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Abstract Governments around the world are taking different measures to deal
with the novel severe respiratory syndrome coronavirus 2. In this sense, realistic
mathematical models are important tools to explore the effect of different control
strategies. In this work, we developed an agent-based model for COVID-19 disease
dynamics which incorporates a basic social structure to simulate different control
strategies in mid-size cities. We evaluated the impact of combinations of social
distancing measures, such as contact tracing/case isolation, school closures and
partial lockdowns for workplaces on the evolution of hospital beds occupancy.
The contact tracing/case isolation modeled in most cases cannot prevent hospital
beds saturation by itself. Our results suggest that schools, without strong social
distancing measures, may be an important driver of the epidemic. Household and
workplace people distribution is also an important factor to consider when studying
the impact of control measures.
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1 Introduction

On March 11, 2020, the World Health Organization declared a global COVID-19
pandemic, a disease caused by the SARS-COV-2 virus. From the first case report
in Wuhan, China, at the end of 2019 until the last days of May 2021, there were
already more than 168 million cases and more than 3.5 million deaths worldwide.

Governments around the world are taking different measures to deal with this
new disease. Contact tracing, the isolation of infected cases and their close con-
tacts, is one of the most used tools to contain disease spread. In addition, some
public activities such as concerts, sporting events, and religious events have also
been banned. In some cases, more disruptive measures like the closing of schools
and workplaces were taken.

Several different epidemiological indicators such as the doubling time of cases,
the value of the reproductive number, the average daily incidence of cases, and/or
the availability of hospital beds trigger partial lockdowns (Anderson et al., 2020;
Wilder-Smith and Freedman, 2020). The combination of such control measures
usually produces a declining trend in the number of incidence which may be fol-
lowed by some relaxation in social distancing measures leading to a further increase
of cases.

In recent months, many mathematical models have been developed to predict
future trends and explore the effect of different social distancing measures. Most of
them are based on modifications of the classic SEIR model (Susceptible, Exposed,
Infected, Recovered), with the incorporation of some extra epidemiological classes
such as: undetected infected individuals, hospitalized individuals, asymptomatic
individuals, among others (Kucharski et al., 2020; Prem et al., 2020; Zhao and
Feng, 2020). These models are generally based on differential equations without
incorporating spatial and/or social contact structures. In these types of models, the
effect of measures of social distancing is modeled by varying some parameters as the
infection rate during the course of the epidemic (see for example Lin et al. (2020),
Acuña-Zegarra et al. (2020), and Giordano et al. (2020)). On the other hand, in
recent months, more realistic models were developed considering an agent-based
model approach to evaluate the effect of control measures in the disease dynamics
(see for example Aleta et al. (2020); Kerr et al. (2021); Hinch et al. (2021)) and to
estimate the economic impact under different types of interventions (Silva et al.,
2020).
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In this work, we are interested in developing a computational model to eval-
uate the effect of different strategies to prevent hospital resources saturation in
small or mid-size cities. We developed an agent-based model that incorporates a
basic social structure consisting of households, workplaces, schools, and supermar-
kets or similar stores. Infectious individuals may be asymptomatic, present only
mild symptoms or develop more severe disease forms and therefore seek medical
attention. A proportion of these later cases will require hospitalization.

Control tools considered in our work are contact tracing/case isolation, school
closures, and partial lockdowns for workplaces. In our modelling approach, hos-
pital bed occupancy levels dictate the beginning and finalization of any of these
measures. An analysis on parameters uncertainty is in the Appendix C. In addi-
tion, different household and workplace distributions were considered to determine
their effect on disease dynamics. The model proposed in this article was developed
entirely by the authors and programmed in C language.

This paper is arranged as follows. In the next section we describe the popu-
lation structure and the individual’s routine, how the population is structured in
epidemiological classes and how the disease transmission is modelled. In Section
3, the parameters, the distribution of the population, and the different scenarios
considered for the simulations are described. In turn, the numerical results ob-
tained for each of them and an analysis of how the population distribution affects
these results are presented in this section. Finally the discussion of the results and
conclusions are presented in Sections 4 and 5, respectively.

2 Methods

2.1 Population structure.

We developed an agent-based model for an homogeneous population without age
structure. Individuals were allocated to households of size H. A proportion of
the population was assumed to attend a school (it may represent a kindergarten,
an elementary school, high school, or a college) distributed in classrooms of 30
students with one teacher. A school is composed of a group of 10 classrooms. The
rest of the individuals were allocated to randomly chosen workplaces of size W .
Some of these workplaces were considered as stores, like supermarkets, which were
visited by the individuals of the populations with some frequency (one store per
100 persons).

2.2 Individual’s routine.

Individuals leave home at 7 am and go directly to their workplace or school.
People in the schools divide the time between the classroom and breaks, until 2
pm. People who attend other workplaces stay at them until 5 pm, except those who
work at supermarkets and stay there until 6:00 pm. After leaving their workplace
or school, one person per house (chosen at random) may spend one hour in a
store (one visit to stores per household and no more than one visit every four
days). During the day, all individuals may have some number of casual contacts,
representing contacts in public transportation or other public areas.
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2.3 Epidemiological classes.

