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Recent studies have focused on laser-induced gaps in graphene which have been shown to have a topolog-
ical origin, thereby hosting robust states at the sample edges. While the focus has remained mainly on these
topological chiral edge states, the Floquet bound states around defects lack a detailed study. In this paper we
present such a study covering large defects of different shape and also vacancy-like defects and adatoms at the
dynamical gap at h̵Ω/2 (h̵Ω being the photon energy). Our results, based on analytical calculations as well
as numerics for full tight-binding models, show that the bound states are chiral and appear in a number which
grows with the defect size. Furthermore, while the bound states exist regardless the type of the defect’s edge
termination (zigzag, armchair, mixed), the spectrum is strongly dependent on it. In the case of top adatoms, the
bound states quasi-energies depend on the adatoms energy. The appearance of such bound states might open the
door to the presence of topological effects on the bulk transport properties of dirty graphene.

PACS numbers: 73.22.Pr; 73.20.At; 72.80.Vp; 78.67.-n

I. INTRODUCTION

Driving a material out of equilibrium offers interesting
paths to alter and tune its electrical response. A prominent
example is the generation of light-induced topological proper-
ties,1–3 e.g. illuminating a material like graphene to transform
it in a Floquet topological insulator (FTI). Very much as or-
dinary topological insulators (TI),4–7 FTIs have a gap in their
bulk (quasi-) energy spectrum—being then a bulk insulator—
and their Floquet-Bloch bands are characterized by non-trivial
topological invariants.3,8,9 In addition, and despite some im-
portant differences with TIs,8,10 FTIs show a bulk-boundary
correspondence and hence host chiral/helical states at the sam-
ple boundaries.

The emergence of such non-equilibrium properties has been
intensively investigated in recent years in a variety of systems
including graphene11–19 and other 2D materials,20,21 normal
insulators,2,22 coupled Rashba wires,23 photonic crystals,24

cold atoms in optical lattices,25–31 topological insulators,32–36

and also classical systems.37 The research interest has focused
in many different aspects of the problem such as the character-
ization of the edge states,16,17 different signatures in magne-
tization and tunneling,38,39 the proper invariants entering the
bulk-boundary correspondence,8,10,19,40 their statistical prop-
erties,41,42 the role of interactions and dissipation41,43–46 and
the associated two-terminal47,48 and multiterminal (Hall) con-
ductance both in the scattering49 and decoherent regimes.45

So far, however, the experimental confirmation of the pres-
ence of such edge states has only been achieved in photonic
crystals.24 Nonetheless, in condensed matter systems the Flo-
quet induced gaps have already been observed at the surface
of a topological insulator (Bi2Se3) by using time and angle
resolved photoemission spectroscopy (tr-ARPES).33 More re-
cently, effective Floquet Hamiltonians were realized in cold
matter systems.50

Despite the intense research on FTIs, most of the studies
address pristine samples. Besides occurring naturally in any
sample, defects will also host Floquet bound states when the

sample is illuminated. If the defects are extended, the pres-
ence of the associated Floquet bound states might allow for
new experiments probing them. This motivates our present
study. Specifically, taking laser-illuminated graphene as a
paradigmatic example of a FTI, we study Floquet bound states
around defects in the bulk of a sample. We show that chi-
ral states circulate around holes or multi-vacancy defects of
different shapes and lattice terminations (zigzag, armchair or
mixed) like the ones showed in Fig. 1. The properties of
these states (quasi-energies and their scaling with the system
parameters, associated probability currents, etc.) are charac-
terized using both numerical simulations, by means of a tight-
binding model, and analytical approaches, by solving the ap-
propriate low energy Dirac Hamiltonian in a reduced Floquet
space. Quite interestingly, these bound states persist even in
the limit of a single vacancy defect. Furthermore, bound states
are found around adatoms that sit on top of a C atom (like H
or F, for instance).

While the presence of Floquet bound states around
vacancy-like defects or adatoms might jeopardize the exper-
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FIG. 1. (color online) Scheme of irradiated graphene with different
defects on the graphene lattice: holes, adatoms or regions with a
staggering sublattice potential. The arrows indicate the chirality of
the probability currents associated to the Floquet bound states around
the defects.
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imental observation of laser-induced gaps, they could, on the
other hand, also open the route towards the observation of in-
teresting topological transport phenomena in dirty bulk sam-
ples by changing localization or percolation properties, for in-
stance.

The rest of the paper is organized as follows. First, we in-
troduce our low energy model and the associated analytical
Floquet solutions (Sec. II). Several particular cases are pre-
sented in section III, namely, large holes with zigzag or arm-
chair edge terminations, as well as defects consisting of re-
gions with a staggered potential. The chiral nature of the cur-
rents associated to the bound states is discussed in Sec. IV. In
Sec. V we compare our solutions with numerical calculations
on a tight-binding model. The case of point like defects such
as vacancies or adatoms is presented in Sec. VI. We finally
conclude in Sec. VII.

II. THE LOW ENERGY MODEL AND THE FLOQUET
SOLUTION

Let us consider an irradiated graphene sample with a sin-
gle defect. Since the bound states we want to describe are
topological in origin,16,17,19 the specific form or nature of the
defect (see Fig. 1) is irrelevant for probing their existence—
though the details of the quasi-energy spectrum and the par-
ticular form of the wave-functions will depend on it. To sim-
plify the discussion we will start by assuming that the defect
potential does not mix the different graphene valleys (Dirac
cones)—this assumption will be relaxed when discussing par-
ticular examples. Hence, the low energy behavior around both
cones can be described by a Hamiltonian given by

Ĥ(t) = vF σ ⋅ (p +
e

c
A(t)) + V (r) , (1)

if we use the isotropic representation where the K
and K ′ cones are described by the wave-functions
ψK(r, t) = {ψA(r, t), ψB(r, t)}T and ψK′(r, t) =

{−ψ′B(r, t), ψ′A(r, t)}
T, respectively. Here vF ≃ 106 m/s de-

notes the Fermi velocity, σ = (σx, σy) represents the Pauli
matrices describing the pseudo-spin degree of freedom (sites
A and B of the honeycomb lattice), e is the absolute value
of the electron charge, c is the speed of light and A(t) =

Re{A0e
iΩt} the vector potential of the electromagnetic field

(a plane wave incident perpendicularly to the graphene sheet).
The associated electric field is then E(t) = −(1/c)∂tA(t) so
that ∣E∣ = E0 = (Ω/c)∣A0∣. It is important to emphasize that
while we will refer to graphene from hereon, our results apply
to any massless Dirac fermion system described by Eq. (1).

Since for solving the time-dependent Schrödinger equation
we will take advantage of the Floquet formalism51,52 used to
deal with time dependent periodic Hamiltonians, it is instruc-
tive to briefly introduce its basic ideas (for a more extensive
general reviews we refer to Refs. [53] and [54]). Floquet the-
orem guarantees the existence of a set of solutions of the form
∣ψα(t)⟩ = exp(−iεαt/h̵)∣φα(t)⟩ where ∣φα(t)⟩ has the same
time-periodicity as the Hamiltonian, ∣φα(t + T )⟩ = ∣φα(t)⟩
with T = 2π/Ω.51,53 The Floquet states ∣φα⟩ are the solutions

of the equation

ĤF ∣φα(t)⟩ = εα∣φα(t)⟩ , (2)

where ĤF = Ĥ − ih̵∂t is the Floquet Hamiltonian and εα the
quasi-energy. Using the fact that the Floquet eigenfunctions
are periodic in time, it is customary to introduce an extended
R ⊗ T space (the Floquet or Sambe space52), where R is the
usual Hilbert space and T is the space of periodic functions
with period T . A convenient basis of R ⊗ T can be built
from the product of an arbitrary basis of R (the eigenfunc-
tions ∣an⟩ of the time-independent part of the Hamiltonian,
for instance) and the set of orthonormal functions eimΩt, with
m = 0,±1,±2, ... that span T . Then,

∣φα(t)⟩ =
∞

∑
m=−∞

∣uαm⟩ eimΩt , (3)

or, in a vector notation inR⊗ T ,

∣φα⟩ = {⋯, ∣uα1 ⟩, ∣u
α
0 ⟩, ∣u

α
−1⟩,⋯}

T . (4)

Here, ∣uαm⟩ = ∑n B
α
mn∣an⟩ are linear combinations of the basis

states of R. Written in this basis, ĤF is a time-independent
infinite matrix operator with Floquet replicas shifted by a di-
agonal term mh̵Ω and coupled by the radiation field with the
condition, for pure harmonic potentials, that ∆m = ±1.

