
is satisfied by a very limited class of matrices and because it lacks
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robustness. However, the situation can be radically different when
control inputs are present [15], to the point where the existence of
stabilizing feedback matrices that achieve Lie-algebraic solvability
becomes a generic property, i.e. a property valid for almost every set
of system parameters [16].

The remainder of this paper is as follows. Section II provides brief
motivation, as well as concepts and previous results required. Some
numerical examples and our main results are given in Section IIL
Section IV illustrates application of our main results to controller-
driven sampling stabilization. Conclusions are drawn in Section V.
A preliminary version of the current results was presented in [17].

II. PRELIMINARIES

This section lays the foundation for the presentation of our main
results in Section III. Section II-A motivates the development. Sec-
tion II-B briefly describes the well-known concepts of controllability
and stabilizability, and related results. The required linear algebra
concepts are addressed in Section II-C, and Section II-D deals with
closed-loop eigenvectors.

A. Motivation

Consider a continuous- or discrete-time LTI system

z(t) = Az(t) + Bu(t) or x¢41 = Azt + Buy (1)

where the dimension of z is n and that of w is m. Let o(A) denote
the spectrum of A, i.e. the set of its eigenvalues, and let A ¢ o (A)
so that A\I — A is invertible. Consider a vector of the form

v=(\—A)"'Bu 2)

for some nonzero u. If the columns of B are linearly independent
(1i.), then v # 0 and it follows that the vector v is a feedback-
assignable eigenvector corresponding to the closed-loop eigenvalue
A, since a matrix K satisfying Kv = u always exists and then

[\ — (A + BK)Jv = 0.

Next, consider a sequence of (possible, closed-loop) eigenvalues
{Ak}52, with Mg ¢ o(A) for all k and limk_,00 A = A € o(4).
The sequence {vy}52, given by

ve = (Ml — A) 7' Bug ?3)

for some wuy, is thus a sequence of feedback-assignable eigenvectors
corresponding to each of the possible closed-loop eigenvalues Aj.
The following questions are of interest. Can the sequence {vy }req
be made convergent by appropriate choice of u;? What would the
resulting sequence converge to? The results in this paper will show
that A = limg_ o0 A\x is a controllable eigenvalue of A if and only
if every feedback-assignable eigenvector v corresponding to A is the
limit of a sequence of the form (3).

B. Controllability and Stabilizability

Consider a system of the form (1), with state and input spaces
of dimensions n and m, respectively. Results will be given for the
general complex case z € C",u € C™, A € C"*",and B € C"*™.
However, the results hold for the real case only by replacing C by
R. Matrix B is assumed to have full column rank and hence m < n.

The results to be given will hold for both continuous- and discrete-
time systems, the only difference being that “stable eigenvalue” is
to be understood as a complex number with negative real part in
the continuous-time case and one with magnitude less than 1 in the
discrete-time case. In addition, ‘“‘stable matrix” refers to a matrix all
of whose eigenvalues are stable.



The following well-known definitions and results are given for
the sake of clarity. These were developed by Kalman, Wonham, and
Hautus (among others) as referenced in Section I, and can be found
in almost every standard text on linear systems, such as [18].

Definition 1 (Controllability): The system (1) is controllable if for
every final time ¢, initial state x, and final state zs, there exists
an input evolution w for which z(0) = z, and x(ty) = xy. The
pair (A, B) is controllable if rank[B, AB, ..., A" 'B] =n. An
eigenvalue A of A is (A, B)-controllable (just “controllable” if no
confusion arises) if rank[A\I — A, B] =n.

Theorem 1: The following are equivalent:

(a) The system (1) is controllable.

(b) The pair (A, B) is controllable.

(c) Every eigenvalue of A is (A, B)-controllable.

(d) For every set A C C of n not necessarily distinct numbers, there
exists K such that o(A + BK) = A.

Definition 2 (Stabilizability): The system (1), or equivalently the
pair (A, B), is stabilizable if there exists a matrix K such that A +
BK is stable.

Theorem 2: The following are equivalent:

(a) The system (1), or equivalently the pair (A, B), is stabilizable.
(b) Every unstable eigenvalue of A is (A, B)-controllable.
Comparison of item (d) of Theorem 1 with Definition 2 shows a clear
relationship between controllability and stabilizability.