Susceptible individuals may become infected by contact with infectious cases.
Newly infected individuals enter in the latent, not infectious state. After the la-
tency period, they become infectious but pre-symptomatic. A proportion σa of the
infectious individuals remains asymptomatic or develop only mild symptoms and
therefore are usually not detected by the health system. The rest of the infectious
individuals who develop clinical symptoms are likely to seek medical attention.

We considered two clinical classes, a first sub-clinical stage, where only mild
symptoms are observed, and a clinical phase where symptoms are apparent. Some
of these last types of cases (a proportion σh) present symptoms severe enough to
become hospitalized. Finally, individuals recover or die. We assume that recovered
individuals develop long-term immunity.

According to Li et al. (2020), the time spent in each infected class has a bell-
shaped distribution. In our case, we considered Gamma distributions for these
periods with mean and variance listed in Table 2.

The mean duration of the latent period was set in 4 days, which is in the range
reported by Kucharski et al. (2020), Li et al. (2020) and Lauer et al. (2020). For
the infectious period, there are different estimations. We choose a mean duration
of 7.5 days with a variance of 9 days (Zhao and Feng, 2020; Ivorra et al., 2020;
World Health Organization, 2020; He et al., 2020). For the hospitalization time, we
considered a distribution according to the data observed for Argentina (Ministerio
de Salud de la Nación, 2020). For the simulations, these periods were controlled in
order to that the latency, infectious, and hospitalization period were at least one
day. Thus, all the individuals spend at least 1 day in any of these epidemiological
states. In addition, a maximum value of 15 and 20 days was considered for the
latent and infectious periods, respectively.

The progression from pre-symptomatic to subclinical and clinical classes allows
for an easy way to consider different transmission probabilities at different stages
of the disease progression. A diagram for the progression in the epidemiological
classes is presented in Fig. 1.

Fig. 1 Progression in the epidemiological classes. Susceptible (S), Latent (L), Pre-
symptomatic (Ps), Asymptomatic (A), Sub-clinical (Sc), Clinical (C), Hospitalized (H), Re-
covered (R).
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2.4 Modeling disease transmission and parameter estimation.

2.4.1 Probabilities of infection.

The probability of transmission per contact per unit of time in a household βH was
numerically estimated from the data in the secondary attack rate Liu et al. (2020);
Jing et al. (2020) as described in Appendix A. In a given environment, susceptible
individuals have a probability of infection per unit of time and per infectious
contact, depending on the type of the environment and the infectious class of
the active case. We considered the worst-case scenario in which all the infectious
classes have the same infectivity. The probability of transmission is decomposed
as the maximum value (βH) weighted by a coefficient which depends on the type
of the environment, ρj , where j ∈ {H,W,St, S}, for households, workplaces, stores,
and schools, respectively. We set ρH = 1 for a household, and ρj ≤ 1 for the other
environments. Three different cases were evaluated regarding the risk of infection
in each environment (ρ values). In the first case, we considered that the risk of
infection is the same in all the environments (ρH = 1 for all j). In the other
two cases, we used different ρj values for different environments. In both cases a
value of ρS = 1/8 was considered for schools, while for stores this value was set to
ρSt = 1/4. For workplaces, two different values were considered: ρW = 1/2 (case
1) and ρW = 1/3 (case 2). It is important to note that for store’s workers the value
used in these places is the same as in any other workplace.

2.4.2 Latency and infectious periods.

All periods considered are random variables modeled with Gamma distributions
with significant variance values. In other words, for each simulation, the values for
the different waiting periods widely vary between individuals. The mean value of
the latency period may produce a shift in the epidemic curves but not in the peaks.
The duration of the infectious period may have a significant impact on the force of
infection but in our case we fixed the value of the probability of transmission per
contact and per unit of time from the data in the secondary attack rate. Changing
the mean infectious period translates to a change in the probability of infection to
leave the secondary attack rate unchanged.

2.4.3 Proportion of non-detected cases.

Asymptomatic cases and mild cases that do not seek medical attention are not
detected by the health system except by contact tracing. The percentage of asymp-
tomatic cases, i.e., never experience symptoms, remains uncertain (Centers for Dis-
ease Control and Prevention, 2020) and there are different estimations with high
variation ranging from 10% to 73% depending on what symptoms are included in
the definition of the suspect case and when the patients were tested (Centers for
Disease Control and Prevention, 2020; He et al., 2021; Poletti et al., 2020). We
assumed that a constant proportion of new cases are asymptomatic or develop
only mild symptoms and therefore are not detected for the public health system.
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2.4.4 Proportion of hospitalized cases and hospitalization length of stay.

The proportion of cases detected which require hospitalization is a parameter that
depends on many factors such as the age of the patients and their co-morbidities,
and different values have been reported for different countries and cities (Zhao and
Feng, 2020; CDC COVID-19 Response Team, 2020; Moghadas et al., 2020). The
probability of hospitalization estimated from data can represent up to 1/3 of the
detected cases (CDC COVID-19 Response Team, 2020).

Hospital length of stay also has great variability. We considered that this period
is gamma distributed with mean 12 days and a significant standard deviation of
72 days (Ministerio de Salud de la Nación, 2020).