In the absence of any defect, the Floquet spectrum presents
dynamical gaps at different quasi-energies.1,17,19 Here, we will
focus on the gap, of order ηh̵Ω, that appears at ε ∼ h̵Ω/2 and
look for bound states inside it. Since we will only consider
the limit η = vF eA0/ch̵Ω ≪ 1, it is sufficient to restrict the
Floquet Hamiltonian to the m = 0 and m = 1 subspaces (or
replicas) for the analytical calculations—the numerical results
can retain a larger number (NFR) of replicas if necessary. As
discussed in Refs. [17] and [19], this restriction is enough to
get the main features of the energy dispersion and the Floquet
states when η ≪ 1.

The reduced Floquet Hamiltonian describing states near ε ∼
h̵Ω/2 then corresponds to

H̃F =

⎛
⎜
⎜
⎜
⎝

h̵Ω vF p− 0 0
vF p+ h̵Ω vF e

c
A0 0

0 vF e
c
A0 0 vF p−

0 0 vF p+ 0

⎞
⎟
⎟
⎟
⎠

, (5)

with p± = px ± ipy = −ih̵(∂x ± i∂y). The Floquet wave-
function has the form

φ(r) = {[u1A(r), u1B(r)], [u0A(r), u0B(r)]}T . (6)

It is straightforward to see that H̃Fφ(r) = εφ(r) implies that

u1A(r) = −
vF

h̵Ω − ε
p−u1B(r),

u0B(r) =
vF
ε
p+u0A(r) , (7)

and hence only two functions, u0A(r) and u1B(r), have to
be found. These functions satisfy

(−
v2
F

h̵Ω − ε
p2
+ h̵Ω − ε)u1B(r) = −

vF e

c
A0u0A(r),

(
v2
F

ε
p2
− ε)u0A(r) = −

vF e

c
A0u1B(r) , (8)
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where p2 = p+p− = p−p+.
Because we are interested in describing the effect of

a defect—which breaks the translational invariance of the
systems—, it is useful to change at this point to a polar co-
ordinate system, r and ϕ, centered at it. In terms of these
variables we have,

p± = −ie
±iϕh̵(∂r ± i

1

r
∂ϕ) ,

p2
= −h̵2

(∂2
r +

1

r
∂r +

1

r2
∂2
ϕ) . (9)

Similarly, as in the case of local defects in ordinary TI,55,56 the
solutions of Eq. (8) can be written as u1B(r) = eilϕf(k0r)
and u0A(r) = eilϕg(k0r) with l an integer number. This fol-
lows from the fact that [H̃F ,L] = 0, where

L = (−ih̵∂ϕ ⊗ σ0 +
h̵

2
σz)⊗ τ0 +

h̵

2
σ0 ⊗ τz (10)

and Lφ(r) = h̵l φ(r), where φ(r) is given by Eq. (6). In or-
der to proceed further we define the adimensional parameters

µ =
ε

h̵Ω/2
− 1 , k0 =

Ω

2vF
, ξ = k0r . (11)

With this notation, the equations for f(ξ) and g(ξ) become

[(∂2
ξ +

1

ξ
∂ξ −

l2

ξ2
) + (1 − µ)2

] f(ξ) = −2η(1 − µ) g(ξ),

[(∂2
ξ +

1

ξ
∂ξ −

l2

ξ2
) + (1 + µ)2

] g(ξ) = 2η(1 + µ) f(ξ) .

(12)

For quasi-energies inside the bulk dynamical gap, the wave-
function must decay far from the defect. Hence, let us look for
a solution of the form f(ξ) = cKl(λξ) and g(ξ) = dKl(λξ),
where Kl(x) is the modified Bessel function of the 2nd kind
that satisfy

(∂2
ξ +

1

ξ
∂ξ −

l2

ξ2
)Kl(λξ) = λ

2Kl(λξ) . (13)

Introducing this into Eqs. (12) we arrive to the following con-
dition for λ,

[λ2
+ (1 − µ)2

][λ2
+ (1 + µ)2

] = −4η2
(1 − µ2

) . (14)

and the relation

c

d
= −

2η(1 − µ)

λ2 + (1 − µ)2
. (15)

The equation for λ has four solutions which are complex con-
jugate in pairs. The two physical solutions correspond to
Re(λ) > 0 as this guarantees an exponential decay for large r.
Let us denote these two solutions as λ+ and λ− = λ∗+,

λ± =

√

−1 − µ2 ± 2
√
−η2 + µ2(1 + η2) . (16)

The region where Re(λ) > 0 corresponds to ∣µ∣ < η/
√

1 + η2,
that is, inside the bulk dynamical gap,17 ∆ = h̵Ωη/

√
1 + η2.

The other components of the Floquet wavefunction can be
readily obtained as

u1A(r) =
iei(l−1)ϕ

1 − µ
(∂ξ +

l

ξ
) f(ξ) =

iei(l−1)ϕ

1 − µ
f̃(ξ),

u0B(r) = −
iei(l+1)ϕ

1 + µ
(∂ξ −

l

ξ
) g(ξ) = −

iei(l+1)ϕ

1 + µ
g̃(ξ) ,

(17)

which are straightforward to evaluate since
(∂ξ ∓

l
ξ
)Kl(λξ) = −λKl±1(λξ). It is worth to point

out that ⟨u1∣u0⟩ = 0 so that φ(r, t) can be normalized for any
time t in this approximation,17 which allows to calculate not
only time-averaged quantities but also their time dependence
explicitly.

To proceed any further we need to specify the defect type,
which allows the setting of the appropriate boundary condi-
tions. In the following we present a detailed discussion for
some particular but relevant cases.

III. BOUNDARY CONDITIONS

The boundary conditions (BC) must guarantee that the
probability current perpendicular to the defect boundary can-
cels out. Here, we shall consider only three types of BCs that
represent three generic cases and serve to illustrate the over-
all picture: the zigzag-like BC (ZZBC), the armchair-like BC
(ABC) and the infinite mass BC (IMBC).57

Since the BC needs to be satisfied at any time, in Floquet
space the boundary condition must be imposed on each replica
separately. Therefore, the boundary problem is analogous to
the static one and we shall follow Refs. [58] and [59] and use
a matrix M to introduce the appropriate relations between
the components of the A and B sublattices and the two Dirac
cones at the boundary for the three types of BCs.59,60

An arbitrary BC can be written in the form

Ψ(r = R(ϕ), ϕ) =M(ϕ)Ψ(r = R(ϕ), ϕ) , (18)

where R(ϕ) defines the shape of the defect and the matrixM
(in the isotropic representation) is given by

M(ϕ) = (ν̂ ⋅ τ )⊗ (n̂ ⋅σ) . (19)

Here σ refers to the sublattice pseudospin and τ to the valley
(Dirac cones) isospin. The matrix M has all the information
about the shape of the boundary via the unit vector n̂. On
the other hand, the nature of the honeycomb lattice’s termina-
tion is related to the unit vector ν̂, that rules whether the two
Dirac cones mix or not. Namely, for a defect with a straight
boundary,59

ZZBC→ ν̂ = ẑ , n̂ = ±ẑ

ABC→ ν̂ ⋅ ẑ = 0 , n̂ = ẑ × n̂B (20)
IMBC→ ν̂ = ẑ , n̂ = ẑ × n̂B ,
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where n̂B is an unitary vector perpendicular to the defect
boundary and pointing inwards. From the above expressions
it is clear that while armchair BC mixes cones, zigzag and
infinite mass BCs do not. In the following we shall be in-
terested in the comparison between analytical and numerical
results for simple geometries, and so we will restrict ourselves
to handle only defects with regular polygonal shapes with N
sides. The general form of MN for such cases is given in the
Appendix A.

While for the honeycomb lattice, defects with well defined
terminations can only have N = 3 or N = 6, it is useful to
discuss the limiting case of a circular defect and then compare
with the numerics. For the ABC and IMBC this corresponds
to the limit N → ∞ while for the ZZBC care is needed to
account for the change of the sublattice character of the edge
atoms [n̂ = ±ẑ depending on the sublattice].