C. Subspaces, Linear Maps and Projections

The standard facts about subspaces and linear maps in this sub-
section can be consulted, for example, in Chapter 0 of [19].

The kernel of a linear map M : C" — CP? is denoted ker M, its
image (range) is img M. If S is a subspace of CP, then the subspace
{x € C™ : Mz C S} is denoted M~'S. The latter notation is
read as the pre-image (or inverse image) of S under the linear map
M and does not imply that M is invertible. The dimension of a
subspace S is denoted by dim(S). As is well-known, linear maps
M : C" — CP can be represented by matrices in CP*™ with a
one-to-one correspondence when bases of C™ and C? are fixed.

The concepts in the following two definitions and their properties
can be consulted, for example, in [20].

Definition 3: A linear map P : C" — C" is called a projector if

P? = P. A projector is orthogonal if in addition P* = P, where P*
denotes the adjoint of P (conjugate transpose matrix). The projector
P is said to be on S along 7 if img P =& and ker P = 7.
If P is an orthogonal projector with img P = S, then P is a projector
on S along S*, where S* denotes the orthogonal complement of S.
Given a subspace S of C", orthogonal projectors on S are unique,
and hence one may refer to the orthogonal projector on S.

The set of subspaces of C™ will be denoted G(C"™). Consequently,
the expression “S is a subspace of C"” can be written as “S €
G(C™)”. In the sequel, a notion of distance between subspaces will
be required. This notion is given by the gap metric.

Definition 4 (Gap): Let S and T be subspaces of C™. The gap
between S and 7T is defined as

0(S,T)=|Ps - Prl|,

where Ps and Py are the orthogonal projectors on S and T,
respectively, and the norm above is the induced 2-norm (Euclidean).

D. Closed-loop Eigenvectors

Given A € C, the vectors that become corresponding closed-loop
eigenvectors for some choice of feedback matrix K € C™*™ are the
nonzero vectors contained in the set

9()\) = {U e (Cn . [)\I _ ACL]U = ()’ for some K ¢ (Can}’

with A = A+ BK. Note that the set V() is a subspace of C", i.e.
V(\) € G(C™), and hence V(\) can be referred to as the smallest
subspace containing the set of closed-loop eigenvectors corresponding
to A. The only difference between f/(/\) and the aforementioned set
of eigenvectors is that 0 € V() is not an eigenvector.

Claim 1: The set V()) coincides with

V(A) :={veC": (A - A)v = Bw, for some w € C"}. (4)

Proof: Let v € V()). Taking w := Kv shows that v € V()).
Hence V()\) C V(A). Next, take v € V(\) and select K such that
Kv = w. This shows that v € V(\) and hence V(\) C V()).
Consequently, V(A) = V()). [ |

The set V() can be written as {v € C" : (Al — A)v € img B}
and hence

VA) = (M —A)"'B with B:=imgB, 5)

where (A — A) ™' B denotes the pre-image of B under the linear map
Al — A and does not imply that AI — A is invertible.
The following facts are straightforward.
Lemma 1: Let A € C and v € C". Then,
a) If Av = Av, then v € V().
b) If A € o(A), there may exist v € V(A) for which Av # Av.
c) If A ¢ o(A), then A\ — A is invertible and dim(V(\)) =
dim(B) = m.
Lemma la) states that the eigenvectors of A corresponding to A,
i.e. the open-loop eigenvectors, are contained in V(). Note that the
condition in Lemma la) can be equivalently written as ker(Al —
A) C V(M). According to Lemma 1b), V() need not coincide with
ker(AI — A). The first equality in Lemma Ic) follows from (5) and
Lemma 3b). The fact that dim(88) = m follows from B € C"*™
and the assumption that B has full column rank.

III. CONTROLLABILITY AND CLOSED-LOOP EIGENVECTORS

This section contains the main results of the paper. Section III-A
states our main result, namely Theorem 3, and explains some of
the concepts and interpretations involved, as well as some of the
consequences. Section III-B provides numerical examples that serve
both as illustration and as motivation for our results. The proof
of Theorem 3 is given in Section III-C. Section III-D explains
the relationship between Theorem 3 and the questions posed in
Section II-A.

