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1 Introduction

In this paper we consider a stochastic control problem where the state is
governed by the following stochastic differential equation

xt = x +
∫ t

s

b(θ, xθ, uθ)dθ +
∫ t

s

σ(θ, xθ, uθ)dBθ +
∫ t

s

g(θ)dvθ. (1)

We denote with (Ξ, F, Ft, P) the probability framework, where Ft is an
increasing set of σ-algebras defined on Ξ, F =

⋃
t

Ft and P is a probability

measure defined on the elements of F . b, σ, g are deterministic functions and
(Bt, t ≥ 0) is a d-dimensional Brownian motion, x is the initial position of
the system at time s, and the controls are u ∈ U and v ∈ V, where

U = {u : [0, T ] → U ⊂ Rc : u non anticipative w.r.t. Ft} ,

V =
{
v : [0, T ] → Rk

+ : ∀p = 1, ..., k, vp non decr., non anticip. w.r.t.Ft

}
.

The expected cost for each pair of controls has the form

J(s, x, u, v) = E

{∫ T

s

f(t, xt, ut)dt +
∫ T

s

c(t)dvt

}
,
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where f : [0, T ] × IRd × U → IR, c : [0, T ] → IRk
+ are given. We define the

cost function W as

W (t, x) = inf{J(t, x, u, v) : u ∈ U , v ∈ V} .

We suppose that the cost associated to apply the singular control v is positive,
i.e. ci(·) > 0, i = 1, ..., k. For this kind of problem we can see [8] and the
bibliography cited therein.

As it is well known, for classical stochastic control problems, the opti-
mal cost function satisfies the dynamical programming principle and under
appropriated conditions on the data, it also satisfies a second order non lin-
ear partial differential equation called the Hamilton-Jacobi-Bellman (HJB)
equation ([6], [7], [10]).

This property is also valid for singular stochastic controls, where the HJB
equations is a second order variational inequality given by

min

{
inf
u∈U

(L̃W + f), g∗∇W + c

}
= 0 . (2)

In [9] a probabilistic analysis of this problem is developed and it is estab-
lished that the cost function is the unique solution in the viscosity sense of
equation (2).

In this paper we present a theoretical constructive procedure to find the
function W, a numerical approximation procedure for the solution of equation
(2) and we prove the convergence of the discrete solution to the value function.
We present a numerical example.

In [1], [11], Teo (et all) had treated a stochastic optimal control prob-
lems without singular controls described by Itô differential equations. There
the optimality conditions of the controls are used instead of the dynamical
programming principle. The dynamical programming equation allows us to
present an algorithm easier to implement.

2 Description of the problem

We use the following notation

• Rn
+ = {y ∈ Rn : yi ≥ 0, i = 1, ..., n}.

• T > 0 fixed horizon

• Σ = [0, T ]× IRd.

Remark 1 Throughout this paper, C represents a constant, not always the
same in each case, that depends on the problem data.
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2.1 Properties of the optimal cost function

We will assume the following additional hypotheses

• c is a Lipschitz continuous function,

• f is a bounded function

• g = (gij) d× k is a constant matrix

• b, σ are continuous with respect to (t, x, u)

• f, b and σ satisfy for 0 ≤ s, t ≤ T, x, y ∈ Rd, u ∈ U the following
conditions

∣∣∣∣∣∣

|f(t, x, u)− f(s, y, u)| ≤ C(|t− s|+ ‖x− y‖),
‖b(t, x, u)− b(s, y, u)‖ ≤ C(|t− s|+ ‖x− y‖) ,
‖σ(t, x, u)− σ(s, y, u)‖ ≤ C(|t− s|+ ‖x− y‖).

Under these assumptions the optimal cost function W satisfies the prop-
erties stated in the following theorems (the proofs can be seen in [9]).

Theorem 1 The optimal cost function W is uniformly continuous in Σ and
there exists a constant C ≥ 0 such that ∀ 0 ≤ s, t ≤ T, x, y ∈ Rd the following
inequality holds

|W (t, x)−W (s, y)| ≤ C(|t− s|
1
2 + ‖x− y‖).