A. Circular defect with “zigzag” boundary condition

The ZZBC does not mix valleys. This is valid for arbitrary
N , i.e. MN is diagonal in the isospin subspace. Moreover,
it is also diagonal in the pseudospin subspace. However, it is
possible, as in the hexagonal geometry, that different sides of
the polygon terminate in sites corresponding to different sub-
lattices. This is represented by the n̂ = ±ẑ in Eq. (20), where
the sign changes from side to side, thereby making it cumber-
some to handle analytically. Hence, for the sake of simplic-
ity, we will consider a ‘fictitious’ case where the ± sign is ig-
nored and later compare with the exact numerical calculation.
Hereon we will refer to it as the circular-ZZBC (cZZBC).This
will help us to better grasp some aspects of the problem.

For a circular defect (of radius R) the BC implies, say, that
u1B(∣r∣ = R) = 0 and u0B(∣r∣ = R) = 0—this corresponds
to a honeycomb lattice that ends on A sites. To satisfy it we
need to combine the two independent bulk solutions discussed
in Section II. That is,

fl(ξ) = c+Kl(λ+ξ) + c−Kl(λ−ξ)

gl(ξ) = d+Kl(λ+ξ) + d−Kl(λ−ξ) , (21)

where we have kept the previous notation. Then we have that

fl(ξ0) = 0, g̃l(ξ0) = 0, (22)

with ξ0 = k0R. This leads to the following relations between
coefficients: ∣c+∣ = ∣c−∣ and ∣d+∣ = ∣d−∣. By introducing them
back into Eqs. (12) we obtain, for the K cone, the following
equation for the quasi-energy (µ)

Im[β+λ+Kl(λ−ξ0)Kl+1(λ+ξ0)] = 0 . (23)

with

β± = −
λ2
± + (1 − µ)2

2η(1 − µ)
. (24)

The solutions (µl) to this equation form a discrete set of quasi-
energies inside the bulk dynamical gap. Figure 2 shows them
as a function of ξ0 (throughout this work, we shall use η =

-0.15

-0.1
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0
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0.1

0.15

0 1 2 3 4 5

µ

ξ0

−1

0

1

−1

0

1

FIG. 2. (color online) Energy levels for η = 0.15 and l = 0, ±1,
±2,.. as a function of the size of the defect. Solid and dashed lines
correspond to the different Dirac cones. In both cases, the thicker
lines correspond to l = 0 and energy levels with l > 0 (l < 0) emerge
from the top (bottom) of the dynamical gap.

0.15 and h̵Ω = 0.1 t in all numerical calculations). Notice
that the symmetry between l > 0 and l < 0 is broken by the
radiation field.

The symmetry of the Floquet spectrum around the cen-
ter of the gap (µ = 0) is recovered when the comple-
mentary valley (K ′ cone) is considered. For that, we
recall that the solutions for the K ′ cone can be ob-
tained by relabeling the Floquet wavefunction as φ′(r) =

{[−u′1B(r), u′1A(r)], [−u
′
0B(r), u′0A(r)]}

T (see the ap-
pendix). This results in an additional set of quasi-energies
that can be obtained from the condition

Im[β−λ+Kl(λ−ξ0)Kl−1(λ+ξ0)] = 0. (25)

It can be shown that the latter set of quasi-energies can be ob-
tained from Eq. (23) by exchanging (l, µ) → (−l,−µ), which
is precisely what is needed to recover the symmetry around
µ = 0.

It is interesting to consider, for a fixed l, the limit of very
large radii, ξ0 ≫ ξd = k0 h̵vF /∆ =

√
1 + η2/2η and approxi-

mate Kl(λξ0) by its asymptotic expansion. By doing so, Eqs.
(23) and Eq. (25) leads to

µl = ±η
2
+

(l ± 1/2)η

ξ
+O(ξ−2, η2

) , (26)

respectively. This result can be understood in terms of the
quasi-energy dispersion of the edge states in irradiated semi-
infinite graphene sheets with a zigzag termination.17 In that
case, it was shown that, close to the center of the gap, the
quasi-energy dispersion can be approximated by εk = h̵Ω/2 ±
h̵Ωη2/2 + h̵vF ηk. Our result for µl is then reflecting the fact
that the wavevector k along the defect’s edge must be quan-
tized,

kl =
(l ± 1/2)

R
. (27)

It is worth mentioning that in this large radii limit the Flo-
quet states have roughly the same weigth on the two Floquet
replicas.
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FIG. 3. (color online) Energy levels for the case of IMBC. Param-
eters as in Fig. 2. The solid (dashed) line corresponds to K(K′)
cone. There is no solution with l = 0.

B. Infinite mass boundary condition

The IMBC was introduced by Berry and Mondragon in Ref.
[57] to study confined Dirac particles (‘neutrino billiards’). It
corresponds to add a mass term to the Dirac equation only in a
given region of space (in our case the defect) and take the limit
of such a mass going to infinity. While this could be thought
as a local staggered potential in the honeycomb lattice, it must
be kept in mind that this is only the case for a staggered po-

tential much smaller than the bandwidth–this is so because if
the staggered potential is too large it behaves like an effec-
tive hole (introducing inter-valley scattering depending on the
geometry of the defect). The latter limit was not a problem
in Ref. [57] , because they only considered a single unbound
massless Dirac particle.

Since the IMBC does not mix valleys either, we can treat
again both Dirac cones separately. We start by using the circu-
lar geometry, which corresponds to the N →∞ limit ofMN .
For the IMBC M∞ is not longer diagonal in the pseudospin
subspace and thus the A and B components of the wavefunc-
tion are not independent any more. In fact, Eq. (18) requires
that57

ujB(R,ϕ)

ujA(R,ϕ)
= −ieiϕ ,

u′jB(R,ϕ)

u′jA(R,ϕ)
= ie−iϕ , (28)

for the K and K ′ cone, respectively, where j = 0,1 is the
Floquet subspace index —notice that limN→∞ ΞN(ϕ) = ie−iϕ

in the definition of the MN matrix, see appendix. Following
the same procedure as in the previous section, and using the
same notation, these conditions imply that

(1 − µ) fl(ξ0) = ±f̃l(ξ0) ,

(1 + µ) gl(ξ0) = ±g̃l(ξ0) , (29)

while the equation for the quasi-energies is given by

Im [(λ2
+ + (1 − µ)2) {λ+Kl+1(λ+ξ0) ∓ (1 + µ)Kl(λ+ξ0)} {λ−Kl−1(λ−ξ0) ∓ (1 − µ)Kl(λ−ξ0)}] = 0. (30)

Here the (-) and (+) signs correspond to K and K ′ cone, re-
spectively. It can be shown that the above expression remains
invariant under the change (µ, l) → (−µ,−l) for each cone
separately and, therefore, unlike the cZZBC, the Floquet spec-
trum for the IMBC is symmetric around µ = 0 for each cone.
Using this symmetry of Eq. (30) it is straightforward to verify
that there is no solution for l = 0 (that necessarily corresponds
to µ = 0). The IMBC Floquet spectrum is shown in Fig. 3 as
a function of ξ0 . Note that the two cones have a completely
different spectrum. This could be anticipated from the fact
that the presence of both the staggered potential and the radi-
ation field breaks the valley symmetry (cf. Fig. 5 below)—it
is worth mentioning that the bulk Floquet gap at k = 0 can
even present a topological phase transition depending on the
relative magnitude of the mass term and the radiation field.61

When defects are made of regular polygons, i.e. with finite
N , theMN matrix acquire a non-trivial structure as a function
of ϕ. Thus, the states whose quantum numbers l differ in N
are coupled, thereby leading to avoided crossings. The equa-
tions for this case are rather cumbersome (some of them are
presented in the appendix) but can be solved in a perturbative
fashion. Some examples are presented in Sec V in comparison
with the numerical solutions of the tight-binding model.

C. Armchair boundary condition

The ACB is analog to the IMBC in the pseudospin sub-
space, leading to similar quasi-energy spectra. The difference
between both boundary conditions rely on the isospin sub-
space: while ACB mixes cones, IMBC does not. Thus, ACB
exhibits additional avoided crossings between modes belong-
ing to different cones (see numerical results in Sec. V). Be-
cause cones are mixed, they both need to be treated together
and hence the dimension of the Floquet space is doubled. The
analytical procedure is similar to the one presented for the
other BCs, whose details are beyond the scope of the present
work. We will then limit, for this case, to discuss the numeri-
cal results in in Sec. V.