A. Continuity of V : C — G(C™)

In the sequel, V(X), as defined in (5), will be regarded as a map
between the complex numbers and the set of subspaces of C", i.e.
Y : C — G(C™). This map assigns, to each complex number A,
the subspace V(A). Our main result involves the continuity of the
subspace-valued map V. Continuity in this context is defined as
follows, where (-, ) denotes the gap as per Definition 4.

Definition 5: A map V : C — G(C") is continuous at A € C if for
every convergent sequence {A\,}ie; in C where limg o0 Ak = A,
limg— 00 O(V(Ak), V(N)) = 0.

Our main result is stated as follows.

Theorem 3: The map V : C — G(C") as defined by (5) is
continuous at X if and only if [A\I — A, B] has full rank.
The proof of Theorem 3 is given in Section III-C.

The following straightforward consequences of Theorem 3, given
below as Corollary 1 and Corollary 2, provide alternative character-
izations of controllability and stabilizability.



Corollary 1: The map V is continuous in C if and only if (A, B)
is a controllable pair.

Proof: (=) V continuous in C implies V' continuous at A €
o(A). By Theorem 3 then [AI — A, B] has full rank at every \ €
o (A). From Theorem 1 and Definition 1, then (A, B) is controllable.

(«=) From Theorem 1 and Definition 1, (A, B) controllable implies
that [\I— A, B] has full rank at every A € o(A). Then, [A\I- A, B|
has full rank at every A € C and application of Theorem 3 shows
that ) is continuous at every A € C. |

Corollary 2: The map V is continuous at every unstable eigenvalue
of A if and only if (A4, B) is stabilizable.

Proof: The proof is analogous to that of Corollary 1 but employs
Theorem 2 instead of Theorem 1. ]

In the next subsection, Theorem 3 is illustrated by means of
numerical examples.

B. Numerical Examples

1) Uncontrollable System.: Consider the following second-order,
single-input, uncontrollable system, identified by

0 0 0
N

The eigenvalues of A are o(A) = {0, 1}, where 0 is an uncontrol-
lable eigenvalue and 1 is a controllable one. Computation of the sets
V(0) and V(1) according to (4) yields

V(0) = Span{v*,v°} V(1) = Span{v°}, 7

where v = [1 0] and v® = [0 1] are eigenvectors of A (i.e.
open-loop eigenvectors) corresponding to the uncontrollable and
controllable eigenvalues, respectively. Whenever A ¢ o(A) and
since (A — A)™! is invertible [cf. Lemma 3d) below], V()\) can
be straightforwardly computed from (5) as

A—1

A ¢ o(A). (8)

From (7) and (8) it follows that V() is constant (hence continuous)
and one-dimensional at every A not equal to the uncontrollable eigen-
value, and that its dimension “jumps” at the uncontrollable eigenvalue
A = 0. Also, from (7) and (8) it follows that limy_o V(\) =
Span{v} C V(0).

2) Controllable system.: As a second example, consider the con-
trollable two-input system identified by

V) = mgl(A1 - 4) 5] = mg | § |

= Span{v°}, for

-1 0 0 10
A=10 =2 of, B=1{1 0
0 0 1 0 1

The eigenvalues of A are o(A) = {—1,—2,1}. By direct computa-
tion, one obtains
V(—1) = Span{e, es},
V(—2) = Span{es, es}, )
V(1) = Span{3e; + 2e2, €3},
where e1 = [1 0 0], e2 = [0 10] and e3 = [0 0 1]’. For each
A € o(A), V() contains the eigenvector corresponding to A, but in

this (multi-input) case, note that V() contains other vectors as well
[recall Lemma la) and b)]. If A ¢ o(A), then

V(A) = img[(AL — A)"'B] = img | 45 (1)

A—1

(A+2) 0
(A+1) 0
0 1

= Span{(A 4+ 2)e1 + (A + 1)ea, e3}.

