
Energy Conversion and Management 55 (2012) 36–48
Contents lists available at SciVerse ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier .com/locate /enconman
Load management: Model-based control of aggregate power for populations
of thermostatically controlled loads

Cristian Perfumo a,c,⇑, Ernesto Kofman b, Julio H. Braslavsky a, John K. Ward a

a CSIRO Energy Technology, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
b CIFASIS-CONICET, Department of Control, FCEIA-UNR, Riobamba 245 bis, 2000 Rosario, Argentina
c Faculty of Engineering and Built Environment, The University of Newcastle, NSW, Australia

a r t i c l e i n f o
Article history:
Received 29 June 2011
Accepted 20 October 2011
Available online 22 November 2011

Keywords:
Demand side management
Load management
Air conditioning
Internal model control
Load aggregation
Control signal quantization
0196-8904/$ - see front matter Crown Copyright � 2
doi:10.1016/j.enconman.2011.10.019

⇑ Corresponding author at: CSIRO Energy Technolo
Mayfield West, NSW 2304, Australia.

E-mail address: cristian.perfumo@csiro.au (C. Perf
a b s t r a c t

Large groups of electrical loads can be controlled as a single entity to reduce their aggregate power
demand in the electricity network. This approach, known as load management (LM) or demand response,
offers an alternative to the traditional paradigm in the electricity market, where matching supply and
demand is achieved solely by regulating how much generation is dispatched. Thermostatically controlled
loads (TCLs), such as air conditioners (ACs) and fridges, are particularly suitable for LM, which can be
implemented using feedback control techniques to regulate their aggregate power. To achieve high per-
formance, such feedback control techniques require an accurate mathematical model of the TCL aggre-
gate dynamics. Although such models have been developed, they appear too complex to be effectively
used in control design. In this paper we develop a mathematical model aimed at the design of a
model-based feedback control strategy. The proposed model analytically characterises the aggregate
power response of a population of ACs to a simultaneous step change in temperature set points. Based
on this model, we then derive, and completely parametrise in terms of the ACs ensemble properties, a
reduced-order mathematical model to design an internal-model controller that regulates aggregate
power by broadcasting temperature set-point offset changes. The proposed controller achieves high
LM performance provided the ACs are equipped with high resolution thermostats. With coarser resolu-
tion thermostats, which are typical in present commercial and residential ACs, performance deteriorates
significantly. This limitation is overcome by subdividing the population into clusters of ACs that receive a
coarse-grained, cluster-dependent control signal. The proposed clustering technique recovers the perfor-
mance achieved with high resolution thermostats at the expense of some additional comfort penalty,
which can be quantified using the controller output.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Demand side management (DSM) technologies include a wide
range of strategies to reduce power usage to balance supply and
demand in electricity markets at peak periods, reducing the pres-
sure for upgrades in power generation and distribution infrastruc-
ture. Studies by the International Energy Agency (IEA) suggest that
DSM is more cost-effective and sustainable than conventional pol-
icies based on supply side: each $1 invested in DSM has been esti-
mated to offset $2 spent in supply side improvements, while
contributing to reduce greenhouse emissions [1, Chapters 7, 8].
Load management (LM) is a DSM strategy that aims to balance sup-
ply and demand by reducing the power use of electrical devices
during critical periods instead of increasing the power generation.
As smart meters and appliances slowly become mainstream, LM
011 Published by Elsevier Ltd. All r
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technologies gain strength as an alternative for the electricity mar-
ket [2,3].

An important class of electric loads that can be integrated in LM
strategies with full responsiveness are thermostatically controlled
loads (TCLs) [3,4]. TCLs encompass devices such as air conditioners
(ACs), fridges, and space and water heaters, which are typically
responsible for a large proportion of the residential energy demand
[5]. The flexibility of TCLs for demand control comes as a result of
their thermal inertia: TCLs may be viewed as a distributed energy
storage resource that can be controlled with constrains imposed by
acceptable impact on end users.

The operation of TCLs can be manipulated by LM for various rea-
sons, the most common one being to reduce the power demand dur-
ing periods of high electricity prices or high electricity demand.
More recently, electricity markets are starting to consider the partic-
ipation of loads alongside conventional supply-side resources [3,6],
a trend that is likely to become more prominent as aggregations of
TCLs become more competitive with traditional supply side ap-
proaches [7–9]. Another application of TCLs for LM is to control
ights reserved.
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demand to track variations in generated energy, such as that typi-
cally observed in renewable generation [4].

The aggregate power requirement of a population of TCLs may
be effectively controlled by manipulating a common temperature
set point offset. As shown in [4,5], small common offset changes
in temperature set point may be broadcast to the population to con-
trol their aggregate power with minimal impact to individual users.

However, common set point changes in a large population of
TCLs may produce large undesirable transients in their collective
power response, as their states will tend to synchronise under a
common disturbance. Such transients are typically observed in
TCLs when the power supply is interrupted for an extended period
of time and then simultaneously restored, a phenomenon tradi-
tionally known as cold-load pickup [10]. Similar undesirable col-
lective behaviour may even occur in large populations of loads
under randomised (but uncoordinated) autonomous control, as
illustrated in [3] for populations of plug-in electric vehicles.

In the present paper we consider the design of a model-based,
coordinated feedback strategy to control the aggregate power de-
mand of ACs by manipulating a common offset in their tempera-
ture set points. Using modern control techniques, system
dynamics may be controlled to high degrees of performance by
incorporating an accurate model of the uncontrolled dynamics in
the design of the controller, a notion referred to as internal model
control [11]. A core contribution of this paper is the development
of a model that accurately captures the collective dynamics of TCLs
while maintaining a mathematical complexity suitable for an
effective design of the model-based controller.

Substantial research on modelling populations of TCLs, and
using these models, is available. Some authors concentrate on
models based on first principles [12,10,13–17], while others focus
on identifying the model parameters from a real population of de-
vices [18,19], including the use of black-box model identification
techniques [4,20]. However, the majority of these models are too
complex to be effectively used by well-understood feedback con-
trol design methods.

For example, a well-known model developed by Malhame and
Chong (M& C) [14,15] consists of a set of Fokker-Planck diffusion
equations describing the probability density distribution of tem-
perature in a population of identical heaters that condition identi-
cal spaces. By integrating the temperature distribution, the
probability of a device being operating at a certain time (and there-
fore the power usage profile of the population at that time) can be
calculated. Using M& C’s model in the design of a feedback control
algorithm is very difficult because this model is formulated as a
system of partial differential equations with no closed-form solu-
tion in the general case. This difficulty appears as a main cause
for most of the existing approaches to control a population of TLCs
for LM to be in open loop [21,17,5].

One exception to open-loop control of TCLs is the approach pro-
posed by Callaway in [4]. Callaway proposes the use of a broadcast
temperature set point offset as the output signal of a feedback-
controller to regulate the aggregate power output of a population
of ACs. Core dynamics of the model in [14] are captured in [4] by
a first-order linear ARMAX (AutoRegressive Moving Average eXog-
enous) model obtained using standard black-box system identifica-
tion techniques [22]. This identified model is then used in [4] to
develop a minimum variance controller that drives the power output
of the population to track the generated power of a wind farm.

The idea in [4] of using a feedback controller for the aggregate
power demand of a population of TCLs using a global temperature
set point offset as the control signal has recently been adopted in
[23,24]. In [23], the authors incorporate a control signal to M& C’s
model and develop a Lyapunov-stable algorithm to control a popu-
lation of homogeneous devices and rooms. In [24] a homogeneous
population is also considered to obtain an initial undamped model
to which the authors manually add a damping coefficient to adjust
the modelled response to the simulated one. The damped model is
then used to develop a linear quadratic regulator controller.