2.5 Modeling contact tracing, case isolation and lockdowns.

We assumed a conservative scenario where only a passive contact tracing is im-
plemented. We considered that clinical cases are detected at the rate rd. Thus the
probability of detection in an interval of time ∆t is given by 1 − e−rd∆t. When
a case is detected their entire household is isolated (for a fixed period of time
Tct) as well as all their workplace contacts (but not their corresponding household
contacts). If the detected case is an individual who attends school or works in a
store, only their household contacts are isolated. Isolated individuals remain at
home most of the time, and therefore their casual contact rates are substantially
reduced.

After the isolation period ends, isolated individuals are tested. If the test re-
sult is positive, the individual will remain isolated and will be tested every two
days until a negative result is obtained. If an individual in isolation, who was not
previously detected, test positive, their family is also isolated for a fixed period of
time Tct. In all cases, a negative result is necessary to end the isolation.

A partial lockdown consisted of the closure of a percentage of the workplaces
and/or schools. Individuals are isolated, and their casual contacts are reduced. A
partial lockdown begins when a fraction of the emergency rooms are occupied and
relaxed when a lower value for this fraction is reached. Lockdown policies modify
people’s routines. People who are not attending their workplaces or schools may
visit stores at any time of the day.

3 Results.

3.1 Parameters and scenarios considered

For the simulations, a population of 100 thousand inhabitants was considered.
These inhabitants were distributed in households of different sizes in accord with
the empirical distribution observed for La Banda (Fig. 2), an Argentinian city in
Santiago del Estero province, with approximately 100.000 inhabitants (Instituto
Nacional de Estad́ıstica y Censo, 2010). The mean of the distribution is equal to
3.94. For the distribution of workplace size, we do not have empirical information,
so a Poisson distribution with a mean equal to 8 truncated from 1 to 15 was
considered. As mentioned before, some workplaces were considered as stores (1
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per 100 persons). In all cases considered, each store has a staff of 8 workers. A
brief study about how the distributions of houses and workplaces sizes affect the
epidemic dynamics is presented in Sec. 3.3.
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Fig. 2 Distribution of inhabitants per house for La Banda city, Santiago del Estero, Argentina
according to Instituto Nacional de Estad́ıstica y Censo (2010).

We considered that 25% of the population is attending school, so we have a
total of 834 classrooms with 30 students and one teacher each. The rest of the
population is distributed in workplaces considering one store every 100 people.
The population is composed of 25000 school-attending individuals, 834 teachers,
8000 store workers, and 66166 regular workers.

To evaluate the impact on the disease dynamics of the different measures,
we considered several control strategies as detailed in Table 1. The strategy E1
corresponds to doing nothing, and therefore we have a free epidemic. In strategy
E2, only contact tracing and case isolation is implemented. In scenarios E3, E4,
and E5 different, combinations of partial lockdowns of schools and workplaces are
simulated. All the scenarios were simulated for two years (720 days), given that we
consider that in that period of time a vaccine or other pharmaceutical solutions
to the disease will be found.

Table 1 Description of the different scenarios considered for the simulations.

Scenario Contact tracing Schools closure Workplaces closure (%)
E1 No No No
E2 Yes No No
E3 Yes Yes No
E4 Yes Yes 25%
E5 Yes Yes 50%

In our model, schools are the most significant driver of the epidemic. Schools
are closed when 35% of the hospital beds are occupied and are reopened when this
percentage drops below 5%. A percentage of workplaces, other than schools and
stores, are closed when 50% of the hospital bed are occupied and reopen when
occupancy is below 40%.

In some cities with strong systems of public health, the availability of hospital
beds is around 8 beds per thousand inhabitants or higher (World Bank, 2020).
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However, in most small cities (mainly in non-developed countries) as the considered
in this work, availability of hospital beds is significantly lower. We considered the
case of 4 hospital beds per thousand population.

As mentioned before, three different cases in relation with the risk of infection
were considered. One in which the risk is the same in all environments, and two
in which there is heterogeneity in the values. Other parameters values used in the
simulations are listed in Table 2. For σa and σh values, we considered a combination
that represents the worst-case scenario. A discussion about how these values affect
the results obtained in the simulation can be found in Sec. 3.4.

Table 2 Description of the parameters, their range of values used in the simulations, and
thier source.

Parameter Description Value Source

- Duration of latent period 4 (4)∗

Kucharski
et al. (2020), Li
et al. (2020),
Lauer et al.
(2020)

- Duration of pre-symptomatic period 1 (0.5)∗ (a)
- Duration of asympatomatic period 6.5 (8.5)∗ (a)
- Duration of sub-clinical period 1 (1)∗ (a)
- Duration of clinical period 5.5 (7.5)∗ (a)

- Duration of hospitalized period 12 (72)∗
Ministerio de
Salud de la
Nación (2020)

σh
Proportion of cases detected which re-
quire hospitalization.

1/3 (b)
(CDC COVID-
19 Response
Team, 2020)

σa

Proportion of cases that remain
asymptomatic or develop only mild
symptoms.

2/3 (b)

(Centers
for Disease
Control and
Prevention,
2020)

rd Detection rate of clinical cases. 1/days Assumed

βH
Maximum risk of transmission per con-
tact and per unit of time

0.1437/days
Estimated. See
Appendix A.