Note that dim(V(X)) = 2 for all A € C, even if A € o(A). Let
U, (\)* denote the conjugate transpose of U (). For X ¢ o (A), it
follows that

P(A) = U [U-(N) U (V)] U (V)

=imgU,(A), with Ur(\) =

A +2° A+2)0+1)
A+22+A+112 A+2P+[A+1]2
= A+2)(A+1) IA+1? 0
A+22P+A+112 A+2P+[A+1]2
0 0 1
is the orthogonal projector onto V(\), and hence
V(A) = img P(A\) whenever A ¢ o(A). (10)
One may compute
1 0 0 0 0 O
P(-1)=10 0 0], P(-2)=10 1 0],
0 0 1 0 0 1
9/13 6/13 0
P(1)= |6/13 4/13 0
0 0 1
Note that imgP(—1) = Span{ei,es}, imgP(-2) =

Span{ez,es}, and imgP(1) = Span{3e; + 2e2,e3}. These
equations jointly with (9-10) show that V() = img P(\) for all
A € C, even when A € o(A). Therefore, P is the orthogonal
projector onto V() for all A € C. Since P is continuous at every
A € C, then V is continuous in C, as follows from direct application
of Definitions 4 and 5.

C. Proof of Theorem 3

First, some preliminary concepts required are stated. Recall that a
sequence is Cauchy if the distance between any two elements in the
sequence tends to zero. If the elements of the sequence are subspaces,
then distance is measured by the gap metric, and hence a sequence
{Sk}Z, of subspaces of C" is Cauchy if limg,¢— 00 0(Sk, Se) = 0.
In this context, {Sk}7=; is convergent in G(C™) if there exists S €
G(C™) such that limg_—oc 0(Sk,S) = 0.

Theorem 4: (Adapted from Theorem 13.4.1 of [20]) The metric
space G(C™), given by G(C") endowed with the gap metric, is
compact, and, therefore, complete (as a metric space).
Completeness of G(C™) means that every Cauchy sequence of
elements in G(C™) is convergent in G(C™). The following properties
of the gap metric will be employed (see Chapter 13 of [20]).

Lemma 2: Let S, T € G(C"). Then,

a) 0(S,7) <1
b) 6(S,T) < 1 only if dim(S) = dim(7).
The proof of Theorem 3 requires the following facts about subspaces.

Lemma 3: Let R € G(C?), S,T € G(C"),let M : C" — CP be
a linear map, let Ny € C"*? and N, € C"*1.

a) dim(SN7T) = dim(S) + dim(7) — dim(S + T).

b) dim(M~'R) = dim(R Nimg M) + dim (ker M).

c) If p =n, then dim(ker M) + dim(img M) = n.

d)If p = n and M is invertible, then M1t img No =
img(M ™' Ny).

e) rank[Ni, N2] = dim(img Ny + img N2).

Next, the proof of Theorem 3 is provided. The necessity part of the
proof follows from a dimensionality argument, as was illustrated in



the first example in Section III-B. The sufficiency part of the proof
is more involved and requires the use of orthogonal projectors, as
illustrated in the second example in Section III-B.

Proof of Theorem 3: From (5) and Lemma 3b), it follows that

dim(V(X\)) = dim(B Nimg(AI — A)) + dim(ker(AI — A)).
Using Lemma 3a), also

dim(B Nimg(Al — A)) = dim(B)+
dim(img(Al — A)) — dim(B + img(Al — A)).

Combining the above two equations, recalling that dim(B) = m, and
applying Lemma 3c) yields

dim(V(\)) = m 4+ n — dim(B + img(A\l — A)). (11)

Necessity (V continuous at A =  [Al — A, B] full rank).

If A ¢ o(A), then [Al — A, B] has full rank. Consider next the
case A € o(A). Continuity of V at A implies that the dimension of
V(:\) is constant for all A sufficiently close to A (see Definition 5
and Lemma 2). Consider A sufficiently close to A and such that X ¢
o(A). By Lemma Ic), dim(V(X)) = m, and hence dim(V(\)) =
m. According to (11), then dim(B + img(A\l — A)) = n and by
Lemma 3e), then rank[A\] — A, B] = n.

Sufficiency (V continuous at A <=

For every A\ ¢ o(A), then

[AI — A, B] full rank).