Theorem 2 a) Let (t, x) ∈ Σ, then

W (t, x) ≤ W (t, x + gh) + c(t) · h

for each h ∈ Rn
+. Moreover, if the equality holds for some h = (hi) ∈ Rd

+ then
the same equality holds when we replace h by h̄ = λ̄h ∈ Rd

+, with 0 ≤ λ̄ ≤ 1.
b) We define for 0 ≤ t ≤ T,

At = {x : W (t, x) < W (t, x + g · λ) + c(t) · λ, ∀λ ∈ Rd
+, λ 6= 0}.

Then the process xt, associated to any optimal policy, is continuous when it
is in At.

2.2 HJB equation

Dynamical programming principle

For this problem the dynamical programming principle can be stated in the
following way

W (s, x) = min
u,v

E

{∫ t

s

f(θ, xθ, uθ)dθ +
∫ t

0
c(θ)dvθ + W (t, xt)

}
. (3)
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Based on this result, in [9] it is proved that the optimal cost function W
satisfies in Σ the following HJB equation in the viscosity sense:

min

{
inf
u∈U

(L̃W + f)(t, x, u) , (g∗∇xW (t, x))i + ci(t), i = 1, 2, ..., k

}
= 0 ,

(4)
with final condition given by

W (T, x) = 0, ∀x ∈ Rd , (5)

where

L̃ =
∂

∂t
+

∑

i

bi
∂

∂xi
+

1
2

∑

i,j

aij
∂2

∂xi∂xj

and a = σσ∗. For the sake of simplicity we write (4) as

min

{
inf
u∈U

(L̃W + f), g∗∇W + c

}
= 0 . (6)

The viscosity solution is defined in such a way that allows us to work in the
frame of discontinuous functions.

Definition 1 w is a subsolution of equation (4) in the viscosity sense if:
w is an upper semicontinuous function, satisfies the boundary condition (5)
and verifies that ∀φ ∈ C1,2(Σ), such that (t0, x0) is a local maximum of w−φ
in the interior of Σ, then

min

{
inf
u∈U

(L̃φ + f), g∗∇φ + c

}
(t0, x0) ≥ 0 . (7)

z is a supersolution of (4) in the viscosity sense if: z is a lower semi-
continuous function, satisfies the boundary condition (5) and verifies that
∀φ ∈ C1,2(Σ), such that (t0, x0) is a local minimum of z − φ in the interior
of Σ, then

min

{
inf
u∈U

(L̃φ + f), g∗∇φ + c

}
(t0, x0) ≤ 0 . (8)

v is a viscosity solution of equation (4) iff it is subsolution and super-
solution.

Theorem 3 There exists W ∈ C(Σ) such that it is the unique solution of
(6) in the viscosity sense with boundary conditions given by (5), where

C(Σ) = {W : W ∈ C(Σ), bounded, |W (t, x)−W (t, y)| ≤ L ‖x− y‖ , L ≥ 0} .

The proof can be seen in [9]). Applying the concept of subsolution and
supersolution in the viscosity sense the following comparison principle holds
(see [2]).

Theorem 4 For every w subsolution of (6) and z supersolution of (6) it is
verified that w ≤ z ∀(t, x) ∈ Σ.
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3 Solution by an iterative method

We find the solution of (2) by using a constructive iterative method. We
define a sequence of functions, each of them solution of a stopping time control
problem. This sequence converges to a viscosity solution of problem (6).
From this fact and the property of unicity of viscosity solution we conclude
that the sequence converges to the solution of the original problem.

3.1 An auxiliary stopping time problem

We denote by Lw = inf
u∈U

(L̃w+f) and we consider the stopping time problem

with obstacle Mw given by

∣∣∣∣∣∣

min {Lw, Mw − w} = 0 ,

w(T, x) = 0 ,
(9)

where

Mw(t, x) = inf
v∈Rk

+

{w(t, x + g · v) + c · v} .

Remark 2 For (t, x) ∈ Σ such that w(t, x) < Mw(t, x), it is satisfied that
Lw(t, x) = 0 in the viscosity sense and for (t, x) such that w(t, x) = Mw(t, x),
it is verified also in the viscosity sense that Lw(t, x) ≥ 0.