ρW
Relative strength for the risk of trans-
mission in workplaces

1, 1/2, 1/3 Assumed

ρS
Relative strength for the risk of trans-
mission in classrooms

1, 1/8 Assumed

ρSt
Relative strength for the risk of trans-
mission in stores

1, 1/4 Assumed

-
Average number of daily casual con-
tacts

4 Assumed

Tct Period of isolation of a detected case. 14 days Protocol value

- Hospital beds per thousand population 4
World Bank
(2020)

(∗): Mean (variance). (a): The combination of these values generates an infectious period with
mean 7.5 days and variance of 9 days, in the range reported by Zhao and Feng (2020), Ivorra
et al. (2020), World Health Organization (2020) and He et al. (2020). For details see Sec. 2.3.
(b): The combination of these parameters gives the worst case scenario according to available
data. For details see Sec. 2.4.3 and 2.4.4.



Socially structured model for COVID-19 pandemic 9

3.2 Results for the different cases considered

3.2.1 Case 0 (ρj = 1 for all j)

When ρj = 1 for all j, the saturation of the health system is practically impossible
to avoid. The doubling time of the free epidemic was estimated in 2 days consider-
ing the exponential phase of the epidemic growth between days 20 and 30, with a
final epidemic size greater than 0.99. These results strongly suggest that assuming
ρj = 1 for all j is a very unrealistic case.

In scenario E5 (schools closed and 50% of the workplaces closed), the most
conservative considered in this work, the peak of bed occupancy is equal to 1595
beds, close to quadrupling the capacity of the health system, when closures are
triggered at 140 (schools) and 200 (workplaces) occupancy beds.

We also considered an extreme scenario in which schools and 50% of the work-
places are closed at the beginning of the simulation, and these remain closed
throughout the simulation. In this scenario, a large proportion of the population
can only come into contact with people outside their household only through ca-
sual contacts or contacts in stores. Even in this case, the health system collapses
assuming 4 beds per thousand population (Fig. 3), a relatively high value for most
small to mid-size cities in non-developed countries.
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Fig. 3 Dynamics of hospitalized individuals for the special scenario for the case 0. The hori-
zontal line is the total number of available hospital beds for covid 19 patients.

3.2.2 Cases 1 and 2 (ρW = 1/2 and ρW = 1/3).

For cases 1 and 2, the doubling time for the free epidemic was estimated in 5 days
from the exponential phase of the simulated epidemic growth in case 1, and in 5.5
for case 2 (see Appendix B). These values are in the range of the doubling times
observed by Li et al. (2020); Volz et al. (2020); Wu et al. (2020). The dynamics
of hospitalized individuals for each scenario is shown in Fig. 4 (case 1) and Fig. 6
(case 2).
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For the free epidemic scenario, almost everyone in the population is infected
(95% in case 1 and 91% in case 2). Under our passive contact tracing strategy,
which only tracks and isolates people in the workplace and the household of the
detected case, the epidemic final size is reduced to about 78% in case 1 and 70%
in case 2. However, this reduction is far from enough to prevent a collapse of the
health system (Fig. 4 and Fig. 6).
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Fig. 4 Dynamics of hospitalized individuals for each scenario considering ρW = 1/2 (case 1).
The horizontal line is the total amount of hospital beds.

In case 1 (ρW = 1/2), closing only schools is not enough to avoid a collapse of
the health system, and a further partial lockdown of at least a 50% of workplaces
is necessary.

According to Fig. 5, the final epidemic size decreases as the partial lockdown
increases. As we can see, the passive and conservative contact tracing policy con-
sidered reduced 17.7% the final epidemic size, going from 95% to 78%. A further
closure of schools reduces it to about 30%. The difference between a lockdown of
25% or 50% is 2.9% of the population, being the final epidemic size approximately
60.6% in E4 and 57.7% in E5.

A different situation occurs if a lower value of ρW is considered, as in case 2
(ρW = 1/3). Closing 25% of the workplaces, the health system would operate close
to its maximum capacity and could collapse due to the need for beds for other
diseases different to COVID-19. Under these conditions, closing 50% of workplaces
ensures a good response from the health system.

For the lower value of ρW = 1/3 considered, disease transmission in households
and schools dominate the dynamics concerning the contribution of workplaces. In
general, the epidemic size of each scenario is lower considering a lower value of
ρW (comparison of Fig. 5 and Fig. 7), an expected result. A non-trivial result
considering ρW equals 1/3 (instead of ρW = 1/2) is that closing the schools and
only 25% of workplaces is enough to prevent the health system collapse.

An evidence of the decrease of the importance of workplaces in the epidemic
dynamics, is that the curve of hospitalized individuals closing only schools (E3) is
higher in case 1 (ρw = 1/2, Fig. 4) than in case 2 (ρw = 1/3, Fig. 6).
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Fig. 5 Epidemic size for each scenario considering ρW = 1/2 (case 1).
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Fig. 6 Dynamics of hospitalized individuals for each scenario considering ρW = 1/3 (case 2).
The horizontal line is the total amount of hospital beds.