Adj(AL— A)

VA =W —-A)"'B= dot T~ A)

B,
where Adj(-) denotes the adjugate matrix, i.e. the transpose of the
cofactor matrix. Since det(AI—A) is a scalar and V() is a subspace,

A o(A).
For A\ € C, consider the matrix M (\) := Adj(A\ — A) B, whence

A ¢ o(A).

Since the entries of M are polynomials in the variable A with
coefficients in C, then M can be written in Smith normal form
as M = UST, where U(\) € C**", S(A\) € C™™ and
T(X) € C™*™, U and T are invertible and their inverses also are
polynomial matrices, and S(\) = diag(p1(A),...,pm(N)) € C**™
where p; are polynomials with the property that p; divides p;4i.
Let S, be the matrix formed by the first m rows of S, hence
Sr(A) = diag(pi(A),...,pm(X)) € C™*™, and U, the matrix
formed by the first m columns of U, so that

V(A) = Adj(AI — A)B  whenever

V(A) = img M (A\) whenever (12)

M(\) = U.(AN(N), with N(A) = S,(\)T()) € ¢

Since U, consists in the first m columns of the matrix U, then the m
columns of U, () are Li. for every A € C and rank M () coincides
with rank N (). By (12) and Lemma 1lc), then rankN(\) = m
whenever A ¢ o (A). Therefore, N()) is invertible and

img M(X) =imgU,(A) if X¢o(A). (13)

Since U () has Li. columns YA € C, then U, (A)*U,(A) is invertible
VA € C and one may define P := U,.(U;U,)"'U;. Note that P? =
P, P* = P, and img P = img U,.. Therefore,

A ¢ a(A),

P is an orthogonal projector (for every A), and is onto the range of
M whenever A ¢ o(A). Note that since the rank of U, is constant
VA € C, then P is continuous at every A € C, even if A € o(A).

V(A) = img P(\) whenever (14)

Consider a convergent sequence { A, }5=; in C so that A\, ¢ o(A)
for all k£ and limg— oo Ak = A. By (14), then V(A\;) = img P(\)
for all k. By Definition 4, then

0(V(X2;), V(M) = [[P(A5) = P(Au)| (15)

for all j, k. Since P is continuous, the sequence {P(\x)}7e; is
Cauchy and by (15) so is the sequence {V(Ax)}3Z,. By Theorem 4,
the latter sequence is convergent. Define

Vo := lim V(Ax) = img P(})
k— o0

Next, V, C V(\) will be established. Let v € V, and take vy, €
V(Ak) so that limg_oo vx = v (this is possible by Theorem 5 in
Section III-D). For each k,

(Al — A)vy, € B.

Since A\ — X and vy — v as k — oo, and since B is closed (it is
a subspace of C"), it follows that

lim (Al — A)v = (AL — A)v € B.
k—oo

Thus, v € V(). Since v € V, is arbitrary, it follows that V, C V().

Since dim(V(Ax)) = m and V(Ax) — Vo, then dim(V,) = m.
By (11) and since rank[AI — A, B] = dim(B +img(A— A)) =n,
then dim(V'(\)) = m. Therefore, V, = V(A\) = img P(\). It has
thus been established that if rank[A\I — A, B] = n, then V(\) =
img P(\). Continuity of ) then follows by continuity of P. ]

D. Continuity and Sequences of Eigenvectors

The following theorem will be employed to provide a link between
continuity of the map V, as characterized by Theorem 3, and
sequences of feedback-assignable eigenvectors.

Theorem 5: (Adapted from Theorem 13.4.2 of [20]) Let {Sk }7z+

be a sequence of m-dimensional subspaces in G(C™), such that
limg 00 O(Sk,S) = 0 for some subspace S € G(C™). Then S
consists of exactly those vectors z € C™ for which there exists a
sequence of vectors {xy }52; in C" such that ) € Sy for all k > 1
and limg oo T = .
As in Section II-A, consider a sequence {A\x}72,, with \x ¢ o (A)
for all k and limg_,00 Ak = A € o(A). The sequence of vectors
{vr}32, where each vy satisfies (3) for some wy is such that vy €
V(Ak) for all k. Conversely, every vector vi, € V(Ar) can be written
as in (3) for some ug.