Other types of control signal could be used to control the aggre-
gate power output (such as toggling the ON/OFF state of all the de-
vices in certain temperature range [25]). However, the benefit of a
temperature set point global offset is that it directly relates to user
comfort. This relation easily allows the controlling entity (presum-
ably the electricity utility) to estimate the end user impact in a LM
scenario. One limitation of the control approach in [4,23,24] is that
it relies on temperature set point changes as little as 0.0025 �C,
whereas the typical set point resolution of hardware installed now-
adays is two orders of magnitude higher, at around 0.1 to 0.5 �C.

The present paper formulates an aggregated model based on
first principles that represents, under certain assumptions, the
power consumption of a population of ACs over time. We use this
model to show that the power response of a group of ACs to a tem-
perature set point common change presents underdamped oscilla-
tions, a phenomenon widely known and simulated but, to the best
of our knowledge, not before characterised analytically. From our
analysis, we derive a linear time-invariant (LTI) second order
mathematical model that we use to design an internal-model con-
troller to regulate aggregate power response by broadcasting set
point temperature offsets. All the parameters of the derived second
order model are analytically characterised by the ensemble proper-
ties of the population of ACs considered. Thus, the main character-
istics of the aggregate power response, and a model-based control
strategy, are directly parameterised by the properties of the popu-
lation of ACs. This is the main original contribution of the paper to
modelling and control of TCLs.

The simulation results show accurate load control performance,
provided the temperature resolution of the ACs is fine enough (sim-
ilarly to [4]). As an implementation of the proposed control approach
for coarse-resolution ACs (such as the ones installed currently at
most homes), we subdivide the population into clusters that receive
cluster-dependant coarse-resolution control signals following a
method similar to that of demultiplexing in communication net-
works. Thus, spatial diversification is exploited to reduce the quan-
tisation constraints on the aggregate control signal. We show that
the proposed clustering technique recovers the control performance
of a common finely quantised control signal at the expense of minor
comfort penalties. Such penalties can be quantified by estimating
the predicted percentage of dissatisfied people (PPD) [26] based on
the temperature set point offsets used as the control signal.

The remainder of the paper is organised as follows: Section 2
presents a well-known single-AC model and describes how we
use it to simulate populations of devices under a LM scenario. Sec-
tion 3 develops the proposed model of a population of ACs in three
passes, in each of which we decrease the complexity of the model
by incorporating additional assumptions and simplifying approxi-
mations. We end up in a fully parameterised second-order LTI
model. Section 4 uses this LTI model to design the proposed mod-
el-based controller for LM of the population, and Section 5 refines
this controller for implementation on coarse-resolution thermo-
stats. Section 6 shows how to quantify the comfort impact in the
proposed LM scenario using the control signals broadcast to the
clusters. Finally, Section 7 summarises our conclusions.
2. A preliminary model for the power dynamics of an
aggregation of ACs

We consider a population of ACs, each of which regulates the
average temperature h(t) of a room by means of a thermostat
and relay actuator with state m(t) 2 {0,1}, which determines
whether the compressor is switched on (m = 1) or off (m = 0)
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according to a pre-specified hysteresis band [h�,h+] and a desired
temperature set point (h� + h+)/2. The dynamic behaviour of such
an AC can be more precisely described by the two-state hybrid
mathematical model

dhðtÞ
dt
¼ � 1

CR
½hðtÞ � ha þmðtÞRP þwðtÞ�; ð1Þ

mðtþÞ ¼
0 if hðtÞ 6 h� þ uðtÞ
1 if hðtÞP hþ þ uðtÞ
mðtÞ otherwise;

8><
>: ð2Þ

where ha represents the ambient temperature (assumed constant),
C and R are the thermal capacitance (kWh/�C) and thermal resis-
tance (�C/kW) of the room being air-conditioned, and P (kW) is
the thermal power of the AC, which is the electrical power times
its coefficient of performance. The term w(t) in (1) represents
unpredictable thermal disturbances (heat gains or losses) such as
the effect of people in the rooms, open doors and windows, and
appliances. In (2), u(t) represents a temperature set point offset that
can be manipulated over time.

The hybrid model (1), (2) has been used (with u(t) = 0) in early
mathematical studies of the dynamics of aggregate power of pop-
ulations of ACs [12,10], and more recently in [4], which incorpo-
rated the temperature set point offset u(t) as an external control
signal to achieve load tracking to compensate the variability of
wind energy generators. Note that controlling a group of ACs using
a set point offset avoids forcing a global absolute reference temper-
ature for all the devices, allowing the occupants to choose the tem-
perature set point they are most comfortable with.

To describe the collective demand of a population of n ACs, let
i 2 [1,2, . . . ,n] denote the index representing the ith device, which
is described by a hybrid model of the form (1) and (2). Then, the
evolution of the aggregate normalised power demand D(t) (norma-
lised by the maximum power demand of the population) is given
by the ratio

DðtÞ ¼
Pn

i¼1miðtÞDiPn
i¼1Di

; ð3Þ

where mi(t) represents the discrete state and Di the electrical power
(Pi divided by the coefficient of performance) of the ith AC in the
population.

The aggregation in (3) suggests a simple way to numerically
simulate the evolution of the aggregate power of such population
of ACs by sampling values for the constant parameters C, R and P
for each AC from some pre-specified distributions and then com-
puting and adding together the individual power outputs [4]. Thus,
the single-device model described by (1) and (2) has been exten-
sively used as a starting point for numerical studies of the behav-
iour of populations of TCLs [12,10,14,16,17,4].

In contrast, a mathematically precise analysis of (3) is challeng-
ing, since it comprises a distribution of n (potentially thousands)
non-linear dynamic systems, each of which evolves independently
according to (1) and (2). One of the earliest and most important con-
tributions to such analysis is the work by Malhame and Chong [14],
who developed a system of Fokker-Planck equations to describe the
time evolution of the probability distribution of an AC being at cer-
tain temperature. The recent work by Callaway [4] refined the model
developed in [14] and further simplified it for the purposes of control
design for load tracking of variable renewable generation.

The present paper uses the model in (1) and (2) both as a basis
of developing a simplified analytical model describing the aggre-
gate power response of an entire population of ACs, and to perform
numerical simulations of large numbers of ACs. The latter are used
to validate the proposed simplified analytical model, presented in
the following section.
3. Theoretical analysis towards a simple population model
based on first principles

In this section we present an expression that describes how the
proportion of ACs that are switched on changes over time when a
population of devices is excited with a step set point offset signal.
More importantly, we use this expression to derive a simplified
model, suitable for use in control design.

We start by making the following simplifying assumptions
about the continuous state of the single-AC model in (1):

H.1 All of the ACs in the population have the same set point
temperature href = (h+ + h�)/2 and the same hysteresis
width h+ � h� = 1.

H.2 At t = 0, the temperatures are uniformly distributed in the
interval [h�,h+].

H.3 The parameter C is distributed in the population accord-
ing to some probability distribution. The parameter R is
the same for all the ACs in the population, and the same
applies to P.

H.4 For any AC, the temperature decreases when the AC is
operating at the same rate it rises when the device is
switched off, which implies that RP = 2(ha � href) for each
device.

H.5 h+ � h� � jha � hrefj. i.e., for each AC, the rate at which the
temperature changes is constant, so that the temperature
describes the triangular waveform as shown at the top of
Fig. 2.