A partial lockdown of schools and workplaces involves a general loss of class
days and working days that are summarized for each case in Table 3. In case 1,
the schools are closed on day 69 of the 720 simulated days and remain closed for
a period of 192, 208, and 416 days for scenarios E3, E4, and E5, respectively. In
scenario E3, the schools are not closed again, but in scenario E4 are closed again
for 80 days (from day 398 to day 478), while in scenario E5, it occurs for about 2
months (from day 603 to day 664). On the other hand, workplaces are closed on
day 75 of the simulation in both scenarios (E4 and E5). In E4, after opening on day
207, these are not closed again, while in E5 these are open on day 177, and then
these are closed again for 20 days (from day 222 to day 242). Considering a lower
value for ρW , the disease spreads through the population slower. The lockdown
of schools and workplaces begins approximately two weeks later than in case 1,
on day 85 for schools and on day 89 for workplaces. From Fig. 6, we can see that
the more aggressive the closure policy, the sooner a new peak occurs in the curve



12 Mario Ignacio Simoy, Juan Pablo Aparicio

 

E
p

id
em

ic
 S

iz
e

0

20,000

40,000

60,000

80,000

100,000

Time [days]
0 100 200 300 400 500 600 700

 E1
 E2
 E3
 E4
 E5

Fig. 7 Epidemic size for each scenario considering ρW = 1/3 (case 2).

for hospitalized people. The times when those new peaks begin correspond to the
times when schools reopen.

From Table 3, we can see that to avoid the saturation of the health system in
case 1 (E5), we need more days with schools and workplaces closed than in case
2 (E4 and E5). On the other hand, considering that in E5 we are closing twice
as many workplaces as in E4, but half the time, we might conclude that, from an
economic point of view, the closure of 25% or 50% of the workplaces has the same
economic impact.

Table 3 Loss of class and work days in each scenario according to dynamics in Fig. 4 and
Fig. 6 for a simulation of 720 days of duration.

Scenario
Days with schools closed Days with workplaces closed
Case 1 Case2 Case 1 Case2

E3 192 262 - -
E4 288 405 132 103
E5 477 414 122 53

An important feature of the dynamics simulated with the model is the great
impact that closing school has on the disease dynamics, as can be seen in the
difference between peaks in the bed occupancy curve for E3 and E2 in Figs. 4 and
6. So, we can conclude that in the cases considered in this work, schools are the
main driver of disease dynamics, and closing them has a great impact in the chain
of transmission.

3.3 Effect of population distribution

In this section, we briefly explore the effects of household and workplace people
distribution on the dynamics.

One of the distributions of inhabitants per house corresponds to the empirical
distribution observed for Tandil (Fig. 8), a city of approximately 100 thousand



Socially structured model for COVID-19 pandemic 13

inhabitants in the Buenos Aires province in Argentina. This distribution of house
sizes has a mean equal to 2.93. In this case, for the workplaces size distribution,
we consider the same truncated Poisson distribution with a mean 8, as before. The
third distribution considered was the homogeneous case’ in which all houses have
4 inhabitants, and all workplaces have 8 members.
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Fig. 8 Distribution of inhabitants per house for Tandil city, Buenos Aires, Argentina according
to Instituto Nacional de Estad́ıstica y Censo (2010)

If the epidemic dynamics in these two new situations (Tandil and the homo-
geneous case) is simulated, the case ‘La Banda’ has the lowest doubling time of
cases in a situation of a free epidemic (considering the first exponential phase of
growth) in all the cases and the highest final epidemic size in most cases (Table
4). On the other hand, we can see that, in all the cases, the epidemic final size is
higher in the ‘homogeneous’ case than in Tandil. However, the doubling time of
cases in Tandil is lower than in the ‘homogeneous’ case, only for cases 1 and 2,
while in the case 0 the situation is the opposite. It is important to mention that
the doubling time of cases is a good indicator for the exponential phase of the
epidemic growth, while the final epidemic size considers all its evolution.

Table 4 Doubling time of cases for the exponential phase of epidemic growth for a free
epidemic situation (final epidemic size) for each case and population distribution considered.

Case La Banda Homogeneous Tandil
Case 0 2.0 (98834) 2.12 (99051) 2.99 (97812)
Case 1 5.0 (95117) 6.5 (94338) 6.15 (90333)
Case 2 5.5 (91719) 7.14 (90554) 6.5 (84376)

If the different scenarios are compared for the same parameter values, La Banda
always needs more restrictions to avoid saturation of the health system than Tandil
and the homogeneous case. As shown above, in case 1, in La Banda, it is necessary
to consider closing schools and a 50% of the workplaces, however in Tandil and the
homogeneous case, it is enough closing school and a 25% of the workplaces, as can
be seen in Fig. 9 (top). In this figure, we can see that the dynamics of hospitalized
individuals considering scenario E4 (in case 1) for Tandil and the homogeneous
case is more similar to scenario E5 than to E4 in La Banda.
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Fig. 9 Dynamics of hospitalized individuals for the different population distributions consid-
ering case 1 (up) and case 2 (bottom).

The differences are greater if we compare the E3 scenario in case 2 for the
three population distributions. We can see that in Tandil and in the homogeneous
case it is enough to close schools to avoid the health system saturation (Fig. 9
- bottom). At the same time, in La Banda, this control measure is notoriously
insufficient, and it is needed to close at least 25% of the workplaces (Fig. 6).

As before, in case 0 (ρj = 1 for all j), a saturation of the health system is
practically impossible to avoid regardless of the population distribution considered.

If the impact of the contact trace/case isolation measure is compared for cases
1 and 2, in the different population distributions, we can see that it has a greater
impact in Tandil producing a reduction in the epidemic final size of a 24% in case
1 and a 27% in case 2, than in La Banda and the homogeneous case where the
reduction is approximately the same in both case, 17% in case 1 and 21% in case
2.