Let us denoted by S the operator such that the function Sw associates to
each function w, where Sw is the solution of the stopping time problem with
obstacle Mw.

Remark 3 The optimal cost function W is the fixed point of the operator S.

Properties of operator S

1. If w is a uniformly continuous function over Σ, then Sw is also a uniform
continuous function over Σ.

2. Operator S is monotone: if w ≤ ŵ then Sw ≤ Sŵ .

3. There exists K > 0 such that

S(−K) ≥ −K. (10)

Remark 4 The techniques introduced in [4] and [5] can be used to prove
these properties, we omit the complete proof for the sake of brevity.
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3.2 The iterative construction method

Procedure description

• Step 0: ν = 0, w0 = S(+∞) (i.e. w0 verifies (5) and Lw0 = 0)

• Step 1: Compute Mwν

• Step 2: Compute wν+1 = S(wν) where S(wν) is the solution of the
stopping time problem with obstacle Mwν , then it is verified that

min
{Lwν+1,Mwν − wν+1

}
= 0

wν+1(T, x) = 0.

• Step 3: ν = ν + 1, and go to step 1.

Iterative procedure convergence

The procedure generates a sequence of function with the following prop-
erties.

Proposition 1 The sequence of functions generated by the constructive pro-
cedure is non increasing and convergent

1. wν+1 ≤ wν , ∀ν ∈ IN .

2. wν ≥ W, ∀ν ∈ IN .

3. w = lim
ν→∞

wν is a subsolution of equation (9) in the viscosity sense

Proof:
1. As 0 ≤ w0 ≤ +∞, by the monotony of operator S we have

w1 = S(w0) ≤ S(+∞) = w0.

Again by the monotony of operator S we obtain by induction that wν+1 ≤ wν .

2. As W ≤ +∞, it follows from the monotony of operator S that ∀ν it is
verified

wν ≥ W. (11)

3. Let us prove that w = lim
ν→∞

wν is a viscosity subsolution of equation (6).

Considering the properties of operator S, we get that the sequence {wν} is



A procedure to solve ... 7

non increasing and converges point-wisely to a function that we will denote
by w. Moreover as the functions wν are continuous, we conclude that w is an
upper semi-continuous function. By virtue of (9), we have that ∀x ∈ Rd

w(T, x) = 0 .

Let φ ∈ C1,2(Σ) and let us consider (t0, x0) ∈ Σ◦, a point where the function
w−φ has a strict maximum. We can suppose without loss of generality that
(w − φ)(t0, x0) = 0. We should prove

min {Lφ(t0, x0),Mw(t0, x0)− w(t0, x0)} ≥ 0.

We know that for each ν the function wν is a viscosity solution of the stopping
time problem with obstacle M(wν−1) given by

min
{Lwν ,Mwν−1 − wν

}
= 0 (12)

and then wν is a viscosity subsolution of equation (12).
Let B be a compact neighbourhood of the point (t0, x0) such that B ⊂ Σ

and let (tν , xν) be points such that for each ν the function (wν − φ) has a
local maximum in B at the point (tν , xν).
We first prove that the sequence (tν , xν) converges to (t0, x0). We assume
that the sequence (tν , xν) does not converge to (t0, x0) and we will arrive
to an absurd. As the sequence {(tν , xν)} is included in a compact set then
there exist a sub-sequence which converges to a point that we denote (t̄, x̄)
(for the sake of notation simplicity we will continue on denoting (tν , xν) such
sub-sequence).
We analyze the following difference

w − φ)(t̄, x̄)− (w − φ)(t, x) = (w − φ)(t̄, x̄)− (wν − φ)(tν , xν)
+(wν − φ)(tν , xν)− (wν − φ)(t, x)
+(wν − φ)(t, x)− (w − φ)(t, x) .