H.6 The noise term x(t) for each AC is negligible.

Assumptions H.1, H.3, H.4 and H.6 are required simplifications
for our analysis. While they may seem overly restrictive, in Section
5 we show that the controller designed using these simplifying
assumptions still can preserve good performance even when these
assumptions are relaxed.

H.4 implies that the duty cycle in steady state is 50%. H.2 is rea-
sonable since the temperatures of a group of devices that have
been running independently for long enough are distributed al-
most uniformly [4]. It is also sensible to make assumption H.5 as
the hysteresis width is expected to be significantly smaller than
the difference between the ambient and reference temperatures,
rendering rates of temperature change constant rather than vari-
able (as obtained when (1) is solved [23]).

Finally, we assume H.6 because, when analysing a population of
ACs as a whole, the variability that x(t) introduces is small com-
pared to the one introduced by the fact that the parameter C is,
in general, different for each AC.

We analyse how a population of ACs, each governed by (1), (2)
and H.1-H.6, reacts when a step change of amplitude 0.5 is applied
at t = 0, shifting the hysteresis boundaries to the right. We will re-
fer to these new boundaries as hpost

� ¼ h� þ 0:5 and hpost
þ ¼ hþ þ 0:5.

Fig. 1 shows the temperature distributions just before and after the
step. The top part of each subfigure represents the ACs that are
operating whereas the bottom part depicts the ones that are
switched off. The arrows indicate in which direction the tempera-
tures are moving. We can see in Fig. 1a and b that the ACs that
were operating and had temperatures in h�; h

post
�

� �
before the step

switched off after it.
Under assumptions H.1–H.6, the absolute value of the rate at

which the temperature hi(t) changes for the ith AC (as described
in (1)) is given by the constant vi, defined by

dhiðtÞ
dt

����
���� � v i ¼

ha � href

CiR
: ð4Þ

We introduce the variable



Fig. 1. Distribution of temperatures before and after a 0.5 �C step in the set point.
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xiðtÞ ¼ x0
i þ v it; ð5Þ

where

x0
i ¼

1þ hið0Þ � hpost
� if dhi

dt ð0
�Þ > 0;

hpost
þ � hið0Þ if dhi

dt ð0
�Þ < 0:

(
ð6Þ

Intuitively, we can say that xi(t) is the ‘‘unwrapped’’ mapping of the
temperature hi(t). Fig. 2 illustrates the equivalence between hi(t)
and xi(t), the latter being a straight line, as implied by H.4 and
H.5. Note that in Fig. 2, at the times the temperature hi(t) changes
direction, xi(t) reaches an integer value, changing from an even
(on) to an odd (off) interval, or vice versa. We refer to an interval
of values of xi(t) as odd whenever xi(t) 2 [2k + 1, 2k + 2], for
k = 0,1, . . . , and even whenever xi(t) 2 [2k, 2k + 1].

Now we are ready to formalise the step response of a popula-
tion of ACs in the following proposition (its proof can be found in
Appendix A.1).

Proposition 1. For a population of ACs where the dynamics of each
device are described by (1) and (2), under the assumptions H.1–H.6, if
the temperature set point of all the devices in the population is raised
by 0.5 �C at time t = 0, the probability D(t) that a randomly-selected
AC be operating at time t is given by:
Fig. 2. Top: temperature hi(t) of one AC. Bottom: its ‘‘unwrapped’’ equivalent xi(t).
DðtÞ ¼ Pr½xðtÞ < 1�
3

þ
X1
k¼1

Pr½xðtÞ < 2kþ 1� � Pr½xðtÞ < 2k� ð7Þ

where Pr[�] is the probability operator.
Proposition 1 says that the probability that one randomly-

picked AC be operating at time t is given by the probability that
x(t) is in an even interval plus a correction for the initial condition
arising from H.2. Note that for a large enough population, the prob-
ability (7) is equivalent to the proportion of ACs in the population
operating at time t. Also, because all of the ACs have the same
power (H.3), this proportion is equal to the power consumption
of all of the devices operating at time t, normalised by the maxi-
mum demand (all of the ACs in the population operating), as de-
scribed in (3). Therefore, throughout this paper, we deliberately
use the notation D(t) to refer to the probability of a randomly-
selected AC operating, the proportion of operating ACs in the pop-
ulation and the normalised power consumption.

In order to calculate actual values for (7), it is necessary to know
how the temperatures change for each AC in the population. This
can be described by characterising the distribution of each of the
parameters R, P and C in the population. As in [4], we adopt log-
normal distributions for these parameters as they are suitable for
non-negative parameters and have a complexity of description that
is only moderate.

Assuming that all of the ACs have the same thermal resistance R
and the same thermal power P, and the thermal capacitance C is
distributed log-normally in the population, Eq. (7) can be more
explicitly calculated, as shown in the following corollary of Propo-
sition 1.

Corollary 1. Under the assumptions of Proposition 1, let all of the ACs
have the same thermal resistance R and the same thermal power P,
and let the thermal capacitance C be distributed log-normally with
mean lC and standard deviation rC. Then the speed v at which the
temperature changes (Eq. (4)) is distributed log-normally and the ratio
rrel between its standard deviation rv and mean lv is

rrel ¼
rv

lv
¼ rC

lC
: ð8Þ

Furthermore, the probability D(t) that a randomly picked AC be operat-
ing at time t can then be approximated by

DðtÞ � 1
6
þ 1

6
erf

logð1Þ � logðlxð0Þ þ lv tÞÞffiffiffi
2
p

rrel

� �
þ 1

2

�
X1
k¼2

ð�1Þkþ1erf
logðkÞ � logðlxð0Þ þ lv tÞÞffiffiffi

2
p

rrel

� �
: ð9Þ

where erf[�] is the Gauss error function and lx(t) is the mean of the val-
ues x at time t.

A formal proof of Corollary 1 is presented in Appendix A.2.



Table 1
Simulation parameters.

Parameter Value Description

R 2 �C/kW Mean thermal resistance
C 10 kWh/�C Mean thermal capacitance
P 14 kW Mean thermal power
h� 19.5 �C Lower end of hysteresis band
h+ 20.5 �C Higher end of hysteresis band
ha 32 �C Ambient temperature
rw 0.01 Standard deviation of the noise process w

in Eq. (1)
rrel 0.05/0.1/0.2/0.5 Standard deviation of log-normal

distributions as a fraction of the mean
value for R, C and P
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Fig. 3 plots in dashed lines the expected power response accord-
ing to (9), for different values of rrel, to a 0.5 �C step at t = 0. The
output is normalised to the maximum power output (all ACs
turned on). The figure also shows, as a solid black line, the output
to the same input when we simulate using the PowerDEVs tool
[27], 10,000 ACs (according to (3)) assuming homogeneous ther-
mal resistance R thermal power P. The thermal capacitance C is dis-
tributed log-normally in the population with a standard deviation
to mean ratio of rrel. The values for the parameters used for the
simulations, detailed in Table 1, are the same as in [4], except for
the ambient temperature, which was adjusted to obtain a duty cy-
cle of 0.5, to make a comparison with the theoretical results possi-
ble. Fig. 3 validates Proposition 1 and Corollary 1, as the analytical
and simulated responses are very close.