A non-trivial result is the similarity obtained for the epidemic dynamics con-
sidering the population distribution of Tandil and the homogeneous case. We can
see that in both cases, the saturation of the health system is avoided applying
the same scenario (more examples of that situation can be found in C). However,
the final epidemic size reached in the homogeneous case is always higher than in
Tandil if the same parameters and scenarios are considered.

The differences between the results obtained for the different population distri-
butions can be explained considering the contribution to the non-zero variance’s
disease dynamics. We can see that La Banda and the homogeneous case have
approximately the same mean size of houses (3.94 and 4, respectively) and work-
places (8 in both cases). However, the homogeneous case has zero variance in both
cases, while La Banda has a non-zero variance, and that is the reason why it has
faster and aggressive dynamics.
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3.4 Results for other parameter values.

In the previous analysis, we considered the worst-case scenarios according to avail-
able data. If the proportion of non-detected cases (σa) is reduced to 0.15, close
to the lower bound reported (Centers for Disease Control and Prevention, 2020),
contact tracing and isolation is much more effective, and epidemics are prevented
without the need to close or schools or workplaces (in cases 1 and 2). This hap-
pens for all the population distributions considered. Taking into account the con-
servative contact tracing modeled, this result seems unrealistic. When the rate of
hospitalization is also in the lower bound of ten percent of the detected cases, the
prevention of health system saturation is also easily achieved. A more detailed
analysis of these situations can be seen in Appendix C.

4 Discussion.

In most works, the effect of social distancing measures is modeled implicitly by
changing some parameter values, like the transmission parameter. The advantage
of our modeling approach is that the control measures are explicitly modeled by
changing the individual’s behavior of the population.

In our model, a conservative contact tracing was implemented where it is re-
duced to household and workplaces contacts. In addition, only the contacts of the
cases detected by the health system (clinical cases) are tracked. In our simula-
tions, all household and workplace contacts are isolated for 14 days and return
to normal activities only after a negative result for infection. Contact tracing and
case isolation may be implemented more easily for low values of the infectious
population. In our simulations, we have not taken into account the fact that it
may be difficult to implement reliable contact tracing and isolation of suspected
cases for high values of the infectious population.

Although the effect that schools have on the epidemic dynamics is still under
discussion in the scientific literature, there is evidence that affirms that the re-
opening of schools without disease mitigation measures accelerates the spread of
the disease in the population (see Edmunds (2020); Flasche and Edmunds (2021);
Gurdasani et al. (2021) and references therein). This effect of the reopening of
schools (without strong measures of social distancing) in the epidemic dynamics
can be observed in the model’s results. The moments when new epidemic peaks
begin correspond to the moment in which schools are reopened (Figs. 4, 6 and 9).

4.1 Population distribution, social structure and disease dynamics.

How the population is distributed has a significant effect on the disease dynamics,
as we show in Sec. 3.3.

When we considered that σh = 1/3, σa = 2/3 and the risk of transmission
in workplaces equal to βW = 1

3βH (case 2), school closures were enough to pre-
vent hospitalization saturation considering the household distribution observed in
Tandil (mean = 2.81, variance = 2.49) and the homogeneous case (mean = 4,
variance = 0). In the same situation, considering the household distribution ob-
served in La Banda (mean = 3.94, variance = 4.21), it is necessary to close at
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least 25% of workplaces. For a greater risk of transmission in workplaces (as in
case 1), βW = 1

2βH , besides school closures, 25% of the workplaces also needed to
be closed in the case ‘Tandil’ and in the homogeneous case in order to maintain
the hospital beds below saturation. In contrast, while in the case ‘La Banda’ it
is necessary to close a 50% of workplaces. On the other hand, as the proportion
of non-detected cases (σa) decreases, contact tracing and isolation is much more
effective, regardless of the population distribution considered.

Socially structured models, such as that developed in this work, have the ad-
vantage of being able to represent social relations within the population. These
relationships define what the structure of contacts in the population is like. In the
socially structured models, the contacts are persistent, while in the model without
social structure, the contacts represent a homogeneous mixed of the population.
Therefore, models that consider the population’s social structure produce lower
epidemics when the same transmission parameters are considered.

4.2 Effect of social distancing measures on the epidemic size

Social structure of the model defines a specific network of contact between the
individuals of the population for each moment of the day. The different control
measures modify this network of contacts changing the number of contacts an
individual may have. Thus, different epidemic sizes will be reached due to the
differences in the number of contacts that the individuals have according to the
chosen scenario.

In this sense, different control measures may delay the increase of infected and
hospitalized people. However, it is not always true that stricter control measures
produce smaller final epidemic sizes. In some situations, control measures focus on
reducing the population mobility (as implemented in the model) generate epidemic
with peaks as plateaus, producing larger epidemic sizes at the end of the epidemic.
However, these plateaus avoid the saturation of the health system.

4.3 Limitations of the model

It is important to remark that risk of transmission for each environment was kept
constant in each simulation. However, those risks are likely to vary with time.
Individual behavior may change according to risk perception, and workplaces and
institutions may enforce different social distancing measures. In many places re-
opening the schools was accompanied by a reduction in the number of students per
classroom and other social distancing measures. Changes in the risk of transmission
have a significant impact on disease dynamics.

