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TWO CLASSES OF ALGEBRAS

WITH INFINITE HOCHSCHILD HOMOLOGY

ANDREA SOLOTAR AND MICHELINE VIGUÉ-POIRRIER

(Communicated by Martin Lorenz)

Abstract. We prove without any assumption on the ground field that higher

Hochschild homology groups do not vanish for two large classes of algebras
whose global dimension is not finite.

1. Introduction

Let k be a fixed field. All the algebras we consider are associative unital k-
algebras. We will denote ⊗ = ⊗k.

It is well known that the homological properties of an algebra are related to
the properties of its Hochschild (co)homology groups. For example, if a finite
dimensional algebra over an algebraically closed field has finite global dimension,
then all its higher Hochschild cohomology groups vanish. In [12], D. Happel said
that he did not know whether the converse was true or not. It has been shown in
[5] that it does not hold for algebras of type Aq = k〈x, y〉/(x2, y2, xy− qyx), where
q ∈ k.

In [11], Han proved that the total Hochschild homology of the algebras Aq is
infinite dimensional. This fact led him to suggest the following conjecture:

Conjecture (Han). Let A be a finite dimensional k-algebra. If the total Hochschild
homology of A is finite dimensional, then A has finite global dimension.

In the same paper, Han provided a proof of this statement for monomial finite
dimensional algebras.

Avramov and Vigué’s computations in [1] show that Han’s conjecture holds in
the commutative case not only for finite dimensional algebras but for essentially
finitely generated ones; see also [18].

In [4], Han’s conjecture is proved for graded local algebras, Koszul algebras and
graded cellular algebras, provided the characteristic of the ground field is zero. The
proof relies on the properties of the graded Cartan matrix and the logarithm and
strongly uses the hypothesis on the characteristic of the field.
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In [3], the authors compute the Hochschild homology groups of quantum com-
plete intersections; that is, algebras of type A = k〈x, y〉/(xa, yb, xy − qyx), where
q ∈ k∗ is not a root of unity and a, b ≥ 2 are fixed integers. In particular they prove
Han’s conjecture for this class of finite dimensional algebras.

The main purpose of this paper is to prove that higher Hochschild homology
groups do not vanish for two large classes of algebras whose global dimension is not
finite, without any assumption on the ground field.

In Theorem I, the algebras we consider are generalizations of quantum complete
intersections, and they are not assumed to be finite dimensional.

On the other hand, the algebras satisfying the hypotheses of Theorem II are, in
some sense, opposite of quantum complete intersections, since we assume that they
have two generators x and y such that xy = yx = 0.

Now we state both main theorems.

Theorem I. Let A = k〈x1, . . . , xn〉/(f1, . . . , fp) be a finitely generated k-algebra,
such that f1 belongs to k[x1] and, for i ≥ 2, fi belongs to the two-sided ideal
(x2, . . . , xn). If B = k[x1]/(f1) is not smooth, then the Hochschild homology groups
HHn(A) are not zero for all n ∈ N.

For example Theorem I is valid if f1 = x2
1g1, with g1 ∈ k[x1] and f2, . . . , fp

satisfying the hypothesis of the theorem.

Theorem II. Let A =
⊕

n≥0 A
n be a finite dimensional graded k-algebra with A0 =

k and such that A =
⊕

n≥1 A
n is not zero. Assume that there exist two generators

x and y of the algebra A verifying xy = yx = 0. Then the total Hochschild homology
of A is not finite dimensional.

Remark 1.1. This theorem is valid for very large classes of graded local algebras
since relations between the other generators play no role.

The proof of Theorem I follows without any computation from the well known
result for commutative algebras.

The methods used in the proof of Theorem II rely on differential homological
algebra. In fact, we will work with the cobar construction on the graded coalgebra⊕

n≥0 Homk(A
n, k). We denote it (Ω∗A, d). The Hochschild homology groups of

the differential graded algebra (Ω∗A, d) are dual, as vector spaces, to the Hochschild
homology groups of the graded k-algebra A. Since (Ω∗A, d) is a tensor algebra, a
short complex is available to compute its Hochschild homology.