Note that in the simulated results, H.4–H.6 were relaxed, con-
sidering a much more realistic scenario. In particular, it is impor-
tant to note that relaxing H.4 implies that, in general terms, each
room gets cooled down at a potentially different rate than it heats
up (no fixed relation between R and P). The aspect of H.4 that still
holds for the simulated results is that the average duty cycle in the
population is 0.5, which is why the simulated results present a
steady state normalised power consumption of 0.5. The authors
are currently working on an extension of the analysis presented
in this section to contemplate different duty cycles, which is a
more realistic scenario as, for example, a duty cycle higher than
0.5 would be expected for very hot days, and a lower one for cooler
days (especially for populations of oversized ACs, which are com-
mon). Nevertheless, in Section 5 we show that the controller de-
signed using the model obtained in the present section, assuming
a duty cycle of 0.5, shows robustness even when used on a plant
with an average duty cycle far from 0.5.

When the values of all three parameters R, P and C are distributed
over a range within the population, there is more variability in the
speed at which the temperature changes, and therefore the ACs tend
to desynchronise faster (the aggregate responses simulated with the
−500 0 500 1000 1500 2000
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Fig. 3. For different values of rrel, expected and simulated D (normalised power demand
results are for 10,000 ACs with log-normally distributed C and constant R and P, and were
to href + RP/2 = 34 �C.
parameters from Table 1, not shown, are more damped than those in
Fig. 3). Nevertheless, the dominant dynamics are the same for both
cases: the power response of a population of ACs to a step in the
temperature set point presents damped oscillations.

The expression (9) can be used to analytically show that the
transients in aggregate power due to a step change in temperature
set point are characterised by underdamped oscillations. The
following proposition formalises this observation.

Proposition 2. Under the assumptions of Corollary 1, the initial
transients in the response of the aggregate power to a step change in
temperature set point displays oscillations with period

T � 2=lv ; ð10Þ

and peaks with amplitudes A(t) that decay with time according to the
approximate envelope bound

1� erfð1=zðtÞÞ 6 AðtÞ 6 erfð1=zðtÞÞ; ð11Þ

where

zðtÞ ¼ 2
ffiffiffi
2
p

rrelðlxð0Þ þ lv t � 1=2Þ: ð12Þ
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) response to an increase of 0.5 �C in all ACs’ temperature set points. The simulated
obtained using the parameters from Table 1. To obtain a duty cycle of 0.5, ha was set
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A formal proof of Proposition 2 can be found in Appendix A.3.

Fig. 4 depicts the envelope bound (11) of the oscillations in the
step power response along with the expected power output calcu-
lated from (9) for different values of rrel as a function of the offset
and rescaled time z, as defined in (12), which allows us to plot all
responses within a common envelope. Each curve starts at the cor-
responding value of z for t = 0. We can see in Fig. 4 that for a range
of values of rrel, the bounds in (11) capture accurately the envelope
of the response. We also observe in Fig. 4 that for values of z larger
than 1.8, the bounds in Eq. (11) are no longer valid (see proof of
Proposition 2). Nevertheless, the fundamental dynamics of the re-
sponse (i.e., damped oscillations) are still observed for larger val-
ues of z, and hence t.

The analysis carried out so far demonstrates that the step re-
sponse of the aggregate power of a population of ACs under the
assumptions H.1–H.6 is dominated by decaying oscillations, which
corroborates the simulation results reported by a number of
authors [10,15,13,4]. In particular, if the duty cycle is around 0.5,
the ‘‘mountains’’ and ‘‘valleys’’ of D(t) have equal semi-periods,
which suggests that second order dynamics would be a suitable
approximation of the aggregate power response. The following cor-
ollary to Proposition 2 provides formulas to compute the charac-
teristic polynomial of such second order dynamics directly from
the parameters describing the population of ACs (i.e. Table 1).

Corollary 2. Under the assumptions of Proposition 2, the response of
a population of ACs to a 0.5 �C step can be modelled as

DðtÞ ¼ Dssðhref Þ þ L�1fGpðsÞ0:5=sg ð13Þ

where Gp(s) is a second order linear, time-invariant (LTI) system char-
acterised by the transfer function

GpðsÞ ¼
b2s2 þ b1sþ b0

s2 þ 2nxnsþx2
n

ð14Þ

whose parameters are

n ¼ logðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2ðrÞ

q ; xn ¼
plvffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ;

b0 ¼
x2

nðDssðhref þ 0:5Þ � Dssðhref ÞÞ
0:5

;

b1 ¼ 0:5lv þ 2b2nxn and b2 ¼ Dssðhref Þ: ð15Þ

where
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Fig. 4. Envelope of the power peaks. The dotted and dashed lines represent the
normalised power demand D for different values of rrel according to (9), all of them
adjusted to the offset and rescaled time variable z. The continuous line is the
envelope given by (11) and (12).
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DssðhÞ ¼ 1þ
log 1þ H
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0
@

1
A
�1

ð16Þ

and

H ¼ hþ � h1

Corollary 2 (whose proof can be found in Appendix A.4) pro-
vides direct, rule-of-thumb, information about the step response
of a population of ACs. For example, using Corollary 2 we compute
n = 0.259 and xn = 0.033 for the scenario shown in the bottom-left
plot in Fig. 3. These values of n and xn give an estimated 1% settling
time ts = 4.6/(nxn) = 525 (min) [28], which means that, for the con-
sidered scenario, the step response will approximately decay to 1%
in 525 minutes. By comparison with the simulated response of
10,000 ACs shown at the bottom-left plot in Fig. 3, we can see that
the settling time computed using Corollary 2 is an excellent esti-
mate of the actual settling time of the collective response. Note
that to compute such an estimate otherwise, we would need to
perform one of these two computationally intensive tasks: (a)
run numerical simulations of a large number of ACs (such as the
ones shown in solid black in Fig. 3) or (b) approximate numerically
M& C’s set of Fokker-Planck differential equations [14].

More importantly, knowing the transfer function (14) allows us
to design a model-based controller for the a population of ACs
based only on the physical parameters of such a population. Such
a controller is presented in the following section.

4. Controlling the plant

In this section we present the design of a controller for a popu-
lation of ACs that is able to adjust the power output to a desired
profile by manipulating the temperature set points of the devices.
We use a model-based control structure known as internal model
control (IMC) [11]. Such a model-based control structure incorpo-
rates a model of the plant as a fundamental part of the controller.
The following three subsections describe the model of the plant for
control design purposes, its implementation in the design of the
controller, and present the closed-loop responses obtained under
different simulated scenarios.

4.1. A linear, time-invariant model for a population of ACs for control
design

We use the second order linear, time-invariant (LTI) model
structure in (14) as a model for the aggregate response.

Table 2 shows the values of (15) obtained for a population of
ACs described by the parameters in Table 1 (rrel = 0.2). This combi-
nation of parameters of the population is the same as in [4], except
for the hysteresis width, for which we use 1 �C as opposed to 0.5 �C,
as we consider 0.5 �C overly tight.

We also show in Table 2 the parameters obtained when a
second order model is manually identified from the simulated
response to a 0.5 �C step of a population of 10,000 ACs as described
Table 2
Transfer function parameters of the second order model in (14) calculated from (15)
and identified manually.

Method n xn b0 b1 b2

As per (15) 0.259 0.033 3.70 � 10�5 0.029 0.446
Manually identified 0.3505 0.0326 3.61 � 10�5 0.038 0.45
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in (3) with parameters as per Table 1 (rrel = 0.2). We fit the param-
eters of the proposed second order model structure by measuring
peaks, period and steady state gain in the simulated step response
of 10,000 ACs.