IV. PROBABILITY CURRENT DENSITY: CHIRAL
CURRENT

So far we have mainly analyzed the spectrum of the Floquet
bound states inside the dynamical gap (around h̵Ω/2) for a
circular defect. Now we focus on their chiral nature. The
velocity operator is given by v̂ = vFσ and hence the time
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FIG. 4. (color online) Probability (top) and current (bottom) densities
as a function of the radial coordinate ξ for two different boundary
conditions studied in Sec. III. Notice the log scale on the horizontal
axis. In all cases, the defect boundary is located at ξ0 = 1 (R =

30acc). Probabilities and current densities with ∣l∣ > 3 are several
orders of magnitude smaller than the showed in the figure and was
omitted for clarity. In the case of the IMBC, curves with l and −l are
coincident (l > 0 are showed). The spatial range showed in the figure
correspond to the distance from the centre of the defect to the end
of the samples of graphene sheets used in Sec. V for the numerical
tight-binding calculations (500 ×

√

3acc).

averaged (over one period) probability current density is

J(r) = vF φ
†
(r)σφ(r)

= (⟨σr⟩1 + ⟨σr⟩0) r̂ + (⟨σϕ⟩1 + ⟨σϕ⟩0) ϕ̂ , (31)

where ⟨σα⟩j = {u∗jA,l(r), u
∗
jB,l(r)}σα{ujA,l(r), ujB,l(r)}

T ,
j = 0,1 is the same as earlier, σr = σ ⋅ r̂ and σϕ = σ ⋅ ϕ̂.
Using the solutions founded in the previous section, it can be
readily shown that

⟨σr⟩1 = −
2

1 − µl
Im (fl(ξ)f̃

∗
l (ξ))

⟨σr⟩0 = −
2

1 + µl
Im (gl(ξ)g̃

∗
l (ξ))

⟨σϕ⟩1 = −
2

1 − µl
Re (fl(ξ)f̃

∗
l (ξ))

⟨σϕ⟩0 = −
2

1 + µl
Re (gl(ξ)g̃

∗
l (ξ)) . (32)

Since λ+ = λ∗−, one can easily check that Im (fl(ξ)f̃
∗
l (ξ)) =

Im (gl(ξ)g̃
∗
l (ξ)) = 0 so that the radial component of the cur-

rent density vanishes, as expected. Therefore, we have

Jl(ξ) = −2 vF (
fl(ξ)f̃

∗
l (ξ)

1 − µl
+
gl(ξ)g̃

∗
l (ξ)

1 + µl
) ϕ̂ . (33)

Figure 4 shows the spatial dependence of both the prob-
ability and the current density for the K and K ′ cones and
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FIG. 5. (color online) Dispersion relation of a nanoribbon of ∼ 106

atoms width with zigzag (top row) and infinite mass (down row)
boundary conditions obtained numerically by decimation procedures
and a tight binding model. All parameters like h̵Ω, η and mass δ are
the same used in Sec. V.

for the two different boundary conditions analyzed in Sec.
III. The curves correspond to a defect of R = 30acc, i.e.,
ξ0 = 1 with the parameters used throughout this work. We
have only retained the Floquet wavefunctions with ∣l∣ = 0,1,2,
whose corresponding quasi-energies can be seen from Fig. 2
and Fig. 3 for ξ0 = 1. Due to the oscillating nature of the
Floquet wavefunctions both probability density functions and
current densities show relative maxima and minima (with the
same or different signs in the case of current densities) as a
function of ξ. Nevertheless, all of them decay exponentially
away from the edge of the defect. This is more evident for the
Floquet wavefunctions whose quasi-energies are close to the
middle of the dynamical gap as in that case the decay length is
shorter. For quasi-energies close to the edges of the dynamical
gap, the decay length becomes larger and larger and the ξ−1/2

power law decay, characteristic of the Kl Bessel functions
with purely imaginary argument becomes apparent. In these
latter cases, however, the current amplitude becomes several
orders of magnitude smaller than in the formers (see Fig. 6).
For the cZZBC, Fig. 4 shows the equivalent role that play the
K and K ′ cones under the change l↔ −l, as it was explained
before in Sec. III A. Unlike the cZZBC, for the IMBC the K
and K ′ cones are inequivalent. In this case, as discussed in
Sec. III B, the change l↔ −l lead to the same probability and
current densities for each cone separately.

The lack of equivalence between the K and K ′ cones for
defects with IMBC is also present in systems other than cir-
cular defects. For illustrating purposes, Fig. 5 shows the k-
dependent local density of states (LDOS) for a nanoribbon
with both cZZBC and IMBC, projected on the m = 0 Floquet
replica. Notice that, unlike the cZZBC, the IMBC presents
an asymmetry (at each edge) with respect to the middle of
the dynamical gap. The symmetry is broken by the presence
of the mass term at the edges and it is only globally recovered
when both edges are considered—this is so because for zigzag
nanoribbons, as considered here, the atoms at the two edges
belong to different sublattices.

Even when the current density oscillates as it decays away
from the defect, the total current (current densities integrated
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FIG. 6. (color online) Total current as a function of the quantum
number l for different defect sizes (ξ0 = 1,5,10,20). Open (close)
symbols correspond to Floquet states lying in theK (K′) cone (lines
are only guides for the eye). A curve with a larger span on l corre-
sponds to a larger ξ0. The dotted black line in the top panel represents
the η/(1+η2) value expected for the current of the Floquet edge state
in a semi-infinite irradiated graphene sheet with zigzag termination.
The inset shows how this limit is reached for l = 0 when the size of
the defect increases.

on r) for cZZBC has the same sign for all the bound states.
This is the signature of the chirality of the Floquet states and
their signs only depends on the sign of the helicity of the cir-
cularly polarized radiation field. Figure 6 shows the total cur-
rents for both cZZBC and IMBC as a function of the quantum
number l for defects with ξ0 = 1,5,10,20. Unlike the cZZBC,
the IMBC only presents chiral Floquet states for the K cone.
Analogously, Fig. 5 shows a similar behavior for the nanorib-
bon with IMBC: while the K cone presents two chiral states
at each edge, K ′ cone has none.

Finally, it is interesting to analyze the value of the total cur-
rent of a given bound state in the limit of a large defect. As
discussed in Sec. III A for largeR the quasi-energy dispersion
can be related to the one corresponding to a nanoribbon as
the boundary of the defect appears (locally) as a straight line
(i.e. when the radius is much larger than the decay length).
In that case the expected velocity for each bound states is
v = h̵−1∂εk/∂k ≃ vF η, or more precisely v = vF η/(1 + η2).17

The inset of the Fig. 6 shows the current in units of vF for
Floquet states with l = 0 (red points) as a function of the size
of the defects. The black dotted line represent the expected
η/(1 + η2)—this is also indicated in the main figure. Clearly,
there is a good agreement with the expected value. A similar
behavior is observed for states with different quantum number
l as the size of the defect increases.

V. COMPARISON WITH THE TIGHT-BINDING MODEL

In this section, we calculate the quasi-energy spectra within
the dynamical gap numerically as a function of the size and
shape of the defect for all three types of boundary conditions
mentioned before, ZZBC, ABC and IMBC, and compare with
the analytical results when possible.

In order to describe the electronic structure of irradiated
graphene sheets near the Fermi energy, we resort to the widely
used tight-binding Hamiltonian,62–64 which is written only in
terms of pz orbitals with energies εi for a given carbon atom
located at site i and hopping matrix elements γij between
nearest-neighbors carbon atoms. In second quantization no-
tation, it results

H =∑
i

εi c
†
ici − ∑

⟨i,j⟩

(γij c
†
icj +H.c.) , (34)

where the operator c†
i(ci) creates (annihilates) a pz-electron

on site i. The effect of the laser is introduced through the
time-dependent phase of the hopping matrix elements,1,65,66

γij = γ0 exp(i
2π

Φ0
∫

rj

ri
A(t) ⋅ d`) , (35)

where Φ0 is the magnetic flux quantum and γ0 ∼ 2.7 eV.67

By using Floquet theory54,68,69 as described before one can
compute the Floquet spectrum. Once again, one ends up with
a time-independent problem in an expanded space. In this case
one can picture it as tight-binding problem in a multichannel
system where each channel represents the graphene sheet with
different number of photons.51,66,70 It is worth mentioning that
in the tight-binding method the time dependent perturbation
is never purely harmonic given the exponential dependence
of Eq. (35) on the radiation field amplitude. Hence, there is
a coupling among all the replicas66 and not just those with
∆m = ±1. Nevertheless, for η ≪ 1, only the latter are rele-
vant.