The paper is organized as follows:

(1) Introduction
(2) Proof of Theorem I
(3) Interpretation in terms of quivers
(4) Hochschild homology in the differential graded case
(5) Proof of Theorem II

2. Proof of Theorem I

Let A be an associative unital k-algebra. The definition of the Hochschild ho-
mology groups, HHn(A), n ≥ 0, is well known (see for example [13]). We have

HHn(A) := TorA
e

n (A,A) = Hn(C∗(A), b),
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where (C∗(A), b) is the Hochschild complex of A. Clearly, HHn(A) is a k-vector
space for all n ≥ 0.

In this section we assume that A = k〈x1, . . . , xn〉/(f1, . . . , fp), where n, p ≥ 1;
that f1, which we may suppose is monic, belongs to k[x1]; and that, for i ≥ 2,
fi belongs to the two-sided ideal (x2, . . . , xn). Let us consider the k-algebra B =
k[x1]/(f1) and the maps

ι : B → A with ι(x1) = x1,

π : A → B with π(x1) = x1, π(xi) = 0, for i ≥ 2.

The following lemma is easy to prove.

Lemma 2.1. The maps ι and π are morphisms of k-algebras and satisfy π◦ι = idB.

Now, Theorem I is an immediate consequence of the following facts:

• the morphisms ι and π induce by functoriality k-linear maps

HH∗(ι) : HH∗(B) → HH∗(A) and HH∗(π) : HH∗(A) → HH∗(B)

satisfying HH∗(π) ◦HH∗(ι) = idHH∗(B),
• using a result of [1], HHn(B) is nonzero for an infinite sequence of integers
n.

Another proof can be given using the computations for HHn(B) in [6]: if f1 and
f ′
1 are not coprime, then HHn(B) �= 0 for all n ∈ N.

Example 2.2. If f1 = xa
1 , with a ≥ 2, and fi ∈ (x2, . . . , xn), then Theorem I holds.

This covers the case of quantum complete intersections.

An interesting question is to ask if the algebras A considered in Theorem I have
infinite global dimension. In the commutative case, it is well known that this is
true. Also, if A = k〈x1, . . . , xn〉/(f1, . . . , fp) is a finite dimensional k-vector space,
Happel’s result [12] implies that gldim(A) = ∞, where gldim denotes the global
dimension of the algebra.

It follows from Serre’s theorem on page 37 of [15] that if B is not smooth, then
its global dimension is not finite. In the general case, we cannot ensure that if we
have k-algebras A and B as above with gldim(B) = ∞, then gldim(A) = ∞.

However, we can use the algebra map ι : B → A to obtain that the global
dimension of A is not finite in some cases: Suppose that ι endows A with a structure
of a flat B-module. In this situation, Corollary 4.4 of [2] says that gldim(A) = ∞.
This is the case, for example, of quantum complete intersections.

3. Interpretation in terms of quivers

Let A be a k-algebra which is isomorphic to kQA/IA for a given finite quiver
QA and an admissible ideal IA. In case k is an algebraically closed field and A is
finite dimensional and basic, there always exist a quiver and an admissible ideal
such that the above isomorphism holds.

Let us denote by QA
0 = {e1, . . . , er} the set of vertices of QA and by QA

1 its
set of arrows. Then kQA

0 is an algebra, kQA
1 is a kQA

0 two-sided ideal and A =
TkQA

0
kQA

1 /I
A, where IA ⊆ (kQA

1 )
2.

Suppose that there exist ei ∈ kQA
0 and x ∈ ei(kQ

A
1 )ei. In fact, since A is finite

dimensional and IA is admissible, if such a loop x exists, then xn = 0 for some
integer n≥ 2.
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Let B be the k-algebra k[x]/〈xn〉. Then B = TkQB
0
kQB

1 /I
B , where QB

0 = {ei},
QB

1 = {x} and IB = 〈xn〉.
We may consider the morphisms of algebras of the previous section. In this

case the map ι is completely determined by its values on ei and x. It sends ei to
e1 + · · ·+ er and x to x. Clearly, it is well defined.