Loss of immunity and re-infection were two processes that we did not consider
in the model. Re-infection was documented for COVID-19, but it is a rare phe-
nomenon affecting a very small fraction of the cases. According to a recent study,
possible reinfections account for less than one percent of the cases (see for exam-
ple Graham et al. (2021); Hansen et al. (2021) and references therein). In these
cases, the symptomatology is different (compared with the first infection), and
re-infected people develop only mild symptoms (in some cases imperceptible) in
most cases. Because of this, only a very small fraction of the re-infected individuals
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will be detected by the health system, taking into account the conservative detec-
tion policy implemented in the model. In this sense, incorporating the re-infection
process implies the development of a more complex model accounting for different
asymptomatic and hospitalized rates for the first and the second infection of an
individual.

From some numerical simulations (not included in this work), we can see that
the potential effects of re-infection are within stochastic fluctuations when short
time frames are considered (as those considered here). A different and more com-
plex model has to be developed to incorporate the re-infection process in longer
time frames in a realistic way, including competition between virus variants and
vaccination.

We considered a homogeneous population, but age is a significant indicator
for hospitalization. We considered a worst-case scenario where all individuals are
equally likely to develop severe forms of the disease. Also, we assumed that individ-
uals belonging to any households are randomly assigned to workplaces or schools.
This approximation is only plausible for relatively small populations. In the simu-
lations, we considered the case of a city with a size of 100000 (but essentially the
same results were obtained for a 500000 population size). For larger populations,
some degree of spatiality should be considered.

5 Conclusions.

Control of COVID-19 epidemics in large cities poses significant challenges as seen
around the world. In this work, we focused on small to mid-size cities initially
without community virus circulation. We developed an agent-based model for a
homogeneous population but where individuals belong to households and spend
some of their time in workplaces, schools, and stores. In each of these environ-
ments, we assumed a constant risk of infection proportional to the number of
infectious individuals in them. Households have the greatest risk of infection. We
considered different scenarios with different values for the risk of transmission in
other environments like workplaces, schools, or stores. The risk of transmission in
a household (βH) was estimated from data on the secondary attack rates, as shown
in Appendix A. We also considered that individuals have some average number of
daily casual contacts, others than those which may take place at stores.

We considered only two relevant cases for the course of the disease. Some in-
dividuals develop only mild symptoms and therefore are not detected, while other
infected persons present more severe symptoms and seek medical attention. A frac-
tion of those will require hospitalization. According to the available bibliography,
realistic distributions were considered for the different waiting periods like exposed
or infectious periods.

The effect of different strategies was evaluated by simulation. Contact trac-
ing and case isolation is assumed to be always implemented. Additionally, sev-
eral grades of lockdowns were simulated, consisting of the closure of schools and
workplaces. The hospital beds availability determined levels of the lockdowns. We
considered the relatively conservative case of 4 hospital beds (for SARS-CoV-2
patients) per 1000 population.
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When we consider the same risk of transmission in all the environments, the
health system saturation is practically impossible to avoid. This situation of ex-
tremely high infectiousness appears to be unrealistic and not reported for mid-size
cities.

But infectiousness in classrooms and workplaces is likely smaller than in house-
holds. Social distancing measures, like wearing masks, a limited number of persons
per area, etc., are factors that substantially reduce the risk of infection (see for ex-
ample Hendrix (2020)). Additional measures like reducing the number of students
per classroom, ventilation, etc., can further reduce the risk of transmission.

Our results suggest that the distribution of the population in homes and work-
places is a key factor to take into account when studying the impact of control
measures. It has been shown that the same measure has a different impact on
populations that have different distributions.

The model presented here can be used for the local decision-makers to eval-
uate the effect of different control measures. According to the results for the dif-
ferent population distributions, to apply the model to a specific city, it must be
parametrized taking into account the population structure and demographic dy-
namics of the corresponding city.
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Appendices

A Numerical estimation of βH from the reported secondary attack rates.

The probability with which a susceptible individual can become infected by contact with an
infectious individual of class i on the environment j during a period ∆t is given by

ρ = 1 − e−βHρj∆t

with βH and ρj according to the section Modeling disease transmission and parameter esti-
mation.

The Secondary Attack Rate (SAR) is defined as the probability of an infection occurring
among susceptible people within a specific group (e.g., households or close contacts) (Liu et al.,
2020). It is known that a person does not remain throughout the infectious period in their
house. Considering the population distribution and the personal routines described in the main
text, the average time a person stays at home in a day is equal to 15 hours and 44 minutes (a
proportion of 0.643). Thus, if the mean infectious period is equal to 7.5 days, then 4.825 days
is the mean infectious period that a person remains at home. Therefore, if we consider ρH = 1
and ∆t = 4.825, we can use the equation below to determine βH as function of ρ,

βH =
−ln(1 − ρ)

ρH∆t

We calculate the SAR value as follows. First, we considered a group of 10 individuals with
only one infected individual. The infectious period of the index case was selected at random
from a gamma distribution with mean 7.5 and variance 9. Given a ρ value, we calculated βH
as explained above, and then we obtained the number of persons infected. The procedure was
repeated one hundred times. Average values for different values of ρ are in Table 5.

Table 5 Secondary attack rate (SAR) values obtained from simulation for different values of
ρ.