Taking limit for ν → ∞ and considering the continuity of functions
wν and φ, the upper semi-continuity of function w and that ∀(t, x) ∈ B
and ∀ν the following inequality holds

(wν − φ)(tν , xν)− (wν − φ)(t, x) ≥ 0 ,

then
lim

ν→∞
(w − φ)(t̄, x̄)− (wν − φ)(tν , xν) ≥ 0

lim
ν→∞

(wν − φ)(tν , xν)− (wν − φ)(t, x) ≥ 0

lim
ν→∞

(wν − φ)(t, x)̇− (w − φ)(t, x) = 0 .

From here we obtain that ∀(t, x) ∈ B it is verified that

(w − φ)(t̄, x̄)− (w − φ)(t, x) ≥ 0,
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in particular for (t0, x0). This fact is impossible because (t0, x0) is a point of
strict maximum. Therefore we can conclude that

(tν , xν) → (t0, x0) .

From the definition of viscosity subsolution and (12) we get that ∀ν

Lφ(tν , xν) ≥ 0 .

Taking into account the regularity of the function φ and its derivative and
the convergence of (tν , xν) to (t0, x0) we obtain

Lφ(t0, x0) ≥ 0 . (13)

From the other side, considering the definition of w and the fact that ∀ν
wν is a viscosity sub-solution of (12), it is verified that ∀(t, x)

w(t, x) ≤ wν+1(t, x) ≤ Mwν(t, x)

and so
w(t, x) ≤ Mwν(t, x) .

Now, by definition of operator M we get ∀v ∈ Rk
+

w(t, x) ≤ Mwν(t, x) ≤ wν(t, x + g · v) + c v .

Taking limit for ν →∞, we obtain ∀v ∈ Rk
+

w(t, x) ≤ w(t, x + g · v) + c v ,

and then the following inequality holds

w(t, x) ≤ Mw(t, x) . (14)

Finally, considering both inequalities (13) and (14) for (t, x) = (t0, x0) we
obtain

min {Lφ(t0, x0),Mw(t0, x0)− w(t0, x0)} ≥ 0 ,

as we wanted to prove.

¤

Corollary 1 Function w verifies w = W.

Proof: As w is a viscosity subsolution of equation (9), by the comparison
principle (see [2]), we have that w ≤ W and taking limit in (11) we get that

w = W.

¤
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4 The discrete problem

4.1 Fully discrete solution

4.1.1 Elements of the discrete problem

We consider a partition of interval [0, T ], of norm h, i.e. the discrete times
are given by Eh = {nh, n = 0, . . . , µ}, µ = [T / h].

We identify the space discretization with the parameter k, which also
indicates the discretization size.

Remark 5 For the sake of simplicity we consider here that the set U is a
finite set.

Domain Rd approximation

We consider a family of quasi–uniform triangulations of Rd, which is denoted
by

{Sk
}

k
and verifies:

• For all k, Sk is a denumerable collection of closed simplices
{
Sk

j

}
j

such

that
⋃
j

Sk
j = Rd.

• If Sk
j ∈ Sk, Sk

p ∈ Sk, Sk
j 6= Sk

p , we have

− (Sk
j )◦

⋂
(Sk

p )◦ = ∅.
− Either Sk

j

⋂
Sk

p = ∅ or Sk
j and Sk

p have in common a whole (m − r) –
edge, r = 1, . . . ,m

• max
j

(
diam(Sk

j )
)

= k .

• ∃ χ1 > 0 and ∃ χ2 > 0 independent on the discretization, such that,
denoting by dj the diameter of the simplex Sk

j , it is verified

− the simplex Sk
j has a sphere of radius rj in its interior and it results

rj ≥ χ1dj ,

− for any simplex Sk
j , k ≤ χ2dj .

Let Ek =
{
xj ; j ∈ IN

}
be the vertices of this triangulation, arbitrarily

arranged. Every x ∈ IRd is a convex combination of the vertices xi of the
simplex to which x belongs. Hence, ∀ u ∈ U , ∀ n = 0, . . . , µ, ∀ xi ∈ Ek ,
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there exists a matrix with components γj(nh, xi, u), such that
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γj(nh, xi, u) ≥ 0, ∀ j ∈ IN,

γj(nh, xi, u) > 0, for at most (d + 1) values of j ,

∑
j

γj(nh, xi, u) = 1,

xi + h g(nh, xi, u) =
∑
j

γj(nh, xi, u)xj .