On the other hand, the morphism π : A → B is given as follows: π(ej) = δijei,
for 1 ≤ j ≤ r, and the restriction of π to the arrows of A is given by π(y) =
δyxx, where δ is the Kronecker delta. If we assume that IA = 〈xn, f2, . . . , fs〉 is
admissible and that fi belongs to the two-sided ideal generated by QA

1 − {x}, then
it is straightforward to check that π is also well defined and π ◦ ι = idB.

As a consequence of the results of Section 2, we see that the Hochschild homology
dimension, denoted hhdim(B), is infinite, and so the same holds for A. Being both
k-finite dimensional, their global dimensions cannot be finite.

It is interesting to note that whenever A and B are finite dimensional k-algebras
provided by morphisms π and ι satisfying π ◦ ι = id as in the previous section and
B has infinite Hochschild dimension, hhdim(A) will also be infinite. For example,
let char(k) = 0 and B be a finite dimensional monomial k-algebra with generators
x1, . . . , xr such that hhdim(B) �= 0, and let A be a finite dimensional k-algebra
generated by x1, . . . , xr, . . . , xn such that B ∼= A/〈f1, . . . , fs〉 and fi belongs to the
two-sided ideal 〈xr+1, . . . , xn〉, 1 ≤ i ≤ s. Then hhdim(B) = ∞ [11], and the same
is true for A.

4. Hochschild homology in the differential graded case

In this section we deal with finite dimensional algebras.

4.1. Notation. We use the methods of differential graded algebra of [7]. In par-
ticular an element of lower degree i ∈ Z is, by the classical convention, of upper
degree −i. All the algebras considered from now on are unital, associative, with
a differential of degree −1. We recall that if V =

⊕
i∈Z

Vi is a graded k-vector
space, then the suspended graded k-vector space sV has homogeneous components
(sV )i = Vi−1, for i ∈ Z. The k-algebra TV will denote the tensor algebra on V .
The degree of an element v ∈ V is denoted by |v|.

For any differential graded algebra A, let Aop be the opposite graded algebra,
and Ae = A⊗Aop be the enveloping algebra. The categories of graded A-bimodules
and of left (or right) differential graded Ae-modules are equivalent.

4.2. Bar resolution and Hochschild homology. Let (A, d) be an augmented
algebra and let A = Ker(ε : A → k). The normalized bar resolution of A, denoted
by B(A,A,A), is the differential graded Ae-module (A ⊗ T (sA) ⊗ A,D0 + D1),
where D0 is the differential induced by d on the tensor product of complexes and
D1 is defined as follows (see for example [9], 2.2):

D1(a⊗ sa1 ⊗ · · · ⊗ san ⊗ b) = (−1)|a|aa1 ⊗ sa2 ⊗ · · · ⊗ san ⊗ b

±
n−1∑
i=1

a⊗ sa1 ⊗ · · · ⊗ s(aiai+1)⊗ · · · ⊗ san ⊗ b

± a⊗ sa1 ⊗ · · · ⊗ san−1 ⊗ anb.

The Hochschild homology of the differential graded algebra (A, d) is, by definition,

the graded vector space HH∗(A) = TorA
e

∗ (A,A) in the differential sense of [14].
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Lemma 4.1 ([7]). The canonical map m : B(A,A,A) → A defined by 0 on A ⊗
T≥1(sA) ⊗ A and by multiplication on A ⊗ A is a semifree resolution of A as an
Ae-module.

Consequently we have,

HH∗(A, d) = H∗(C∗(A), δ)

with
C∗(A) = A⊗Ae B(A,A,A) = A⊗ T (sA),

and δ = δ0 + δ1, where δ0 and δ1 are obtained by tensorization. Explicitly,

δ1(a⊗ sa1 ⊗ · · · ⊗ san) = (−1)|a|aa1 ⊗ sa2 ⊗ · · · ⊗ san

+

n−1∑
i=1

(−1)εia⊗ sa1 ⊗ · · · ⊗ s(aiai+1)⊗ · · · ⊗ san

+ (−1)εnana⊗ sa1 ⊗ · · · ⊗ san−1,

where the εi’s are integers depending on the degrees of the elements ai. If all these
degrees are even, then εi = i.