ρ SAR
0.25 0.345
0.3 0.396
0.35 0.46
0.4 0.512
0.5 0.617
0.55 0.671
0.6 0.715
0.7 0.787

The advantage of using this procedure to determine βH is that the secondary attack rate
is reported for COVID-19. For the simulations a ρ = 0.5 (Liu et al., 2020; Jing et al., 2020)
was considered, resulting in a βH = 0.143732 according with the equation above.

B Numerical estimation of the doubling time.

To calculate the doubling time of cases we consider v(t) as the accumulated incidence of daily
cases (Fig. 10) which displays a phase of (quasi) exponential growth with a growth rate λ from
a certain time (t0 = 0 in the following). Then v(t) = v0eλt whit v0 = v(t0).
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Fig. 10 Daily cumulative incidence of cases (red dots) and a exponential fit (black line) for a
free epidemic situation (scenario E1) considering ρW = 1/2.

The doubling time TD is defined as the time in which the number of cases is doubled, that
is, v(t+TD) = 2v(t). Therefore, v(t+TD) = v0eλt+TD = 2v0eλt , from which we can conclude
that

TD =
ln(2)

λ
In this way, knowing the exponential growth rate λ, we can calculate the doubling time of

cases. To estimate λ, we must identify the period of time where the cumulative daily incidence
has exponential growth and then fit an exponential function to these points. In our case,
considering a free epidemic situation (scenario E1) with the parameters corresponding to case
1 (ρW = 1/2) we have the cumulative daily incidence shown in Fig. 7. An exponential function
to these points from day 20 to day 70 was fitted, obtaining λ = 0.1368. Thus, the doubling
time of cases is equal to TD = 5 days.

If a lower ρW = 1/3 is considered (case 2), for a free epidemic situation (scenario E1) a λ
value λ = 0.1275 is obtained, resulting in a doubling time of cases is equal to TD = 5.5 days.
Both values of TD are in the order of the doubling time of cases reported (Li et al., 2020; Volz
et al., 2020; Wu et al., 2020).

C Comparison between scenario and parameter values considered.

As mentioned in the main text, when different values of the parameters σh and σa are consid-
ered, the strategies to avoid saturation of the health system are different. As the value of the
probability of hospitalization σh decreases, it is easier to keep bed occupancy in a lower value.
On the other hand, as the proportion of non-detected cases σa decreases, there is a greater
number of people detected by the health system. Therefore contact tracing and isolation has a
significatively greater effect facilitating the control of the epidemic. Taking this into account,
we considered two lower values for σa and σa, and looked for the least restrictive scenario in
which the health system is not saturated. These results are shown in Table 6.

If σh and σa are kept constant, the measures necessary to prevent the saturation of the
health system are less restrictive as increasing Case. That is, in Case 0 are needed more
restrictions than in Case 1, and in Case 1 more than in Case 2. That is because the infectivity
is lower as increasing Case.
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Table 6 Least restrictive scenario to avoid the saturation of the health system for each com-
bination of Case, σh, σa and population distribution.

Case σh σa
Distribution

Comment
La Banda Hom. Tandil

Case 0 1/3 2/3 - - -

Case 0 1/3 0.15 - (a) - (b) - (b)

Considering the E5 scenario but clos-
ing schools when the occupation of
beds reaches: (a) 15%; (b) 25% of the
total beds, the saturation of the health
system is avoided.

Case 0 0.1 2/3 - - (c) - (c)

(a) Considering the E5 scenario but
closing schools when the occupation of
beds reaches 10% of the total beds,
the saturation of the health system is
avoided.

Case 0 0.1 0.15 - (a) - (b) - (b) Same as two rows above
Case 1 1/3 2/3 E5 E4 E4 Comments in the main text
Case 1 1/3 0.15 E2 E2 E2 Bed occupancy never reaches 10%
Case 1 0.1 2/3 E3 E3 E3
Case 1 0.1 0.15 E2 E2 E2 Bed occupancy never reaches 10%
Case 2 1/3 2/3 E4 E3 E3 Comments in the main text

Case 2 1/3 0.15 E2 E2 E2
Considering a policy of contact trac-
ing/case isolation, the epidemic is con-
tained in a few days.

Case 2 0.1 2/3 E3 E2 E2

Case 2 0.1 0.15 E2 E2 E2
Considering a policy of contact trac-
ing/case isolation, the epidemic is con-
tained in a few days.

If Case and σh are kept constant, as σa increases, it becomes more difficult to control
the epidemic. This is because with more asymptomatic patients, a policy to detect and isolate
cases is difficult to implement. On the other hand, if σa is low, the epidemic is easily controlled.

On the other hand, if Case and σa are kept constant, as σh increases, the epidemic be-
comes more difficult to control since the number of detected is the same, but more cases are
hospitalized.

We can see that La Banda always needs a more restrictive scenario to avoid the saturation
of the health system than Tandil and the homogeneous case. At the same time, these two
population distributions have the same least restrictive scenario in all the combinations of
cases and parameters.

A particular case is important to mention. In case 0 considering σa = 0.15 the reduction
of σh from 1/3 to 0.1 do not modify the least restrictive scenario. However, the bed occupancy
in both situations is different. While considering σh = 1/3 the health system works at full of
its capacity, considering σh = 0.1 there are some dozens of free beds.