(15)

Remark 6 We denote by Σhk = Eh × Ek .

Discretization of HJB equation

We analyze the discretization for the case where the operator L̃ has the form

L̃ =
∂

∂t
+

∑

i

bi
∂

∂xi
+

1
2

d∑

i=1

aii
∂2

∂x2
i

.

We consider the following scheme of discretization: ∀j
∣∣∣∣∣∣∣∣

wh
k (nh, xj) = min

(
ŵh

k (nh, xj), ̂̂wh

k(nh, xj)

)
,

wh
k (T, xj) = 0,

with

ŵh
k (nh, xj) =

1
2d

d∑
0 6=i=−d

wh
k

(
(n + 1)h, xj + hb(nh, xj , u) + ei

√
dh

)
+ hf(nh, xj , u),

where

ei = (ej
i )d

j=1 with ej
i =

{
sign(i) j = |i|
0 j 6= |i|

and

̂̂wh

k(nh, xj) = min
i=1,...,k

(
wh

k ((n + 1)h, xj + g · viξ(h)) + c(nh)viξ(h)
)

,

where

vi = (vj
i )k

j=1 with vj
i =

{
1 j = i
0 j 6= i

and ξ(h) is a positive function which verifies

lim
h→0

ξ(h) = 0 and lim
h→0

ξ(h)
h

= +∞ . (16)
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Remark 7 ¿From definition of wh
k we have that it is unique and that it can

be computed recursively.

Discretization consistency

The discrete function ŵh
k (nh, xj) defined below corresponds to the discretiza-

tion of operator L̃. Let us see that the scheme is consistent.
If Φ ∈ C1,2(Σ), by Taylor expansion, and doing simple but lengthy cal-

culations, we have that

lim
h→0

1
h

(
−Φ(t, x) +

1
2d

d∑
0 6=i=−d

Φ
(
t + h, x + hb(t, x, u) + ei

√
dh

))
=

=

(
∂Φ
∂t

+∇Φ.b +
1
2

∆Φ

)
(t, x) .

For the impulsive part, if Φ ∈ C1,2(Σ), by Taylor expansion, doing again
simple calculations and having in mind (16), we get

lim
h→0

1
ξ(h)

(−Φ(t, x) + Φ(t + h, x + g · viξ(h))) = (g∗∇Φ)i(t, x) .

4.2 Convergence of the numerical procedure

As the sequence {wh
k} defined is equibounded by MfT , we can define the

function w, w as follows

w(t, x) =

lim
ε,k0→0

inf{wh
k (t + s, x + y) : |s| ≤ ε, ‖y‖ ≤ ε, k ≤ k0, (t + s, x + y) ∈ Σhk}

(17)
and

w(t, x) =

lim
ε,k0→0

sup{wh
k (t + s, x + y) : |s| ≤ ε, ‖y‖ ≤ ε, k ≤ k0, (t + s, x + y) ∈ Σhk}.

(18)
We are going to show that w is a subsolution of HJB equation and w is a
supersolution. Then, by Theorem (4), we have that w ≤ w. Moreover, from
(17) and (18) we get w ≥ w and in consequence w = w. This implies that
there exists w∗ such that it is the limit of the sequence wh

k . As HJB equation
has a unique solution, we conclude that w∗ = W .

Remark 8 We have employed the definition of wh
k over the whole set Eh ×

Rd, this definition was made by linear interpolation in the space of linear
finite elements.
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w is subsolution in the viscosity sense of HJB

We must prove that

• w is upper semicontinuous

• w(T, x) = 0 ∀x
• w is subsolution in the viscosity sense of (7)

The first two properties are obvious, let us see the third one. Let K
be such that |wh

k (t, x)| ≤ K ∀h > 0, k > 0, (t, x) ∈ Σ . We use as the
tangent function to w functions which verify Φ(s, y) → ∞ for ||y|| → ∞ or
(t, y) → ∂Σ.