If X is an (A, B)-controllable eigenvalue of A, then the map
V is continuous at A by Theorem 3. According to Definition 5,
limg 00 O(V(Ak),V(A)) = 0, and by Theorem 5, then every
v € V(A) satisfies v = limgoovr Where vy € V(Ax). In
other words, if A is (A, B)-controllable, then uj can be chosen so
that the vectors vy in (3) form a sequence that converges to any
vector in V(A). According to Lemma la), ker(AI — A) C V(A).
As a consequence each eigenvector of A which corresponds to a
controllable eigenvalue A is the limit of a sequence of feedback-
assignable eigenvectors corresponding to eigenvalues approaching .

If A is not (A, B)-controllable, then the proof of Theorem 3 shows
that limg_ oo V(M) C V()A). Hence in this case uj also can be
chosen to make the vectors v, in (3) form a converging sequence,
but the resulting sequence will converge only to some of the vectors
in V(X) and, by Theorem 5, some of the vectors in V() cannot be
the limit of any sequence formed by vi € V(Ax) (as was illustrated
for A = 0 in the first example in Section III-B).

The following Lemma shows that a feedback-assignable eigen-
vector of a single-input non-scalar controllable system cannot be
contained in img B. This property is employed in the next section.



Lemma 4: Consider a controllable system of the form (1), with
n>2 m=1 and let v # 0, v € V(X\) for some A € C. Then
v ¢ img B.

Proof: Suppose that v = Bw for some nonzero w € C. Then,
(M- A)Bw = Bu for some u € C and hence B(u—A\w)+ABw =
0. Therefore the vectors B and AB € C", with n > 2, are linearly
dependent. This contradicts the fact that (A, B) is controllable. M

IV. CONTROLLER-DRIVEN SAMPLING STABILIZATION

We next show how the characterization derived in the previous
section can be applied to a simple example of controller-driven
sampling stabilization.

A. Problem Statement

Consider the controller-driven sampling setting of [13], where a
continuous-time LTI system, described by

i = A°c + B°u, (16)

with z € R", v € R™ may be sampled at varying rates, with the
constraint that the possible sampling periods are taken from the finite
set H := {h1, ho,...,hn}. We assume that every h € H is non-
pathological [21]. Let ¢; denote the sampling instants and define
zr = z(tx) and ug := u(tx). The state evolution at the sampling
instants can be obtained from (16) as

Tp41 = Ay Tk + By Uk, a7

where i(k) € N :={1,2,...,N} and

.
A; =M B :/ DA, forallj € N, (18)
0

Note that (17) can be interpreted as a discrete-time switched linear
system. The controller-driven sampling scheme allows the controller,
at sampling instant ¢;, to select the next sampling instant, namely
tr+1, arbitrarily within the constraint that tx+1 — ¢, € H. Based on
such sampling instant knowkedge, at time ¢, the controller can apply
feedback control of the form uy = Kjxyxk, so that

Trp1 = Aj(pyme, with AJ" = Aj + B;K; forall j € N. (19)

The problem addressed is to design the feedback matrices K;
for 5 € N, so that the discrete-time switched linear closed-loop
system (19) is stable irrespective of the way in which the controller
selects the sampling periods. In switched systems terminology, we
aim at designing K; for all 7 € NN so that system (19) is stable
under arbitrary switching, i.e. irrespective of the switching signal
i : Z4+ — N. More specifically, we aim at providing conditions
that ensure the existence of K; for all j € N so that the closed-
loop matrices AS" are individually stable and admit simultaneuos
triangularization (i.e. generate a solvable Lie algebra). The latter
properties (individual stability + simultaneous triangularization) are
known to ensure stability under arbitrary switching [10].

We have previously addressed this more specific problem in [13],
where the conditions that we provided for the existence of suitable
K required the continuous-time matrix A° to be nonsingular. The
characterization derived in the previous sections will allow us to
provide sufficient conditions without assuming nonsingularity of A°.

B. Lie-algebraic Solvability-based Control Design

We first provide two results, namely Lemmas 5 and 6, which
are analogous to corresponding results in [13] but are formulated
employing the current notation. We define the sets of continuous-
and discrete-time feedback-assignable eigenvectors:

V) == (A= A9 Himg B®, VI(\) := (A — A;)" " img B;.