In the rest of this paper we consider only differential graded algebras (A, d)
satisfying either condition (a) or condition (b) below:

(a) An = 0 for n < 0 and A0 = k, so that Cn(A) = 0 for n < 0;
(b) An = 0 for n > 0, A0 = k, and A−1 = 0, so that Cn(A) = 0 for n > 0.

In both cases, we have C0(A) = k.

4.3. Cobar construction and duality construction in Hochschild homol-
ogy. We next recall the definition of the cobar construction described in Section
19 of [8]. Let (C, dC) be a coaugmented differential graded coalgebra with comul-
tiplication ∆, and let C = Ker(ε : C → k). We denote (ΩC, d) as the augmented
differential graded algebra defined as follows:

• ΩC = T (s−1C), as an augmented graded algebra;
• d = d0 + d1, with d0(s

−1c) = −s−1(dC(c)), if c ∈ C, and d1 is defined from
∆.

Suppose now that (A, dA) is a finite dimensional differential graded algebra. Then
the graded dual A∨ = Homk(A, k) is a differential graded coalgebra with differential
d∨A, the transpose of dA.

Definition 4.2. (Ω∗A, d) := (Ω(A∨), d), where d is defined from d∨A and the co-
multiplication of A∨ as above.

We have Ω∗A = T (V ) with V = Homk(sA, k). If (A, dA) satisfies condition (b)
above, then

V =
⊕
n≥1

Vn, with Vn = Homk(A−n−1, k)

and then (Ω∗A, d) satisfies condition (a). Similarly, if (A, dA) satisfies condition
(a), then (Ω∗A, d) satisfies condition (b).

The first ingredient used to prove Theorem II is the following duality property.

Theorem 4.3 ([10], [16]). Let (A, dA) be a finite dimensional algebra satisfying
either condition (a) or (b) above. Then for all n ∈ Z we have

Homk(HH−n(A), k) = HHn(Ω
∗A).
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Consequently, the computation of the graded vector space HHn(A) can be re-
placed by the computation of the Hochschild homology of a quasifree differential
graded algebra (T (V ), d).

4.4. A short complex for the computation of the Hochschild homol-
ogy. Now, we want to compute the Hochschild homology of (T (V ), d), with V =⊕

n≥1 Vn.

We recall here the main results of [17]. Put (T (V ), d) = (B, d) and let P =
(B ⊗ B) ⊕ (B ⊗ (sV ) ⊗ B). We define a differential D on P , which is the tensor
product of the differentials on B ⊗B, and

D(a⊗ sv ⊗ b) = da⊗ sv ⊗ b± (av ⊗ b− a⊗ vb) + S(a⊗ sv ⊗ b),

where S(a⊗ sv ⊗ b) ∈ B ⊗ sV ⊗B, for a ∈ B, b ∈ B and v ∈ V .

Proposition 4.4 (Thm. 1.4 in [17]). The canonical map m : (P,D) → B defined
as 0 on B ⊗ sV ⊗ B and as multiplication on B ⊗ B is a semifree resolution of B
as a Be-module.

As a consequence,

HH∗(T (V ), d) = H∗(B ⊗Be P, δ),

with differential δ = d ⊗Be D that will be made precise in the next section. We
have:

• δ|T (V ) = d;

• δ(a⊗sv) = da⊗sv+(−1)|a|(av−(−1)|v|×|a|va)−σ(a⊗dv), where σ(a⊗dv)
belongs to T (V )⊗ sV , for a ∈ T (V ), v ∈ V .

Put Q∗ := B ⊗Be P = T (V )⊕ (T (V )⊗ sV ).

Theorem 4.5 (Thm. 1.5 of [17]). With the above notation,

HH∗(T (V ), d) = H∗(Q∗, δ).

In the following section we will use the complex (Q∗, δ) to compute the Hochschild
homology of a finite dimensional graded algebra A =

⊕
n≥0 A

n, with A0 = k. In
this case, the graded vector space V is also finite dimensional, and the differential
δ has good properties.