Let (t, x) be a global strict maximum of (w − Φ), w.l.g. we can suppose
that (w − Φ)(t, x) = 0 .

From definition of w̄, there exists a sequence εν such that εν → 0 and if
we define

φν(t, x) = sup{wh
k (s, y) : h ≤ εν , k ≤ εν , (s, y) ∈ Σhk, |t−s| ≤ εν , ||x−y|| ≤ εν}

we have

φν(t, x)− 1
ν
≤ w(t, x) ≤ φν(t, x) .

Then, there are hν ≤ εν , kν ≤ εν , (tν , xν) ∈ Σhνkν , |t− tν | ≤ εν , ||x − xν || ≤
εν such that

whν

kν
(tν , xν) ≤ φν(t, x) ≤ 1

ν2
+ whν

kν
(tν , xν)

and, in consequence

whν

kν
(tν , xν)− 1

ν
≤ w(t, x) ≤ 1

ν2
+ whν

kν
(tν , xν) ,

then
lim

ν→∞
whν

kν
(tν , xν) = w(t, x) . (19)

Let us see that there are (t̂ν , x̂ν) ∈ Σhνkν such that it is a global maximum
of whν

kν
− Φ in Σhνkν and such that (t̂ν , x̂ν) → (t, x). Moreover, it results

whν

kν
(t̂ν , x̂ν) → w(t, x).

Let (τp, qp) be a maximizing sequence of whν

kν
− Φ, then

whν

kν
(tν , xν)− Φ(tν , xν) ≤ lim

p→∞
whν

kν
(τp, qp)− Φ(tp, qp)

= sup
(τ,q)∈Σhν kν

(whν

kν
(τ, q)− Φ(τ, q))

≤ K − inf
(τ,q)∈Σhν kν

Φ(τ, q)

= K + sup
(τ,q)∈Σhν kν

(−Φ(τ, q)) ≤ 2K

(20)
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because

w(s, y)− Φ(s, y) ≤ w(t, x)− Φ(t, x) = 0 , ∀(s, y) ∈ Σ , (21)

where
−Φ(s, y) ≤ K ⇒ sup(−Φ(s, y)) ≤ K .

The sequence maximizing qp is bounded, because if we suppose that ||qp|| is
not bounded, then there is a subsequence qp′ such that ||qp′ || → ∞, and so

lim
p′→∞

whν

kν
(τp′ , qp′)− Φ(tp′ , qp′) = −∞ ,

which contradicts (20). Then

||qp|| ≤ M .

As net Ekν
is finite in bounded neighbourhoods, we have

τp′ = t̂ν ∀p′ ≥ p(ν)

qp′ = x̂ν ∀p′ ≥ p(ν)

and (t̂ν , x̂ν) is the supremum of whν

kν
− Φ in Σhνkν .

Then

whν

kν
(s, y)− Φ(s, y) ≤ whν

kν
(t̂ν , x̂ν)− Φ(t̂ν , x̂ν) ∀(s, y) ∈ Σhνkν

and is consequence

whν

kν
(tν , xν)− Φ(tν , xν) ≤ whν

kν
(t̂ν , x̂ν)− Φ(t̂ν , x̂ν) ∀ν .

Now, by taking limit ν →∞ and considering (19), we can conclude that

w(t, x)− Φ(t, x) ≤ lim
ν→∞

whν

kν
(t̂ν , x̂ν)− Φ(t̂ν , x̂ν) . (22)

Following similar arguments to those ones employed for the sequence (τp, qp),
it is easy to prove that ||x̂ν || ≤ M for all ν. Then, we consider a subsequence
of (t̂ν , x̂ν) which converges to (ť, x̌). From the definition of w we have

lim
ν→∞

whν

kν
(t̂ν , x̂ν) ≤ w(ť, x̌)

and in consequence

w(t, x)− Φ(t, x) ≤ w(ť, x̌)− Φ(ť, x̌) .