The following lemma is a slight generalization of Lemma 1 of [13].
This result shows that the set of continuous-time feedback-assignable
eigenvectors corresponding to the eigenvalue O is contained in the
set of discrete-time feedback-assignable eigenvectors corresponding
to the eigenvalue 1 irrespective of the sampling period. In addition,
these two sets coincide if the sampling period is non-pathological.
Lemma 5: Let A° € R™™ ™, B € R"™™, h; € R, and consider
the matrices A; and B; as in (18). Then, V°(0) C V{(1), with
equality if, in addition, h; is non-pathological.
Proof: Let v € V°(0). Then, there exists K € R™*™ such that

—(A°+ B°K)v = 0. (20)
Left-multiply the above equation by fohj e“tdt to obtain
hy oo hy
- (/ et tdtAC +/ et tdthK) v=0.
0 0
Solving the first integral above and using (18) yields
- (A4, + B;K)lv=0. (21)

This shows that v € V§(1). Next, let v € V¢(1). Then, (21) must
hold for some K € R™*™_ If h; is non-pahological, then fohj eAtdt
is invertible and we may left-multiply (21) by the inverse to reverse
the above steps and reach (20), showing that v € V°(0). [

The following is the equivalent to Lemma 2 of [13] using the cur-
rent notation. This result gives a sufficient condition for the existence
of feedback matrices that stabilize the discrete-time switched system
(17) by achieving simultaneous triangularization.

Lemma 6: Consider matrices A; € R"*™ and B; € R™ "~ with
rank B; = n — 1 for all j € N. Suppose that for scalars \; € R
satisfying |\;| < 1, we have

m Vi(X;) ¢ img By

JEN

(22)

for every k € N. Then, there exist 7' € R™*™ invertible and K; €
R™™1*™ such that p(A; + B;K;) < 1 (spectral radius less than 1)
and T~'(A; + B, K;)T is upper triangular for all j € N.

Proof: By (22) and since 0 is a subset of every subspace, then
Njen V&(A;j) # 0 and there exists a nonzero v € ﬂjeﬂV}i(Aj)
satisfying v ¢ img By, for every k € N. Therefore, there exist F; €
R™™%™ 5o that (A; + B;Fj)v = \jv. Let & = v/||v|| and select
U € R~ " such that U'U = I and U'v = 0. The matrix 7' =
[0|U] satsifies T'T = I. We have rank(U’ B;) = rank B; = n — 1.
Then, the matrix U’B; has a right-inverse and hence there exists
G; € R"™ "1 quch that M; = U'(A; + B, F;)U + U'B;Gy is
upper triangular and p(M;) < 1. Let K; = F; + G;U’". Tt follows
that T~ (A; + B; K;)T = [)g ﬁ,(AJRJZJ'KJ')U] is stable and upper
triangular. |

With the sole aim of illustrating an application of the continuity
concept developed, we next generalize Theorem 2 of [13] by avoiding
the assumption that A is nonsingular. Therefore, and to avoid more
lengthy derivations, we will concentrate on the case n = 2, m = 1.
Consider then the case A° € R?*? and B® € R>*!. For every
A€ R\ o(A4;), define the following quantities

— 0
)=
Note that v;(\) € V{(\). The function v; : R\ o(4;) — R?
is continuous and satisfies ||v;(A)|| = 1 at every A € R\ o(4;).
In addition, due to the fact that the components of ©; are rational
functions of A\ and considering only real A, the following left limit
must exist, even if 1 € o(A;):

T;(A) == (M= A4;)"'B;

’Uj =

lim v;(A).

A—1—

(23)



We are now ready to formulate the aforementioned generalization.
Proposition 1: Let A € R?**2, B¢ € R**!, and let the pair
(A€, B) be controllable. Then, there exists © € V°(0) such that

@:S]'U'_7 s € {15_1}7

; forall j € N,

(24)
with v as in (23). Let p € R? be nonzero and satisfy p'v = 0 for
all v € V°(0). Then, ¥; () :=p’s;jv;(A) # 0 for all j € N and all
A € R\ (o(A4;)U{1}). Let \; € RU{—c0} denote the greatest real
eigenvalue' of A; that is less than 1 and define X := maxjen \;.
Then each of the quantities ¢; (\) has constant sign for A < A < 1. If
all the () have the same sign for all j € N (and all A < X < 1),
then there exist 7 € R**? invertible and K; € R'*? such that
p(A; + BjK;) <1and T7*(A; + B, K;)T is upper triangular for
all j € N.