Because the problem in the Floquet space becomes time in-
dependent, one can use standard techniques to calculate the
quasi-energy spectrum. In this case we used the Chebyshev’s
polynomials method71 which provides an order N method of
proven efficiency.72 This allows us to tackle very large sys-
tems sizes so that our defect is far from the boundaries and can
be considered as a ’bulk defect’. For simplicity we only re-
tained two Floquet replicas just like its theoretical counterpart
studied in Section II. This is a good approximation whenever
η ≪ 1. The addition of more replicas would lead to the devel-
opment of a hierarchy of bound states in a similar way as for
edge states at the border of an irradiated graphene sample.19

Defects were introduced in graphene by defining geomet-
rical shapes—triangles, hexagons, and circles—and removing
all atoms inside it (for the ZZBC and ABC) as well as any
remaining dangling bonds. In the case of the IMBC, a stag-
gered potential was introduced only inside the defect—i.e. we
added on-site energies (±δ) whose signs depend on the sublat-
tice index. In all calculations we used δ = γ0/2, which is
larger than h̵Ω/2 (taken to be ∼ γ0/20) but not too large as to
become equivalent to a hole (δ → ∞ is equivalent to a hole
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FIG. 7. (color online) Color map of the Floquet local density of
states (FLDOS) projected on them = 0 replica and onto sites located
around the boundary of the defects for different sizes of the defects,
ξ̄0 = k0R̄ (see main text). Top and bottom panels show the case of
triangular and hexagonal holes, respectively, with zigzag (left ) and
armchair (right) edge termination. The appearance of Floquet bound
states inside the bulk dynamical gap is apparent from the figure. The
dashed lines in the zigzag triangular case correspond to the analytical
solution found in Sec. III A for a ‘zigzag circle’.

defect). Triangles and hexagons in arbitrary orientations lead
to edges with mixed zigzag and armchair terminations. How-
ever, for specific orientations with respect to the C-C bonds,
it is possible to construct defects with only one termination
type—we will refer to them as zigzag/armchair triangular and
hexagonal defects. Circles, of course, are always a mixture
of different edge terminations and, as we will show, present
some special features. In all cases, the numerical calculations
were performed using graphene samples of 1000 × 1000 unit
cells.

Figures 7 and 8 show a color map of the Floquet local den-
sity of states (FLDOS) inside the bulk gap (projected onto
a few sites around the defect boundary, and on the m = 0
replica) as a function of the size of the defect for hole and
staggered potential defects, respectively. The shape of the
defect is indicated in the figures. Left panels correspond
to zigzag terminations and the right panels to the armchair
ones. Dashed (black) lines correspond to the solutions ob-
tained from the continuum model (see discussion below). It
is apparent from the figures that discrete Floquet bound states
do appear inside the dynamical gap. Interestingly, in most
cases, the quasi-energy spectrum resemble the ones obtained
with the analytical model proposed in Sec. II. This remains
valid for the triangular shaped zigzag hole even when the an-
alytical solution relies on the circular symmetry of the de-
fects. It is worth mentioning that for a quantitative compar-
ison an effective radius is needed. In these cases we used
R̄ = 1/(2π) ∫

2π
0 R(ϕ)dϕ = R0a0,N (see appendix).

There are few points worth to emphasize:

(i) avoided crossings are observed in most cases due to the
discrete rotational symmetry of the defect that intro-
duces a ϕ dependence onM , as well as of the boundary
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FIG. 8. (color online) Same as Fig. 7 but for the case of where
a staggered potential is included inside the defect region (IMBC).
Dashed lines on the bottom panels correspond to the analytical solu-
tions calculated for the IMBC hexagon as explained in the appendix.
Notice that, unlike the hole defects, the FLDOS for the IMBC does
not depend on the termination of the defects—except for the zigzag
triangular defect (see main text).

radius R(ϕ), as discussed in Sec. III and the appendix.
This avoided crossings occurs whenever the quantum
numbers of the crossing levels, l and l′, differ in a mul-
tiple of the number of sides N . A few particular exam-
ples are indicated in the Fig. 8.

(ii) the latter picture is very particular in the case of the
zigzag triangular hole defect (top-left in the Fig. 7). On
the one hand, the matrix M is independent of ϕ—note
that n̂ = ẑ for any ϕ as the edge site always belong to
the same sublattice and the direction of ν̂ is fixed for
each cone—and hence the only dependence on ϕ ap-
pears through the boundary radius R(ϕ). On the other
hand, for each cone, the ‘unperturbed’ energy levels of
the ‘zigzag circle’ are never degenerated, making the
effect even weaker. As a result, the energy level are
well described by assuming that there is no mixing be-
tween states with different quantum number l. Notice
also there is no mixing between different cones or val-
leys.

(iii) the zigzag triangular defect with the staggered potential
shows a shift in energy with respect to the IMBC solu-
tion. This is related to the sublattice imbalance of the
edge sites and the fact that both sublattices have differ-
ent energy inside the defect (staggered potential). This
effect is not observed for the other geometries as they
have balanced edges.

(iv) the armchair hexagonal hole defect shows two distinct
contributions to the quasi-energy spectrum. The one
shown in Fig. 7, that is very close to the analytical so-
lution for IMBC [except for the anticrossings between
energy levels belonging to different cones that are only
present in the armchair case (black arrows)], and the
one presented in Fig. 14 of the appendix, that follow a
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FIG. 9. (color online) Same as Fig. 7 but for a circular defect: (i)
hole (top); (ii) staggered potential (bottom).

completely different pattern. The two cases differ in the
way the atom chains that constitute each side match at
the vertices.

(v) the zigzag hexagonal hole defect presents a rather com-
plex spectrum quite different from the rest. This is re-
lated to the strong mixing between states with different
l imposed by the BC that requires that alternating com-
ponents of the wavefunction cancel in alternating sides.
A precise description of this case is beyond the scope of
the present work.

Finally, we show numerical results for circular defects in
the Fig. 9. The top panel corresponds to a hole defect and the
bottom one to the staggered potential defect. Clearly, the lat-
ter is very well described by the analytical solutions (dashed
black lines). Notice that no avoided crossings (if they exist)
are resolved in our numeric simulations, presumably because
they are very small since the actual geometry of the defect is
very close to a circle. The spectrum of the circular hole de-
fect is, as in the zigzag hexagonal one, very complex. Here,
however, a more regular pattern emerges for large R as the
quasi-energy of the bound states are pretty much confined to
regions delimited by the analytical solution of the zigzag cir-
cular defect (dashed lines).

One of the questions that remains is to what extent do these
bound states survive in the limit of a vacancy defect or, more
generally, in the case of adatoms. This is particularly impor-
tant as the presence of bound states around such impurities
might hinder the ability to resolve the laser-induced gaps in
actual experiments or lead to percolating states in dirty sam-
ples.

VI. THE ADATOM AND VACANCY DEFECTS

The continuum model presented in Sec. II is not adequate
for analyzing the vacancy limit. In fact, in the R → 0 limit
for zigzag hole (the appropriate one for a vacancy defect) one
finds that there are no solutions inside the gap. Of course, this
is not the correct approach as one should introduce a spatial
cutoff to account for the finite size of the defect. In this sense,
a tight-binding model approach is more convenient and allows
for its generalization to include the adatom case.

Since we focus on the bound states within the dynamical
gap at h̵Ω/2, it is enough to consider, as before, only two Flo-
quet replicas, m = 0 and m = 1. While for the numerical
calculations we will use the real space version of the tight-
binding Hamiltonian presented in the previous section, for the
discussion of the main aspects of the problem it is better to
use a k-space representation. Then, the Floquet Hamiltonian
is written as

H̃F =∑
k

h̵Ω(a†
1ka1k + b

†
1kb1k)

−t ∑
k,m=0,1

(φk a
†
mkbmk + φ

∗
k b

†
mkamk) (36)

+∑
k

[Ak(a
†
1kb0k + b

†
1ka0k) +A

∗
k(b

†
0ka1k + a

†
0kb1k)] .