Fig. 5 compares the simulated response with that of the calcu-
lated second order LTI model using (15), and the one manually
identified. The figure shows that the calculated model can capture
the dominant dynamics of the simulated response very closely for
the considered set of parameters. Moreover, from Table 2 and Fig. 5
we can conclude that the second order model calculated from the
parameters of the population of ACs is comparable to a manually
identified model. Thus, throughout the reminder of this paper we
will use the calculated model using (15) for our control design.

Note that, as per Table 1, we simulate a population where the
parameters P, R and C are all distributed lognormally (rrel = 0.2
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Fig. 5. Step power response D for 10,000 simulated ACs with parameters described
in Table 1 (rrel = 0.2) and using the second order systems calculated with (15) and
identified manually.

Fig. 6. Internal model control structure.
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Fig. 7. LM scenario on a population of 10,000 ACs between t = 100 and t = 580 (min). The
Dref(t) (top plot). The control signal u(t) is shown in the bottom plots. The quantisation
indicates that the standard deviation of each parameter is calcu-
lated as its mean times 0.2), which relaxes assumptions H.3 and
H.4. In fact, all the simulated results that we present in the remin-
der of this paper are obtained from populations where P, R and C
are all distributed. We do this to illustrate the robustness of the
proposed control algorithm, which preserves the desired perfor-
mance even when we move away from the simplifying assump-
tions on which the controller is based.

4.2. Using the calculated LTI model to control the population via
internal model control

Fig. 6 shows a typical IMC structure. The input signal Dref(t) to
the controller represents the desired normalised aggregate power
(proportion) of operating ACs in the population at time t. Given this
reference signal and the actual normalised aggregate power D(t)
observed in the population, the controller computes the tempera-
ture set point offset signal u(t) to be broadcast to the ACs.

The IMC controller encompasses a model of the plant Gp(s), its
inverse (or a stable approximation if the inverse does not exist)
G�1

p ðsÞ, and the target desired behaviour in closed loop represented
by its transfer function Gd(s). For simplicity, we propose

GdðsÞ ¼
1

Tcsþ 1

where Tc is the desired closed-loop time constant of the system. For
the results presented in this paper we chose Tc = 2 (min), since it al-
lows reaching the steady state reference value within a reasonable
time (10 min) using an affordable amount of control effort.

4.3. Preliminary closed-loop performance and implementation issues

We propose a LM scenario with two stages: power reduction
and comfort recovery. During power reduction, the controller
manipulates the temperature set points to achieve an aggregate
power output lower than the starting steady state value. In recov-
ery, the demand is raised over the steady state value to make up for
the increase in the temperatures of the rooms caused during the
reduction period.

An instance of this scenario is presented in Fig. 7a. The ACs run
uncoordinated (global control u(t) = 0) for the first 100 minutes,
with a steady state power output of 44%, relative to the maximum.
The reduction period takes place between t = 100 and t = 340
(min), reducing the power output by 10% of the maximum load.
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control aims to make the normalised power output D(t) follow the reference signal
of u(t) is Du = 0.05 for (a) and D u = 0.5 for (b).
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Fig. 9. Normalised aggregate power demand D (top) and global and cluster-level
input control signals u(t), u1(t), u10(t) (bottom) for a LM scenario between t = 100
and t = 580 (min) on a population of 10,000 ACs. The control aims to make the
normalised power output D(t) follow the reference signal Dref(t). The 10,000 ACs are
divided into 10 clusters of 1000 ACs each. The bottom plot shows the global control
signal (solid) as well as the individual signals for clusters 1 and 10 (dotted and
dashed respectively).

Fig. 8. Redefinition of the plant when incorporating a mapper to translate the
global control signal to several different signals, one per cluster.
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The recovery takes place between t = 340 and t = 580 (min), when
the power output is maintained at 54% (the steady state output
plus 10% of the maximum). The LM scenario finalises at t = 580,
when the ACs continue to operate without global control.

This scenario is far from optimal for LM. The oscillations in D
observed after t = 580 indicate that, once the devices stop being
controlled, the system is not left in steady state. One could control
the system after t = 580 in order to gradually bring D back to steady
state, but it should be kept in mind that the control period should
be finite, as it is unlikely for a customer to accept that their ACs be
manipulated indefinitely. It is not the objective of the present pa-
per to explore optimal recovery phases but rather to show a way
to control a population of ACs to follow a desired reference signal.

Fig. 7b presents the same scenario as Fig. 7a except for a coarser
granularity of the control signal. Because the temperature sensors
in the ACs do not have infinite resolution and accuracy, the input
signal must be quantised for the control to be implementable.
We observe in Fig. 7b that for a coarse quantisation Du = 0.5, the
controller is unable to track the reference since, as we saw in
Fig. 3, a step of 0.5 �C implies a large (transient) change in the out-
put. Conversely, when we use a granularity small enough
Du = 0.05, the controller successfully makes the plant follow the
reference signal (Fig. 7a). Thus, the granularity of the signal plays
a key role in the quality of the output.

From the results presented in Fig. 7 arises the following imple-
mentation difficulty: how can LM be implemented using a temper-
ature set point change as the control signal in a feedback-
controlled system, if small values of Du are needed for an accept-
able response (as also suggested in [4]) and, on the other hand,
the set point resolution of the majority of residential ACs is 0.1,
0.5 or even 1 �C? In the following section we propose a practical
solution to this issue.

5. Cluster-based control implementation: exploiting spacial
diversification to solve the problem of controlling currently
installed ACs

To resolve the temperature set point resolution issue pointed
out in the previous section, we propose to divide the population
of ACs into clusters, and implement a mapper that demultiplexes
the fine-granularity control signal for the entire population into
multiple coarse-granularity control signals, one for each cluster de-
fined. Fig. 8 presents a schematic diagram of how the mapper
interacts with the clusters and the controller. Note that no changes
in the controller are needed, since the mapper is considered part of
the plant. The mapper receives the ‘‘global’’ control signal u(t),
which is discretised very finely to a small quantum Du (e.g.
0.05 �C) and generates L different ‘‘cluster’’ signals ui(t), which
are multiples of a coarse quantisation D0u that the ACs can deal
with (e.g. 0.5 �C). If we choose LDu to be a multiple of D0u, each
cluster signal is defined1 by:

uiðtÞ ¼
floor uðtÞ

D0u

h i
D0u if i > L modðuðtÞ;D0uÞ

D0u

floor uðtÞ
D0u

h i
D0uþ D0u if i 6 L modðuðtÞ;D0uÞ

D0u :

8><
>: ð17Þ

For example, if the population is divided in 10 clusters and
u(tm) = 1.15 at t = tm, then the cluster control signals will be
ui(tm) = 1.5 for i = 1, 2, 3 and uj(tm) = 1.0 for j = 4, . . . , 10.

Fig. 9 shows the same LM scenario as Fig. 7: 10,000 ACs being
controlled to reduce the load from 44% to 34% between t = 100
1 Fairness problems such as the one in (17), where the clusters with lower numbers
always receive a larger temperature set point offset, are easily overcome by assigning
virtual numbers to the clusters and changing these numbers every time a LM scenario
takes place.
and t = 340 (min) and to increase it to 54% between t = 340 and
t = 580. In Fig. 9 the population is divided in 10 clusters of 1000
ACs each, using (17) to generate the 10 signals. We use a fine-grain
Du = 0.05 �C and coarse-grain D0u = 0.5 �C. The bottom plot in Fig. 9
shows the global control signal u(t) as well as the individual signals
for the first and tenth clusters u1(t) and u10(t). From (17), it follows
that the rest of the cluster control signals (u2(t), u3(t), . . . , u9(t)) are
bounded above by u1(t) and below by u10(t). Also, note that at any
time t,ju(t) � ui(t)j < D0u and jui(t) � uj(t)j 2 {0,D0u}, which is to say
that the distance between any cluster control signal and the global
control signal is less than the quantisation D0u, and the distance
between two individual signals is either 0 or D0u.