As (t, x) is a strict global maximum, then ť = t and x̌ = x, and we have that
the complete sequence (t̂ν , x̂ν) converges to (t, x) when ν →∞ .
From (22), we have

w(t, x) ≤ lim
ν→∞

whν

kν
(t̂ν , x̂ν)
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and by w definition (18)

w(t, x) ≥ lim
ν→∞

whν

kν
(t̂ν , x̂ν),

we conclude that
lim

ν→∞
whν

kν
(t̂ν , x̂ν) = w(t, x) .

Then

whν

kν
(t̂ν , x̂ν)−Φ(t̂ν , x̂ν) ≥ whν

kν
(sν , yν)−Φ(sν , yν), ∀(sν , yν) ∈ Σhνkν . (23)

By definition of whν

kν

whν

kν
(t̂ν , x̂ν) ≤ ŵ(t̂ν , x̂ν) (24)

and
whν

kν
(t̂ν , x̂ν) ≤ ̂̂w(t̂ν , x̂ν) . (25)

Considering (24) we have ∀u ∈ U

w(t̂ν , x̂ν) ≤ hνf(t̂ν , x̂ν , u)+

+
d∑

0 6=i=−d

1
2d

whν

kν

(
(nν + 1)hν , x̂ν + hνb(t̂ν , x̂ν , u) + ei

√
dhν

)
.

(26)

It is possible to characterize all point in Σ as a linear combination of the
nodes of the discretization used for Σ. Let us denote by ηi

j the barycentric

coordinates of (x̂+
ν )i = x̂ν + hνb(t̂ν , x̂ν , u) + ei

√
dhν with respect to nodes

(x̂+
ν )i

j ∈ Ekν of the simplices (x̂+
ν )i to which it belongs. Then we have

whν

kν
((nν + 1)hν , (x̂+

ν )i) =
∑

j

ηi
jw

hν

kν
((nν + 1)hν , (x̂+

ν )i
j)

and

Φ((nν + 1)hν , (x̂+
ν )i) =

∑

j

ηi
jΦ((nν + 1)hν , (x̂+

ν )i
j) + O(k2

ν) .

From these inequalities and considering (23) we obtain for each i = −d, ..., d

whν

kν
(t̂ν , x̂ν)− Φ(t̂ν , x̂ν) ≥
∑
j

ηi
jw

hν

kν
((nν + 1)hν , (x̂+

ν )i
j)−∑

j

ηi
jΦ((nν + 1)hν , (x̂+

ν )i
j) + O(k2

ν) .

Moreover, from (24) we have

whν

kν
(t̂ν , x̂ν) ≤ hνf(t̂ν , x̂ν , u) +

1
2d

d∑

0 6=i=−d

∑

j

ηi
jw

hν

kν
((nν + 1)hν , (x̂+

ν )i
j) .
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By applying the Taylor’ expansion of order two to function Φ (which belongs
to C1,2(Σ)), and taking limit for ν →∞ we arrive to

(L̃Φ + f)(t, x, u) ≥ 0 ,

and as u is arbitrary, we get

min
u∈U

(L̃Φ + f)(t, x, u) ≥ 0 .

On the other hand, considering (25)

whν

kν
(t̂ν , x̂ν) ≤ min

i=1,...,n

(
whν

kν
((tν + 1)hν , xν + gviξ(hν)) + cviξ(hν)

)

and following a similar development, it is easy to prove that ∀i = 1, ..., n,

(g∗∇Φ + c)i ≥ 0 .

Then, w is a subsolution.

w is a supersolution in the viscosity sense of HJB

We must prove that

• w is lower semicontinuous

• w(T, x) = 0 ∀x
• w is a supersolution in the viscosity sense of (8)

The first two properties are immediate, let us see the third one, i.e.

min

{
inf
u∈U

(L̃w + f), g∗∇w + c

}
≤ 0 .

We consider |wh
k (t, x)| ≤ K ∀h > 0, k > 0, (t, x) ∈ Σ. We suppose also that

the functions Φ which are tangent to the function w verify Φ(s, y) → ∞ as
||y|| → ∞ or (t, y) → ∂Σ.