5. Proof of Theorem II

We work with a finite dimensional graded algebra with A0 = k. We may assume

without loss of generality that A is graded in even degrees, A = k ⊕
(⊕

n≥2 A
n
)
,

and A =
⊕

n≥2 A
n is nonzero.

5.1. Relations between HH∗(A) and HH∗(A, 0). Using the conventions recalled
at the beginning of the previous section, we consider A as a differential graded
algebra with differential 0 and A−n = An.

Since A is graded, the ordinary Hochschild homology HH∗(A) defined in Sec-
tion 2 is graded, and there is a decomposition

HH∗(A) =
⊕
p,q≥0

HHp(A)q.

Since A is finite dimensional, HHp(A) is finite dimensional for all p.
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Lemma 5.1. Let A be an algebra as above. Then,

(1) HH∗(A, 0) =
⊕

n≥0 HH−n(A) and HH−n(A) =
⊕

p HHp(A)p+n.

(2) HHp(A)p+n = 0 if p > n or p < n−N
N−1 , where N = sup{n|An �= 0}.

Corollary 5.2. If there exists an increasing sequence of integers ni such that
HH−ni

(A) �= 0, then HH∗(A) is not finite dimensional.

The strategy now is to focus our attention on HH∗(Ω
∗A) using Theorem 4.3.

But Theorem 4.5 allows us to use the short complex (Q∗, δ) to compute HH∗(Ω
∗A),

so we will work with this last one.

5.2. Description of (Q∗, δ). Let A = k ⊕
(⊕

n≥2 A
n
)

be a finite dimensional

graded algebra. We fix a homogeneous linear basis (ai)i∈I for A =
⊕

n≥2 A
n. This

choice determines the structure constants αi
jk by the equalities ajak =

∑
αi
jkai.

In this situation, (A)∨ = Homk(A, k) is endowed with the dual basis (bi)i∈I

satisfying 〈bi, aj〉 = δij . Notice that A∨ is a graded coalgebra with comultiplication

∆, and ∆bi =
∑

j.k β
jk
i bj ⊗ bk, where αi

jk = (−1)|aj |×|ak|βjk
i .

We have already defined (Ω∗A, d) = (Ω(A∨), d) = (T (V ), d). Now, put vi =
s−1bi; then |vi| = n− 1 if ai ∈ An. We check that

dvi =
∑
j,k

(−1)|aj |+|aj |×|ak|αi
jkvj ⊗ vk.

So (Ω∗A, d) = (T (V ), d) is a tensor algebra with a quadratic differential.
Furthermore, we have assumed without loss of generality that A is graded in

even degrees, so that V is graded only in odd degrees. In this case, we give an
explicit formula for the differential δ on Q∗ (cf. Subsection 4.4).

Put V = sV ; then Q∗ = T (V ) ⊕ T (V ) ⊗ V . Let v be an element in V , and let
dv =

∑
j,k λjkvj ⊗ vk with λjk ∈ k. Let a be an element in T (V ).

We have

δ(a⊗ v) = da⊗ v + (−1)|a|(av − (−1)|a|va)− σ(a⊗ dv),

where

σ(a⊗ dv) = −(−1)|a|
∑
j,k

λjkavj ⊗ vk +
∑
j,k

λjkvka⊗ vj .

5.3. A nice homogeneous basis (ai) for A. Since A = k ⊕ A, the projection

A → A/A
2
= U has a section ρ that extends to a morphism of algebras T (U) → A

whose kernel is contained in T≥2(U). This implies that (xi)1≤i≤p are generators of

the algebra A if and only if their images in A/A
2
form a basis of this vector space.

As vector spaces, A = A/A
2 ⊕ A

2
, and we will consider a homogeneous basis

of A/A
2
and a basis of A

2
. If ai ∈ A/A

2
, then the corresponding vi in (Ω∗A, d)

satisfies dvi = 0.
We will now prove the following result.