Proof: Since (A€, B°) is controllable and the sampling periods
in H are non-pathological, then (A;, B;) are controllable. By Corol-
lary 1, then V{'(\) is continuous at A = 1. Since the left limit (23)
exists and v;(\) € V§(N), then vy € V¢(1) by Theorem 5, and
also —v;” € V¢(1). By Lemma 5 we have V°(0) = V¢(1) for all
j € N because each h; is non-pathological. Hence v; € V°(0) for
all j € N. Since dim(V°(0)) = m = 1 and ||lv; || = 1, then either
vy =, Or v = —up whenever j # k. This establishes (24).

For a contradiction, suppose that 1;(\) = p's;v;(\) = 0 for some
j € N and some A € R\ (o(A;) U {1}). Note that ||s;v;(A)| =
1 and hence s;jv;(A) # 0. Since p L s;v;(A) and p L V°(0)
with p,v;(\) € R? then s;v;(\) € V°(0) = Vi(1). Since also
505 (A) € VE(N), we have s;0;(A) € VI(1)NVE(N). Recalling (24),
this means that also o € V(1) N V() and hence

(I—-A;)v=Bju and (Al — A;)v = Bjw, (25)
for some u,w € R. Subtracting the above equations, we reach (1 —
A)? = Bj(u — w), which implies that 7 € img B; because A\ # 1.
According to Lemma 4, this contradicts the fact that (Aj, B;) is
controllable. We have thus established that 1), (\) # 0 for all j € N
and all A € R\ (o(4;) U{1}).

By definition of X, then ¢;(\) # O forall j € N and all A < A <
1. Also by definition, then 1/;()) is continuous for all X < A < 1.
Continuity and being not equal to 0 then imply that the sign of 1; ()
cannot change.

Every s;v;()) is continuous, and 1;(A\) = p’s;v;(\) is nonzero
and their signs coincide for all A < A < 1. Also ||s;v;(\)|| = 1,
limy_,;- s;u;(A) = © for all j € N, and p'v = 0. Then, a
simple geometrical diagram in R? shows that there exist \; satisfying
max{—1,\} < A; < 1 so that s;v;(\;) = spvr (M) for all j, k €
N.ByLemma 4, s;v;()\;) ¢ img B;. Also V{()\;) = img[s;v;(\;)]
because dim(V¢();)) = 1. Then Njen VI(\;) ¢ imgBy is
established. The result follows by application of Lemma 6. |

Proposition 1 generalizes Theorem 2 of [13] by avoiding the
assumption that the continuous-time matrix A€ is non-singular. If
A€ is non-singular, then 0 ¢ o(A°) and hence 1 ¢ o (A;) (provided
h; is non-pathological) so that the function v; () is well-defined and
differentiable at A = 1. The proof of Proposition 1 is based on the
continuity of V&(\) at A = 1, and the fact that V(1) = V°(0) for
all 7 € N whenever the sampling periods are non-pathological (cf.
Lemma 5). This proof avoids the use of the derivative of v;(\) with
respect to A, as was the case in Theorem 2 of [13]. A reformulation
of Proposition 1 might be possible by means of the concept of
differentiability of subspaces [22], although this goes beyond the
scope of this note.

it Aj has no real eigenvalues less than 1, then ;\j = —o0.

V. CONCLUSIONS

We have provided a novel characterization of eigenvalue controlla-
bility for LTI finite-dimensional systems. This characterization relates
eigenvalue controllability with the continuity of the map that assigns
to each closed-loop eigenvalue the smallest subspace containing the
set of corresponding eigenvectors. Continuity of this map is related
to the convergence of sequences of feedback-assignable eigenvectors.
Application of this concept was illustrated in an example of feedback
stabilization in a controller-driven sampling setting, based on simul-
taneous triangularization (i.e. Lie-algebraic solvability).
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