Let (t, x) ∈ (0, T ) × Ω and Φ ∈ C1,2((0, T ) × Ω)) such that w − Φ have
a global strict minimum in (t, x).. Following a similar analysis to that one
used for w, we obtain that ∃ a sequence εν such that εν → 0 and there exist
hν ≤ εν , kν ≤ εν , (tν , xν) ∈ Σhνkν , |t− tν | ≤ εν , ||x− xν || ≤ εν such that

lim
ν→∞

whν

kν
(tν , xν) = w(t, x). (27)

Moreover there exists (t̂ν , x̂ν) ∈ Σhνkν which realizes a global minimum of
whν

kν
− Φ in Σhνkν and they verify

∣∣∣∣∣∣∣

(t̂ν , x̂ν) → (t, x)

lim
ν→∞

whν

kν
(t̂ν , x̂ν) = w(t, x) .
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Then, ∀(tν , xν) ∈ Σhνkν

whν

kν
(t̂ν , x̂ν)− Φ(t̂ν , x̂ν) ≤ whν

kν
(tν , xν)− Φ(tν , xν) . (28)

As function whl

kl
verifies

whν

kν
(t̂ν , x̂ν) = min(ŵhν

kν
(t̂ν , x̂ν), ̂̂w hν

kν
(t̂ν , x̂ν)) , (29)

we have two possibilities:

whν

kν
(t̂ν , x̂ν) = ŵhν

kν
(t̂ν , x̂ν) (30)

or
whν

kν
(t̂ν , x̂ν) = ̂̂w hν

kν
(t̂ν , x̂ν) . (31)

Then, there is a subsequence of ν such that one of the two conditions is true.
Let us suppose that for such a subsequence (30) is satisfied. As U is a finite
set, there are a control ū and a subsequence (that, w.l.g., we call ν) such that
it verifies

whν

kν
(t̂ν , x̂ν) =

d∑
0 6=i=−d

1
2d

whν

kν

(
(nν + 1)hν , x̂ν + hνb(t̂ν , x̂ν , ū) + ei

√
dhν

)
+ hνf(t̂ν , x̂ν , ū) .

Let ηi
j be the barycentric components of (x̂+

ν )i such that

(x̂+
ν )i := x̂ν + hνb(t̂ν , x̂ν , ū) + ei

√
dhν =

∑

j

ηi
j(x̂+

ν )i
j .

By using the definition of whν

kν
, we have

whν

kν
(t̂ν , x̂ν) = hνf(t̂ν , x̂ν , ū) +

d∑

0 6=i=−d

∑

j

ηi
j

1
2d

whν

kν
((nν + 1)hν , (x̂ν)i

j ) . (32)

By (28) and (32), using the fact that Φ ∈ C1,2(Σ) and taking limit when ν
goes to ∞, we get

(L̃Φ + f)(t, x, ū) ≤ 0 ,

then the minimum over U verifies

min
U

((L̃Φ + f)(t, x, u)) ≤ 0 .

Now, let us suppose that (31) is true, i.e. there is a subsequence vν and a
control v̄ı̄ such that ∀ν

whν

kν
(t̂ν , x̂ν) = whν

kν
((tν + 1)hν , x̂ν + gv̄ı̄ξ(hν)) + cv̄ı̄ξ(hν) .
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By using the same argument, we arrive to the inequality

(g∗∇Φ(t, x) + c)ı̄ ≤ 0

and then the minimum over the set {i = 1, ..., n} verifies

min
i=1,...,n

(g∗∇Φ(t, x) + c)i ≤ 0 .

In consequence, we conclude that w is a supersolution.

¤

5 Example

We have solve numerically an example given by the following data:

• Σ = [0, 0.3]× [−20, 20], d = 1, g = 1, b = 0, c = 0.1042, ξ(h) = 0.2,

• f(t, x, u) = max(0, cos(min(max(0.25x,−π/2), π/2)))0.01,

• step of time discretization h = 0.0065

• step of space discretization k = 0.2,

• U = {−1, 1}

In Figure 1 we show the function wh
k (0, ·) corresponding to the given data,

the gradient function and, as an inverted characteristic function, the region
where the impulsive control is applied.

We can observe that while the impulsive control v is applied, the value of
the gradient function approaches the constant function c
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