Clustering does not hurt output performance, as the variance of
the difference between the reference and the output in Fig. 9 is
slightly smaller than that of Fig. 7a (no clusters), for both the
reduction and recovery phases. However, there is a comfort pen-
alty associated with clustering, as in the example in Fig. 9 each
AC receives a set point change up to ten times larger than that of
the scenario in Fig. 7a. We quantify this impact on comfort in
Section 6.

In Fig. 7a and Fig. 9, we can see that our controller performs well
even when the parameters P, R and C are distributed in the popu-
lation, relaxing assumption H.4. Fig. 10 shows a scenario that in-
cludes this relaxation and also considers a duty cycle far from
the 50% implied by H.4. We simulate such a scenario with the same
parameters as that from Fig. 9, except for the ambient temperature,
which is set to 45 �C, causing a duty cycle in steady state of 85%.
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Fig. 10. Normalised output power demand D (top) and global input control signal
u(t) (bottom) for a LM scenario between t = 100 and t = 580 (min) on a population of
10,000 ACs with 85% mean duty cycle. The control aims to make the normalised
power output D(t) follow the reference signal Dref(t). The 10,000 ACs are divided
into 10 clusters of 1000 ACs each. The bottom plot shows the global control signal.
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The control in Fig. 10 aims to lower the demand to 75% in the
reduction period and increase it to 95% during the recovery period.
Note that the controller was designed with the model we calcu-
lated using (15) with the population parameters in Table 1, which
assume a duty cycle close to 50%. Yet, when we use the resulting
controller for a plant with very high duty cycle, the output remains
close to the reference, showing the robustness of the proposed con-
trol design to this assumption.

Fig. 11 shows the power output of clusters 1 and 10 during the
scenario presented in Fig. 9. Each curve is normalised to the max-
imum power of the cluster it represents. The demand peaks at the
cluster level in Fig. 11 evidence that if the clusters had to be de-
fined geographically (e.g. a group of adjacent city blocks), the pre-
sented algorithm may not be suitable, since high peaks might
appear in the infrastructure powering that geographical area.
Alternatively, the clusters can be defined so that each geographical
area includes devices from many or all of the clusters. If such a
cluster layout is possible (e.g. communications-wise), a peak at
the cluster level should not have any negative impact on the distri-
bution infrastructure.
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Fig. 11. Output power demand D for two clusters (each normalised to maximum
demand of cluster) under the LM scenario depicted in Fig. 9.
Another consideration when defining the clusters is the distri-
bution of the AC parameters in each cluster. Our analysis assumes
that the ACs are randomly chosen from the population to form the
clusters and therefore each cluster shares the statistical properties
of the population (e.g. same mean C). If a different clusterisation
(e.g. some clusters with high and some other with low mean ther-
mal capacitance) is required, additional analysis should be carried
out in order to determine how this heterogeneity affects the results
presented in this section.
6. A method to quantify the trade-off between discomfort and
controllability

One advantage of using temperature set point offset as a control
signal is that the entity implementing the LM (e.g. the utility) is
able to obtain an estimate of the comfort impact straightforwardly
(just by observing ui(t)), since the temperature of any AC in the
cluster i converges towards the hysteresis band [h� + ui(t),
h+ + ui(t)].

It is apparent, then, that changes in ui(t) will have an impact on
the comfort of the occupants in the ith cluster. One of the ways of
quantifying that impact is by the Predicted Percent Dissatisfied
(PPD), a discomfort metric defined by the American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
[26] that estimates the percentage of people that would vote that
they are uncomfortably cold or hot if they were surveyed. The
PPD is calculated using the Predicted Median Vote (PMV), which
in turn is a function of temperature, clothing, humidity, activity le-
vel of the occupants, air velocity and other parameters [26].

In this section we propose a generalisation of the PPD that al-
lows us to estimate the comfort range of the occupants of all the
conditioned spaces in one cluster, regardless of the individual set
point temperatures of each AC.

We assume that the occupants have chosen the set point they
are most comfortable with. In other words, ui(t) = 0 achieves the
minimum dissatisfaction (PPD) possible.2 Fig. 12 plots the range
spanned by a set of PPD curves representing different combinations
of clothing level, occupant’s activity, air velocity and relative humid-
ity according to the values shown in Table 3. All of the curves in
Fig. 12 were superimposed, making their minima coincide at
u(t) = 0, and the range that they collectively span was shaded, repre-
senting the range of comfort impact for a value of ui(t). In other
words, by looking at the maximum and minimum values of ui(t) dur-
ing a LM scenario, we can get an upper bound of how uncomfortable
occupants get during that period.

For example, from Fig. 9, we see that max (u1(t)) = 1 and max
(u10(t)) = 0.5. By looking at Fig. 12 one can conclude that in the
worst case (assuming that the maximum value of ui(t) were main-
tained for long enough so that the temperature catches up with it),
the PPD of the set point temperature would have risen from 5% to
6.37% for cluster 10 and to 10.15% for cluster 1.

Because u1 and u10 are boundaries for any other individual sig-
nal, their comfort impacts bound that of any other cluster. An alter-
native way of calculating these boundaries without looking at the
cluster signal is by ‘‘ceiling’’ the global control signal u(t) to the
closest multiple of D0u for the upper bound (i.e. u1(t)) and ‘‘floor-
ing’’ it for the lower bound (i.e. u10(t)).

To the best of our knowledge, this is the first attempt to quan-
tify the comfort impact when a population of ACs are controlled for
LM by temperature set point offset changes. Applying the method
presented in this section, a controller can be designed to regulate
2 Note that the theoretical minimum PPD is 5%, modelling that it’s impossible to
eep everyone happy.
k



Table 3
Parameter range for calculating PPD.

Parameter Value Description

Clothing level {0.36,0.61}
(clo)

0.36 = Walking shorts, short-
sleeve shirt. 0.61 = Trousers,
long-sleeve shirt

Metabolic heat
generation

{1,2} (met) 1 = reading/writing. 2 = mild
housecleaning

Air velocity {0,0.2} (m/s)
Relative humidity {40,60,80} (%)

X: 1
Y: 10.15

u(t) (C)

X: 0.5
Y: 6.37
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Fig. 12. Range of change in predicted percent dissatisfied when the temperature set
point is changed for the values for clothing level, metabolic heat generation, air
velocity and relative humidity presented in Table 3.
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the power demand to satisfy a given constraint on maximum com-
fort impact.
Fig. A.13. Distribution of x(0+) (immediately after the temperature set point step
change at t = 0).
7. Conclusions

In this paper we have considered modelling and control of the
aggregate power demand of a population of ACs. The ACs indepen-
dently regulate temperature using relay-type actuators and a ther-
mostat with a hysteresis band around a temperature set point.

Our model characterises the aggregate power consumption of
the population of ACs by describing how the proportion of operat-
ing ACs varies over time, following a step change in the tempera-
ture set point of all the ACs. The ACs are assumed to be
operating in steady state before the step change.