Here a†
mk and b†

mk create an electron on the Floquet replica
m on the Bloch state with momentum k on the sublattice A
and B, respectively, φk = ∑δj e

jk⋅δj , where {δi} are the rel-
ative coordinates of the three nearest neighbors A sites of a
givenB site, t = γ0J0(z) , andAk = γ0J1(z)∑δj e

ik⋅δj(δjx−

iδjy)/acc with Jn(x) the n-th Bessel function of the first kind
and z = 2πA0acc/Φ0.66

We describe the adatom impurity with a single orbital of
energy ε bounded to the C atom at the origin. The Hamiltonian
of the impurity in the Floquet representation is

Himp = ε f †
0f0 + (ε + h̵Ω)f †

1f1 , (37)

and the hybridization term is

Hhyb = ∑
k,m=0,1

V [f †
mamk + a

†
mkfm] . (38)

Note that the the coupling matrix element V does not depend
on the radiation field as we are considering normal incidence,
hence the phase factor appearing in Eq. (35) is zero. The
vacancy limit can be obtained from here by taking V →∞.

We define the Green function matrix G with elements given
by Gij = ⟨⟨fi, f

†
j ⟩⟩. Using the Dyson equation it can be written

as

G(ω) = (
ω − h̵Ω − ε − V 2G11(ω) −V 2G10(ω)

−V 2G01(ω) ω − ε − V 2G00(ω)
)

−1

,

(39)
where Gnm(ω) = ∑kGnm(ω,k) and Gnm(ω,k) =

⟨⟨ank, a
†
mk⟩⟩. Explicit expressions for the latter propagators

are

G00(ω,k)=
ω(ω−h̵Ω)[ω(ω−h̵Ω)2 − ω∣φk∣

2 − (ω−h̵Ω)∣Ak∣
2]

D(ω,k)
,

(40)
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FIG. 10. (color online) Local retarded Green’s functions (Gnm) for
the irradiated pristine graphene corresponding to the Floquet sub-
spacesm,n = 0,1. These calculations were obtained numerically by
decimation procedures, projecting onto only one C atom and using
the same parameters η and h̵Ω as earlier. The black arrows show the
zeroes of G00 and G11, i.e., the quasi-energies of the bound states
for the vacancy (see main text).

and

G01(ω,k) =
ω(ω − h̵Ω)[(ω − h̵Ω)φk + ωφ

∗
k]A

∗
k

D(ω,k)
, (41)

with

D(ω,k) = [(ω2
− ∣φk∣

2
)(ω − h̵Ω) − ω∣Ak∣

2
] (42)

[((ω − h̵Ω)
2
− ∣φk∣

2
)ω − (ω − h̵Ω)∣Ak∣

2
]

−[(ω − h̵Ω)φk + ωφ
∗
k][ωφk + (ω − h̵Ω)φ∗k]∣Ak∣

2 .

The propagatorG11(ω,k) can be obtained fromG00(ω,k) by
the substitution ω↔ (ω−h̵Ω) whileGr10(ω,k) = G

a
01(ω,k)

∗

where r and a denote retarded and advanced, respectively.
The energies of the bound states (if they exist) are deter-

mined by the poles of the trace of Eq. (39). This can be
found numerically (as it is done below) but to grasp the main
physical ingredients it is better to analyze the problem per-
turbatively. The imaginary part of the retarded self-energy
V 2Gr00(ω) is proportional to the LDOS of the irradiated pris-
tine graphene projected onto the m = 0 Floquet subspace
and has a dynamical gap centered at h̵Ω/2. Its real part, on
the other hand, is non zero inside the gap and diverges at
the gap edges with different signs on each edge. As a con-
sequence, to the lowest order in the impurity hybridization,
the impurity spectral density (∝ −Im(Gr00(ω))) has always
a pole within the dynamical gap with an energy given by
ω − ε − V 2Gr00(ω) = 0. Assuming, for the sake of argument,
that ε = 0 , it is easy to see that in the same order and in the
m = 1 Floquet subspace there is a bound state symmetrically
positioned with respect to the gap center.

These results are in fact exact since G01(ω) = G10(ω) = 0
within the dynamical gap—we checked this numerically (see
Fig. 10) but it can also be obtained from Eq. (41) in the
low energy limit where φk (Ak, D(ω,k)) is odd (even) under
the change k → −k. Therefore, there are two bound states,
belonging to the m = 0 and m = 1 Floquet replicas, whose
energies are given by the zeroes of ω − ε − V 2G00(ω) and
ω − ε − h̵Ω − V 2G11(ω), respectively.
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FIG. 11. (color online) Floquet local density of states around the
center of the dynamical gap as a function of hybridization strength,
projected on the three first neighbors of the carbon atom at which the
impurity is adsorbed. Left and right panels correspond to projections
onto m = 0 and m = 1 Floquet subspaces, respectively. The bound
states inside the dynamical gap were obtained separately for adatoms
with single orbital energies: ε0 = 0, ε1 = h̵Ω/2 and ε2 = h̵Ω. At the
right of each panel we show the vacancy limit where both the adatom
and the C atom below it are removed (red an yellow atoms in the
inset).

Figure 11 shows a color map of the local Floquet spectral
density (corresponding to the three sites around the adatom)
calculated using the Chebyshev method, described in Sec. V,
as a function of the hybridization matrix element V for dif-
ferent values of ε. We found that while the energies of the
bound states depend on the energy of the adatom, these states
are always present regardless of the size of the hybridization.
The symmetry between replicas is broken if ε ≠ 0 and it is
only recovered in the limit of very large hybridization where
the problem reduces to that of a vacancy. In this vacancy limit
(V → ∞), the position of the bound states, are given by the
solution of Gr00(ω) = 0 and Gr11(ω) = 0 (indicated by the ar-
rows in Fig. 10), being the spectrum within the dynamical gap
symmetric with respect to the gap center.

Interestingly, when looking at the weight of each of these
states on the adatom and the three carbon atoms around it,
one finds that they belong to a single replica. This particular
result is a consequence that the coupling between the adatom
and the layer of graphene was considered unaffected by the
radiation field— see Figure 11.

VII. CONCLUSIONS

In summary, we have presented a detailed study of the Flo-
quet bound states associated to defects in graphene illumi-
nated by a laser. In particular, we focus on the bound states at
the dynamical gap (h̵Ω/2) using both analytical and numerical
techniques applied to different defect types.
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On one hand we consider large hole-like defects with dif-
ferent terminations. In this case, we show how the number of
bound states increases with the defect radius and that the spec-
trum depends on the shape and type of lattice termination. In
the case of cZZBC we proved analytically that in the limit of
large radii the discrete bound states can be seen as nanoribbon-
like chiral states16,17 with a quantized linear quasi-momentum,
as might have been anticipated. Staggered like potential (in-
finity mass boundary conditions) was also discussed with sim-
ilar results, except that in this case there is a clear distinction
between the two Dirac cones, and only one of them support
chiral bound states. The chiral nature of the states was cor-
roborated by an explicit calculation of the probability currents
around the defect in the two analytical cases we presented.

On the other hand, we also consider point-like defects such
as vacancies and adatoms and show that they also exhibit
bound states around them. While the bound states spectrum
depends on the value of the adatoms’ orbital energy (ε) in the
large hybridization or vacancy limit, they remain close to the
bottom (top) border of the gap in the m = 0 (m = 1) replica.

Following the argument presented in Ref. [19] one can an-
ticipate that additional bound states will also appear inside the
high order gaps induced by high order photon processes. The
contribution of such states to the spectral density projected
onto the m = 0 replica is parametrically smaller provided
η ≪ 1.

It remains a challenge for future work to evaluate the effect
of these bound states on the bulk transport properties of dirty
samples.
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Appendix A: Boundary conditions

As we already mentioned in Sec. III, an arbitrary BC
can be imposed by knowing the matrix M and their action
on the wavefunction evaluated at the boundary: Ψ = MΨ
[58]. It can be demonstrated that boundary conditions are
determined by two unit vectors: ν̂ acting on the isospin
(valleys) and n̂ acting on the pseudospin (sublattices) [59].
In the isotropic representation M = (ν̂ ⋅ τ ) ⊗ (n̂ ⋅ σ), where
τ and σ are the Pauli’s matrices belonging to the isospin
and pseudospin subspaces, respectively. In the following, we
show the explicit form of the matrix M for regular polygons,
included the circle as the limit case, and the three kinds of
BCs considered in this work.