Theorem 5.3. Let A =
⊕

n≥0 A
n be a finite dimensional graded k-algebra with

A0 = k, such that A =
⊕

n≥1 A
n is not zero. Assume that there exist two generators

x and y of the algebra A satisfying xy = yx = 0. Then Hni
(Q∗, δ) �= 0 for a strictly

increasing sequence of integers (ni).
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Proof. We can associate to x and y two elements a1 and a2, linearly independent
in A. We denote by v1 and v2 the corresponding elements in a dual basis of V . If
(a1, . . . , an) is a linear basis of A and (v1, . . . , vn) is the corresponding basis of V ,
then we have dv1 = 0, dv2 = 0 and, for i ≥ 3,

dvi =
∑
j,k

αi
jkvj ⊗ vk.

The fact that xy = yx = 0 implies that, for i ≥ 3, αi
12 = αi

21 = 0.
For n ≥ 1, consider

Xn = v1⊗v2⊗v1⊗v2⊗· · ·⊗v1⊗v2−v2⊗v1⊗v2⊗v1⊗· · ·⊗v2⊗v1 ∈ V ⊗(2n−1)⊗V .

It is easy to see that |Xn| = n(|v1|+ |v2|) + 1 and that δXn = 0.
If Xn was a boundary, there should exist Y, bi ∈ T (V ) such that

Xn = δ(Y +
∑
i

bi ⊗ vi)

and

Xn = dY +
∑
i

dbi ⊗ vi +
∑
i

(bivi − vibi) +
∑
i

αi
jkbivj ⊗ vk −

∑
i

αi
jkvkbi ⊗ vj .

Such elements cannot exist since, for all i,

dvi =
∑
j,k

αi
jkvj ⊗ vk with αi

12 = αi
21 = 0. �

Example 5.4. Let A = k〈x, y, z〉/(xy, yx, x2 − y2, x2 − z2, xz − qzx, yz − qzy),
where q ∈ k, q2 �= 1 and −1 is not a square in k. This example is not covered by
Theorem I.
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10. Halperin, S.; Vigué-Poirrier, M. The homology of a free loop space. Pacific J. Math. 147

(1991), no. 2, 311–324. MR1084712 (92e:55012)
11. Han, Y. Hochschild (co)homology dimension. J. London Math. Soc. (2) 73 (2006), no. 3,

657–668. MR2241972 (2007c:16018)

http://www.ams.org/mathscinet-getitem?mr=1149001
http://www.ams.org/mathscinet-getitem?mr=1149001
http://www.ams.org/mathscinet-getitem?mr=1399845
http://www.ams.org/mathscinet-getitem?mr=1399845
http://www.ams.org/mathscinet-getitem?mr=2429451
http://www.ams.org/mathscinet-getitem?mr=2429451
http://www.ams.org/mathscinet-getitem?mr=2506831
http://www.ams.org/mathscinet-getitem?mr=2189240
http://www.ams.org/mathscinet-getitem?mr=2189240
http://www.ams.org/mathscinet-getitem?mr=1141335
http://www.ams.org/mathscinet-getitem?mr=1141335
http://www.ams.org/mathscinet-getitem?mr=1361901
http://www.ams.org/mathscinet-getitem?mr=1361901
http://www.ams.org/mathscinet-getitem?mr=1802847
http://www.ams.org/mathscinet-getitem?mr=1802847
http://www.ams.org/mathscinet-getitem?mr=2075886
http://www.ams.org/mathscinet-getitem?mr=2075886
http://www.ams.org/mathscinet-getitem?mr=1084712
http://www.ams.org/mathscinet-getitem?mr=1084712
http://www.ams.org/mathscinet-getitem?mr=2241972
http://www.ams.org/mathscinet-getitem?mr=2241972


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CLASSES OF ALGEBRAS WITH INFINITE HOCHSCHILD HOMOLOGY 869

12. Happel, D. Hochschild cohomology of finite-dimensional algebras. Séminaire d’Algèbre Paul
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Astérisque, vol. 191, Soc. Math. France, 1990, pp. 255–267. MR1098974 (92e:19003)
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Laboratoire Analyse, Géométrie et Applications, UMR CNRS 7539, Institut Galilée,
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