Under the additional assumption that the thermal capacitances
are distributed log-normally in the population, we derived an ex-
plicit formula for the transient response to a common set point off-
set, a response which we further characterise as an underdamped
oscillation. To the best of our knowledge, this is the first work that
presents mathematical approximations for the period and ampli-
tude envelope of such response. These approximations are shown
to satisfactorily capture the dynamics of the response of a numer-
ically simulated population of 10,000 ACs over a realistic range of
parameter values. Moreover, we presented a way to derive the
transfer function of an LTI second order system that characterises
the aggregate power response of the population. Not only does this
model provide rule-of-thumb information about the response (e.g.
settling time) with no need for intensive numerical computations,
but it is also apt for control design.

We used such a model to design an internal model control
structure to compute common offsets to a temperature set point
to be broadcast to the ACs as a control signal. We demonstrated
that using this approach, the aggregate power output of the popu-
lation of ACs can be satisfactorily controlled to provide a reduction
in the demand over a pre-specified period of time. The proposed
model-based control displays robust performance even when the
parameters characterising the population violate many of the sim-
plifying modelling assumptions.

The proposed controller relies on fine resolution changes to the
temperature set point of the ACs. In cases where the ACs only ac-
cept coarse set point offsets (for example 0.5 �C) we presented an
implementation technique based on dividing the population into
logical clusters and sending each cluster different control signals,
each of them with admissible resolution. The aggregate power out-
put does not show performance degradation compared to using a
global, fine-grained, signal. Clustering, however, does incur in a
comfort penalty that in a practical design needs to be deliberately
traded off and can result in localised demand peaks if not appropri-
ately distributed across the electricity network. Our method to
quantify the range of discomfort for a given input signal enables
the design of more advanced controllers that explicitly take into
account the comfort impact associated with the control signal.

One of the lines we would like to explore in the future is the fea-
sibility of using Corollary 2 to determine the parameters of a pop-
ulation from a system identification experiment (i.e., from the step
response of a population of ACs, identify a second order system and
from its transfer function determine the parameters describing the
population).

The proposed approach provides a pathway to cost-effectively
manage network demand, potentially deferring upgrades in the
electricity transmission and distribution infrastructure. Moreover,
this research is directly applicable to other types of TCLs such as
fridges, cool rooms, water and space heaters.

Appendix A. Proofs and derivations

A.1. Proof of Proposition 1

Proof. From (5) and (6), the operational state mi(t) of the ith AC in
the population is defined by

miðtÞ ¼
0 if 2k� 1 6 xiðtÞ < 2k;
1 if 2k 6 xiðtÞ < 2kþ 1;

�
ðA:1Þ

for k = 1, 2, . . .

In other words, we can determine whether or not the ith AC is
turned on based on xi(t) being in an odd or even interval, if
xi(t) P 1. This is, however, not the case if xi(t) < 1. When (6) is
applied to every point in the temperature distributions after the
step change shown in Fig. 1b, the distribution of the initial values
of x(t) for all of the ACs, namely x(0), is as shown in Fig. A.13. Note
that, initially, only one third of the ACs that satisfy xi(0) < 1 are
turned on. Therefore, under assumptions H.1–H.6, the probability
that a randomly-picked AC is operating at time t given x(t) < 1 is

Pr½mðtÞ ¼ 1jxðtÞ < 1� ¼ Pr½xðtÞ < 1�
3

: ðA:2Þ
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Thus, for a number of ACs sufficiently large, the proportion D(t)
of operating ACs in the population at time t is equivalent to the
probability of an AC being operating at time t; namely,

DðtÞ ¼ Pr½xðtÞ < 1�
3

þ
X1
k¼1

Pr½xðtÞ < 2kþ 1� � Pr½xðtÞ < 2k�:
A.2. Proof of Corollary 1

Proof. The fact that v is log-normally distributed follows from (4)
and basic properties of the expected value and standard deviation
of a log-normal distribution.

Let us now show the equality rv/lv = rC/lC in (8). Considering
that in (4) only the parameter C is distributed in the population
(because of H.1, H.3, H.4), we have that

rv

lv
¼

s:d: ha�href

CR

h i
E ha�href

CR

h i ¼ s:d:½1=C� ha�href

R

E½1=C� ha�href

R

¼ s:d:½1=C�
E½1=C� ðA:3Þ

where s.d.[�] and E[�] are the standard deviation and expected value
operators. Thus, since C is log-normally distributed,

s:d:½1=C�
E½1=C� ¼

s:d:½C�
E½C� ¼

rC

lC
¼ rrel: ðA:4Þ

From the fact that v has a log-normal distribution, it follows from
(5) that x(t) will be approximately log-normal for t large enough.
Therefore, assuming that x(t) is distributed log-normally, we have

Pr½xðtÞ 6 y� ¼ 1
2
þ 1

2
erf

logðyÞ � lðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2ðtÞ

p
" #

ðA:5Þ

where

lðtÞ ¼ logðlxðtÞÞ �
1
2

log 1þ r2
x ðtÞ

l2
x ðtÞ


 �

and

r2ðtÞ ¼ log 1þ r2
x ðtÞ

l2
x ðtÞ


 �
:

That is, l(t) and r(t) are the mean and standard deviation of the
normal distribution associated to the log-normal distribution char-
acterising x.

According to (5), the mean lx(t) and variance r2
x ðtÞ of x(t) evolve

as follows:

lxðtÞ ¼ E½xðtÞ� ¼ E½xð0Þ� þ E½v �t ¼ lxð0Þ þ lv t; ðA:6Þ

r2
x ðtÞ ¼ ðs:d:½xðtÞ�Þ

2 ¼ ðs:d:½xð0Þ�Þ2 þ ðs:d:½v�Þ2t2

¼ r2
x ð0Þ þ r2

v t2; ðA:7Þ

Thus, we can approximate, for t large enough,

r2
x ðtÞ

l2
x ðtÞ
� r2

v
l2

v
¼ r2

rel: ðA:8Þ

and then, using (A.6) and (A.8) in (A.5) we obtain

Pr½xðtÞ 6 y� � 1
2
þ 1

2
erf

logðyÞ � logðlxð0Þ þ lv tÞ þ 1
2 logð1þ r2

relÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð1þ r2

rel

q
Þ

2
64

3
75:

ðA:9Þ

We can approximate logð1þ r2
relÞ � r2

rel with an absolute error of
the order of (rrel)8/2, arriving to
Pr½xðtÞ 6 y� � 1
2
þ 1

2
erf

logðyÞ � logðlxð0Þ þ lv tÞffiffiffi
2
p

rrel

� �
ðA:10Þ

were we have disregarded the term 1
2 log 1þ r2

rel


 �
from the numer-

ator inside the erf function in (A.9) because it is negligible as com-
pared to log (lx(0) + lvt)).

Replacing (7) with (A.10) for y = 1, y = 2k and y = 2k + 1, we
obtain (9).
A.3. Proof of Proposition 2

Proof. The mean lx(t) and variance r2
x ðtÞ increase monotonically

with time and, in fact, after a short initial period of time, only one
value of k will account for the dominant contribution to the
summation term in (9). Thus, we approximate the probability of
randomly-chosen AC satisfying k < x(t) < k + 1 as

Pr½k < xðtÞ < kþ 1� ¼ Pr½xðtÞ < kþ 1� � Pr½xðtÞ < k�

�
erf logðkþ1Þ�sffiffi

2
p

rrel

� 	
� erf logðkÞ�sffiffi

2
p

rrel

� 	
2

; ðA:11Þ

where

s ¼ logðlxð0Þ þ lv tÞ: ðA:12Þ

For even values of k, there will be a positive peak of power
when t is such that (A.11) is a local maximum. The peak will have
amplitude Dk=

Pn
i¼1Di � Pr½k < xðtÞ < kþ 1�. Analogously, when

k is odd, a negative peak of power will be encountered when t is
such that (A.11) is maximum and its amplitude will be
Dk=

Pn
i¼1Di � 1� Pr½k < xðtÞ < kþ 1�.