Φ νAC

y

x

z α

y

x
nAC,IM

νIM,ZZ

z

nB

nZZ (A)

ν → isospin τ n → pseudospin  

A
B

nZZ (B)

FIG. 12. (color online) Unit vectors ν̂ and n̂ determine the boundary
conditions. Each one acts on distinct degrees of freedom: ν̂ acts on
the isospin (valleys) and n̂ acts on the pseudospin (sublattices). Unit
vector n̂ depends on the number of sides N of the regular polygon
via the normal unit vector n̂B for ABC and IMBC and the alternating
nature of the sublattices terminations for ZZBC. This dependence
also implies a dependence with the polar angle ϕ. However, for a
triangular defect there is only one type of sublattice termination (all
atoms belong to the same sublattice, A sublattice in the right scheme)
and the matrix M in the Eq. (A6) becomes (ϕ)−independent.

For both, ZZBC and ABC/IMBC, n̂ = ±ẑ (the sign depends
on the sublattice termination) and n̂(ϕ) = ẑ× n̂B(ϕ), respec-
tively (see Fig. 12). In the latter expression, n̂B(ϕ) is the
normal unit vector located at the edges of the defects point-
ing outward from the region of interest—for our purpose, this
unit vector pointing to the center of the defects. For simplic-
ity, we introduce the angle γp related to the pseudospin degree
of freedom. Thus, we can handle both types of boundary con-
ditions at the same time by writing

n̂(ϕ) = sinγp ẑ × n̂B(ϕ) + cosγp ẑ, (A1)

and chose γp = 0(π) or γp = π/2 in order to select one or
another type of BC. It must be noted that while z-component
is exclusively related with the ZZBC, the xy-components are
related with ABC and IMBC— the difference between two
latter types of BCs resides in the isospin ν i.e., in the details of
the lattice terminations. For a regular polygon with N sides,
the normal unit vector pointing inwards has the form

n̂B(ϕ) =
N

∑
j=1

Θ̃j,N(ϕ) × (A2)

{cos [αN (j − 1/2)] x̂ + sin [αN (j − 1/2)] ŷ} ,

where Θ̃j,N(ϕ) = Θ(ϕ − j αN) − Θ (ϕ − (j − 1)αN), αN =

2π/N , and Θ(ϕ) is the usual step function. Using Eqs. (A1)
and (A2), we can write

n̂ ⋅σ = (
cosγp ΞN(ϕ) sinγp

Ξ∗
N(ϕ) sinγp − cosγp

) . (A3)

where ΞN(ϕ) = ∑
N
j=1 iΘ̃j,N(ϕ) e−iαN (j−1/2). It is useful to

rewrite this quantity as a Fourier series

ΞN(ϕ) =
∞

∑
m=−∞

iAm,Ne
i(mN−1)ϕ (A4)

where Am,N = sinc(π/N)/(1 −mN) and sinc(x) = sinx/x.
It is straightforward to see that for circular defects we have
limN→∞Am,N = δm0.
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Analogously, for the isospin degree of freedom: ν̂ = ẑ and
ν̂ ⋅ ẑ = 0 for the ZZBC/IMBC and ABC, respectively. Intro-
ducing now the angle γi, we can write this all three BCs in the
form

ν̂ ⋅ τ = (
cosγi e−iΦ sinγi

eiΦ sinγi − cosγi
) , (A5)

where γi = 0 for both, ZZBC and IMBC—for these BCs K
and K ′ cones are decoupled. For the ABC however, ν̂ lies on
the xy plane, i.e., γi = π/2—the Φ-phase is only relevant for
the ABC, however, the analytic solutions of the ABC is out of
the scope of this work.

Finally, the matrixM in terms of the angles (γi, γp) is

M(ϕ) = (ν̂ ⋅ τ )⊗ (n̂ ⋅σ) (A6)

= (
cosγi e−iΦ sinγi

eiΦ sinγi − cosγi
)⊗ (

cosγp ΞN(ϕ) sinγp
Ξ∗
N(ϕ) sinγp − cosγp

) ,

and the analogous to the set of conditions (20), is

ZZBC→ γi = 0 , γp = 0(π),

ABC→ γi = π/2 , γp = π/2, (A7)
IMBC→ γi = 0 , γp = π/2 .

The dependence of M with the polar angle ϕ relies on
the pseudospin contribution. Triangles and hexagons are the
unique regular polygons with well defined zigzag termina-
tions. Therefore, the angle γp for the ZZBC can behave in
two different ways: it can be constant along the boundary of
the defect (triangular defects), or it can alternate between 0
and π depending on the sublattice termination (hexagonal de-
fects) (see Fig. 12). In order to tackle circular defects with
ZZBCs, one is tempted to define the circle case as the limit of
a polygon with a N large enough and an alternating n = ±z
on their faces, corresponding to different sublattices termina-
tions. However, this artificial limit is misleading because of
is not possible construct such a defect, i.e., a regular poly-
gon with N > 6 whose edges were constructed exclusively of
zigzag neither armchair terminations. For simplicity, through-
out this article we only work with ZZBC for triangular defects,
in such a way that M is ϕ-independent. In this case, intro-
duce the first condition of the set (A7) into Eq. (A6) leads to
ψB,l(ϕ, ξ0) = ψ′B,l(ϕ, ξ0) = 0 —we emphasize that, in the
isotropic representation, ψ = (ψA, ψB ,−ψ

′
B , ψ

′
A)

T must be
used. Thus, there are two equations per cone [Eqs. (22) for
the K cone], one for each Floquet replica, which allow us to
find the relation between coefficients c+ and c−, and then, the
quasi-energies µl [solutions of the Eqs . (23) and (25)].

On the other hand, for the ABC and the IMBC, the depen-
dence of matrixM with the polar angle ϕ can not be avoided
whatever the number of sides of the polygon considered. Even
in the limit of circular defects: limN→∞ ΞN(ϕ) = ie−iϕ—
unlike the ZZBC and the ABC, the circular defect is well
defined for the IMBC because of this kind of BC does not
depend on the details of the terminations at the edges (zigzag,
armchair or mixing of them). As a consequence, for the IMBC
the strategy to find the quasi-energies is quite different from
that of the ZZBC (see App. C).

Appendix B: Solutions for the cZZBC and the IMBC - Circular
defects.

For the K cone, the Floquet state restricted to n = 0 and
n = 1 Floquet subspaces, has the form

Ψl(r, t) =
e−iεlt
√
Nl

(
u1A,l(r) e

iΩt + u0A,l(r)
u1B,l(r) e

iΩt + u0B,l(r)
) , (B1)

where the components are

φl(ϕ, ξ) =

⎛
⎜
⎜
⎜
⎝

u1A,l

u1B,l

u0A,l

u0B,l

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

i
1−µl

ei(l−1)ϕf̃l(ξ)

eilϕfl(ξ)
eilϕgl(ξ)

−i
1+µl

ei(l+1)ϕg̃l(ξ)

⎞
⎟
⎟
⎟
⎟
⎠

, (B2)

Hence,

fl(ξ) = c+Kl(λ+ξ) + c−Kl(λ−ξ),

f̃l(ξ) = −c+λ+Kl−1(λ+ξ) − c−λ−Kl−1(λ−ξ),

gl(ξ) = d+Kl(λ+ξ) + d−Kl(λ−ξ),

g̃l(ξ) = −d+λ+Kl+1(λ+ξ) − d−λ−Kl+1(λ−ξ), (B3)

where ξ = k0r, λ± =

√

−1 − µ2
l ± 2

√
−η2 + µ2

l (1 + η
2), β± =

− [λ2
± + (1 − µl)

2] / [2η(1 − µl)] and d± = β±c±. We also no-
tice that λ− = λ∗+ and Kν(z

∗) =K∗
ν (z).

Because of cZZBC and IMBC do not mix different valleys
[see Eq. (A5)], we can impose normalization conditions for
each valley in an independent way. According to Eqs. (B1),
and the angular dependence of the components of the Floquet
state given by (B2), the normalization constant results time-
independent

Nl =
2π

k2
0
∫

∞

ξ0
(∣fl(ξ)∣

2
+ ∣gl(ξ)∣

2
+

∣f̃l(ξ)∣
2

(1 − µl)2
+

∣g̃l(ξ)∣
2

(1 + µl)2
) ξ dξ.