Therefore, for both even and odd values of k we need to find the
value of s for which (A.11) is maximised in order to compute the
amplitude of the peaks. For that value of s, it should be verified
that

d
ds

erf logðkþ1Þ�sffiffi
2
p

rrel

� 	
� erf logðkÞ�sffiffi

2
p

rrel

� 	
2

2
4

3
5 ¼ 0

from which we obtain

logðkþ 1Þ � sffiffiffi
2
p

rrel


 �2

¼ logðkÞ � sffiffiffi
2
p

rrel


 �2

and therefore

logðkþ 1Þ � sffiffiffi
2
p

rrel

¼ � logðkÞ � sffiffiffi
2
p

rrel

: ðA:13Þ

The equality (A.13) can only be satisfied when its right hand side is
negative, which yields the value of s for the kth peak in the output:

s	ðkÞ ¼ logðkþ 1Þ þ logðkÞ
2

: ðA:14Þ

Replacing (A.14) in (A.11) and operating we obtain

max
t

Pr½k < xðtÞ < kþ 1� � erf
logðkþ 1Þ � logðkÞ

2
ffiffiffi
2
p

rrel


 �

¼ erf
logð1þ 1=kÞ

2
ffiffiffi
2
p

rrel


 �
:

For values of k > 1, we can approximate log (1 + 1/k) � 1/k with an
absolute error of the order of 1/(2k2), and then

max
t

Pr½k < xðtÞ < kþ 1� � erf
1

2k
ffiffiffi
2
p

rrel


 �
: ðA:15Þ

On the other hand, from (A.12) and (A.14) we know that
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s	ðkÞ ¼ logðlxð0Þ þ lv t	ðkÞÞ ¼ logðkþ 1Þ þ logðkÞ
2

¼ logð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k

q
Þ;

from which we obtain

lxð0Þ þ lv t	ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k

q
; ðA:16Þ

where t⁄(k) is the time of the k–th peak.

For k > 1 we can approximate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k

p
� kþ 1

2 with an absolute
error of the order of 1/(8k) using the first two terms of the Taylor
series expansion. Thus, from (A.15) and (A.16) we obtain

max
t

Pr½k < xðtÞ < kþ 1� � erf
1

2k
ffiffiffi
2
p

rrel


 �

� erf
1

2ðlxð0Þ þ lv t	ðkÞ � 1
2Þ

ffiffiffi
2
p

rrel

 !
: ðA:17Þ

This last equation says that the kth peak of power occurs when
lx(0) + lvt � 1/2 = k, which is to say that t⁄(k) = (k + 1/2 � lx(0))/
lv. Therefore, the period of the oscillations is given by
t⁄(k + 2) � t⁄(k) = 2/lv, which shows (10).

Finally, inequality (11) is shown by evaluating the amplitude of
the kth peak, which is

E Dk=
Xn

i¼1

Di

" #
� erf

1
2k

ffiffiffi
2
p

rrel


 �
; if k is even ðA:18Þ

or

E Dk=
Xn

i¼1

Di

" #
� 1� erf

1
2k

ffiffiffi
2
p

rrel


 �
; if k is odd: ðA:19Þ

Taking into account that erf (1/z) decreases monotonically for
positive values of z, expressions (A.18) and (A.19) show how the
amplitude of successive peaks decreases with k. Moreover, the lar-
ger rrel, the faster it decreases. h
A.4. Proof of Corollary 2

For a given value of z = z1, the upper part of the envelope of the
oscillatory damped step response is erf (1/z1) according to (11).
After one semi-period 1/lv (see (10)), we have z2 = z1(t + 1/lv)
and, applying (12), z2 ¼ z1 þ 2

ffiffiffi
2
p

rrel. Thus, the ratio between the
distance of two successive peaks to the steady state value (0.5),
namely Dk+1 and Dk is:

Dkþ1=Dk ¼
jerf 1

z1þ2
ffiffi
2
p

rrel

� 	
� 0:5j

jerf 1
z1

� 	
� 0:5j

: ðA:20Þ

As seen in Fig. 4, the approximation of the step response with a
second order model has a reasonable fit for values of z 2 [0.6,1.4].
Thus, we propose a mid-interval value z1 = 0.9 and replace it in
(A.20) to obtain

Dkþ1=Dk ¼
jerf 1

0:9þ2
ffiffi
2
p

rrel

� 	
� 0:5j

jerf 1
0:9


 �
� 0:5j

, rðrrelÞ:

Then, we can compute the damping factor

r ¼ exp
�pnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
" #

which yields

n2 ¼ log2ðrÞ
p2 þ log2ðrÞ

:

Since (10) states that the period can be approximated as 2/lv, the
undamped natural frequency can now be computed as

xn ¼
xdffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
where

xd ¼ plv :

With that, we have the denominator s2 þ 2nxnsþx2
n of the transfer

function as parametrised by Corollary 2.
Let us compute the coefficients b0,b1 and b2 of the numerator.

We know that the value of D(t) when the system is in steady state
is the expected value of the stochastic expression Ton/(Ton + Toff),
where Ti

on and Ti
off are the times that it takes the ith AC in the pop-

ulation to go from one end of the hysteresis band to the other when
the device is operating Ti

on

� 	
or not Ti

off

� 	
. Since, Ton and Toff de-

pend on the reference temperature href, we can write them as a
function of href [24]. Thus

Tonðhref Þ ¼ CR log
PRþ href þ H=2� ha

PRþ href � H=2� ha


 �
ðA:21Þ

and

Toffðhref Þ ¼ CR log
ha � href þ H=2
ha � href � H=2


 �
: ðA:22Þ

Then, replacing these expressions in

Dssðhref Þ ¼ Tonðhref Þ=ðTonðhref Þ þ Toff ðhref ÞÞ: ðA:23Þ

we obtain (16).
Let Y(s) = Gp(s)0.5/s in (13) and L�1fYðsÞg ¼ yðtÞ. Then, from the

initial value theorem [11], we have

Dssðhref Þ=2 ¼ yð0þÞ ¼ lim
s!1

0:5GpðsÞ ¼ 0:5b2; ðA:24Þ

therefore b2 = Dss(href).
On the other hand, from the final value theorem [11], we have

Dssðhref þ 0:5Þ � Dssðhref Þ ¼ y1 ¼ lim
s!0

0:5GpðsÞ ¼ 0:5b0=x2
n; ðA:25Þ

therefore b0 ¼ ðDssðhref þ 0:5Þ � Dssðhref ÞÞx2
n=0:5.

Combining the initial value theorem and the Laplace transform
of a derivative, we have

_yð0þÞ ¼ lim
s!1

0:5GpðsÞ � 0:5b2 ¼ 0:5ðb1 � 2b2nxnÞ; ðA:26Þ

which gives us b1 ¼ _yð0þÞ=0:5þ 2b2nxn.
Looking at Fig. A.13, we can see that 25% of the ACs are operat-

ing at t = 0+. Since we know that the distribution of x(t) moves to
the right at a mean speed lv, we can approximate _yð0þÞ �
yð0þþDtÞ�yð0þÞ

Dt ¼ � ð0:25�0:25lvDtÞ�0:25
Dt ¼ 0:25lv . Thus, b1 = 0.5lv + 2b2nxn.
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