(B4)
Defining following quantities

Pν = ∫
∞

ξ0
Kν(zξ)Kν(z

∗ξ) ξ dξ

=
ξ0
2

Im{zKν−1(zξ0)Kν(z
∗ξ0)}

Re{z}Im{z}
,

Qν = ∫
∞

ξ0
Kν(zξ)Kν(zξ) ξ dξ

=
ξ0
2z

× (B5)

(2νKν−1(zξ0)Kν(zξ0) − zξ0[K
2
ν(zξ0) −K

2
ν−1(zξ0)]) ,

(where limξ→∞K(zξ) = 0, was used), we can write the nor-
malization constant as follow

Nl =
2π

k2
0

((1 + ∣β+∣
2
)Pl + ∣λ+∣

2Pl−1 + ∣β+∣
2
∣λ+∣

2Pl+1

+ Re{eiϕ[(1 + β2
+)Ql + λ

2
+Ql−1 + β

2
+λ

2
+Ql+1}) . (B6)

Here, different boundary conditions only modify relations
between coefficients: eiθ = c−/c+. While for the cZZBC eiθ =
−Kl(λ+ξ0)/Kl(λ−ξ0), for the IMBC eiθ = −ω+β+/(ω−β−),
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with ω± = (1 + µl)Kl(λ±ξ0) + λ±Kl+1(λ±ξ0).

In order to obtain solutions belonging to the K ′ cone, the
isotropic representation requires that: ψA,l → −ψ′B,l and
ψB,l → ψ′A,l. By doing these replacements, the same pro-
cedure applied in Sec. II leads to a set of equations analo-
gous to Eqs. (12)—and their respective boundary condition
ψ′B(ξ0) = 0— which, in principle, must be solved again.
However, for the cZZBC case, latter set of equations and their
boundary conditions can be obtained from that of belonging
to the K cone by doing follow changes: (µ, l) → (−µ,−l).
Doing so, for the K ′ cone we have

φ′−l =

⎛
⎜
⎜
⎜
⎝

u′1A,−l
u′1B,−l
u′0A,−l
u′0B,−l

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

−e−ilϕgl(ξ)
i

1+µl
e−i(l+1)ϕg̃l(ξ)

−i
1−µl

e−i(l−1)ϕf̃l(ξ)

−e−ilϕfl(ξ)

⎞
⎟
⎟
⎟
⎟
⎠

. (B7)

The time averaged probability density current (over one pe-
riod) only has an angular component as it is shown in Sec. IV.
Then, the density currents for both cones are

Jl = −2 Im{eiϕ (u1A,lu
∗
1B,l + u0A,lu

∗
0B,l)}, (B8)

J ′l = −2 Im{e−iϕ (u′1A,lu
′∗
1B,l + u

′
0A,lu

′∗
0B,l)}. (B9)

Hence, it is straightforward to see that Jl = J ′−l.
On the other hand, there is no any transformation between

the K and K ′ cones for the IMBC case which simultane-
ously leaves invariant the set of differential equations and their
respective boundary condition. Therefore, the set of quasi-
energies for the K ′ cone must be founded following the same
procedure used for the K cone. The isotropic representation
imposes that

φ′l =

⎛
⎜
⎜
⎜
⎝

u′1A,l
u′1B,l
u′0A,l
u′0B,l

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

eilϕfl(ξ)
−i

1−µl
ei(l−1)ϕf̃l(ξ)

−i
1+µl

ei(l+1)ϕg̃l(ξ)

−eilϕgl(ξ)

⎞
⎟
⎟
⎟
⎟
⎠

. (B10)

For the K ′ cone, coefficients c+ and c− are re-
lated now by the phase eiθ = ω′+β+/(ω

′
−β−), with

ω′± = (1 + µl)Kl(λ±ξ0) − λ±Kl+1(λ±ξ0). The time av-
eraged probability density currents for each cone are also
given by Eqs. (B8) and (B9). Nevertheless, there is no any
relation between Jl and J ′l .

Appendix C: Solutions for the IMBC - Polygonal defects.

For simplicity, we will only tackle the IMBC, which does
not mix cones. In this case, introducing the third condition
of the set (A7) into Eq. (A6) leads to a mixing of solutions
with different l quantum numbers due to the aforementioned
dependence, i.e.

∑
l

fl(ξ0)e
ilϕ

∓∑
l′

if̃l′(ξ0)

1 − µ
Ξ∗
N(ϕ)ei(l

′
−1)ϕ

= 0 ,

∑
l

gl(ξ0)e
ilϕ

±∑
l′

ig̃l′(ξ0)

1 + µ
ΞN(ϕ)ei(l

′
+1)ϕ

= 0, (C1)
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FIG. 13. (color online) Relative contributions, measured by
āmN,N = amN,N/a0,N , of higher orders in the Nϕ-dependence to
the zero-order expansion in the Eq. (C2) for triangular and hexagonal
defects.

where the upper (lower) sign refers to the K(K ′) cone and
components given by Eq. (B2), [(B7)] were used. We also
have to account for the dependence of the coordinates of the
edges with the polar angle ϕ, i.e. ξ0(ϕ). For regular polygons
with N sides, the points located at the edges can be written as

R(ϕ) = R0

∞

∑
m=−∞

am,Ne
imNϕ, (C2)

where coefficients am,N are given by

am,N = N ∫
αN /2

−αN /2

e−imNφ

cosφ
dφ, (C3)

R0 is the apothem of the polygon and R̄0 = R0 a0,N repre-
sents the mean value of their radii. For triangles and hexagons,
a0,3 = 3 ln(2 +

√
3)/π and a0,6 = 3 ln 3/π, respectively. In

the large N limit, the deviations of R(ϕ) with respect to R̄0

are small and we can expand the modified Bessel functions of
second kind Kν appearing in Eqs. (C1) to first order on the
deviation. That is,

Kν (λξ0(ϕ)) ≃Kν(λξ̄0) +
∂Kν(λξ0)

∂ξ0
∣ξ̄0 (ξ0(ϕ) − ξ̄0) .

(C4)
Using this approximation and Eq. (A4), the conditions given
by Eqs. (C1) can be rewritten as

fl (ξ̄0) + ∑
m≠0

ām,Nf
′
l−mN(ξ̄0)ξ̄0 =

= ±∑
s

As,N

1 − µ
(f̃l+sN(ξ0) + ∑

n≠0

ān,N f̃
′
l−nN+sN(ξ̄0)ξ̄0) ,

gl (ξ̄0) + ∑
m≠0

ām,Ng
′
l−mN(ξ̄0)ξ̄0 = (C5)

= ±∑
s

As,N

1 + µ
(g̃l−sN(ξ0) + ∑

n≠0

ān,N g̃
′
l−nN−sN(ξ̄0)ξ̄0) ,

where f ′ (g′) indicates the first derivative with respect to ξ of
f (g) and ām,N = am,N /a0,N . Coefficients ām,N are even
functions of m and they vanish quickly as m grows (see fig-
ure).
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FIG. 14. (color online) Same as Fig. 7 for the three possible distinct
hexagonal hole defects. The FLDOS in the top panel is the same
showed in the Fig. 7 for this kind of defects. The FLDOS for re-
maining configuration is showed in the bottom panel. It depends on
the microscopic details beyond the zigzag or armchair terminations.

It is straightforward to see that only for circular defects, the
mixing among different l quantum numbers is removed, since
limN→∞ am≠0,N = limN→∞Am≠0,N = 0 and limN→∞ a0,N =

limN→∞A0,N = 1.
Finally, in order to find the quasi-energies, the infinite series

in the Eqs. (C5) must be truncated. Doing so, it is possible
to write a system with 2d equations for d quasi-energies (each
quasi-energy introduce two additional coefficients: c+ and c−)
and then, find their solutions.

Appendix D: FLDOSs for hexagonal configurations.

Hexagonal defects with armchair terminations show only
three possible distinct configurations. Even when all these
three configurations have the same armchair terminations
along their edges, they differ in the way their sides match at
the vertices. As already was mentioned in Sec. V, the FLDOS
for staggered potential defects are independent of the micro-
scopic details as end terminations. However, the FLDOS for
hexagonal hole defects does depend on the latter ones show-
ing two different behaviors. We are only interested in those
configurations whose FLDOSs can be understood in terms of
the wave functions for the low energy model and the bound-
aries conditions studied in Sec. II and Sec. III, respectively.
In the top panel of the Fig. 14 we show the FLDOS for two
such configurations (see diagram left on it). The FLDOS for
the remaining configuration is shown in the bottom panel. The
FLDOS for the latter one is perturbed by microscopic details
and it is beyond the scope of the present work.
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