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Abstract We give a necessary condition for Morita equivalence of simple General-
ized Weyl algebras of classical type. We propose a reformulation of Hodges’ result,
which describes Morita equivalences in case the polynomial defining the Generalized
Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by
similar considerations in noncommutative differential geometry. We study how far
this link can be generalized for n > 3.
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1 Introduction

The aim of this paper is to describe Morita equivalence of generalized Weyl algebras
of type k[h](ou, a), where o,4(h) = h — 1 and a € k[h] is a polynomial of degree at
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least 2, under the assumption that the algebra is simple and has finite global di-
mension. Generalized Weyl algebras were introduced by V. Bavula [2], and produce
a common framework for the study of some classical algebras and their quantum
counterparts. Examples of GWAs are, n-th Weyl algebras, U/ (s[,), primitive quotients
of U(sl,), its quantized versions and also the subalgebras of invariants of these
algebras under the action of finite cyclic subgroups of automorphisms. It results from
the discussion in [14, §3.1] that from the point of view of Morita equivalence these
two cases (classical, quantum) might be treated separately. We focus here on the
classical case, also studied by T. J. Hodges [10] under the name of Non commutative
deformations of type A-Kleinian singularities.

These algebras are naturally Z-graded, and they play a crucial role in a recent
paper (Sierra, preprint) by Susan Sierra on rings graded equivalent to the Weyl
algebra. Nevertheless we are dealing here with usual Morita equivalence, and the
grading will not play any visible role in the following.

Notation For a € k[h], denote A(a) = k[h](o., a) the k-algebra generated over k[h]
by two generators x, y satisfying the relations

xh = (h— 1x,

yh=(h+ 1Dy,

yx = a(h),

xy =a(h—1). 1)

We recall the following result, which follows from [3, Proposition 2 and
Corollary 2].

Proposition 1.1 The classical GWA A(a) = k[h](oy, a) is simple if and only if, for any
two distinct roots o and B of the polynomial a, « — B & Z.

Furthermore, we will assume in the following that the polynomial a has distinct
roots. Thanks to [1] (see also [2, Theorem 5] and [10, Theorem 4.4]), this is equivalent
to saying that the algebra A(a) has finite global dimension. We write explicitly this
condition for further use:

A=A gL, Vi#j )

In this paper we will make use of the proof given by Hodges for B,’s in [9], which
are exactly the GWAs defined by a polynomial of degree 2, using additional results
from [10]. However, we propose a reformulation of Hodges’ result, relying on the link
with quantum tori, inspired by similar considerations in noncommutative differential
geometry [11, 15]. It is natural to study, then, how far this link can be generalized for
n>3.

The paper is constructed as follows. Next section is dedicated to our main result
Theorem 2.6.2. Along the way we will study in detail the link between Ky(A) and
HH)(A). In Section 3 we explicit our result in the case n = 3, and investigate how far
our necessary condition is to be sufficient. At last, in Section 4 we present some links
with quantum tori, inspired by similar considerations in noncommutative differential
geometry [11, 15].
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In what follows k is an algebraically closed field of characteristic zero, a and b
denote polynomials in k[4] of degree at least two, and in Sections 3 and 4 we will
specify k = C.

2 Framework
2.1 Normal Form and Degree 2 Case
We recall the following result of Bavula and Jordan.

Theorem 2.1.1 ([4], Theorem 3.28) For ay, a, € k[h], A(a)) >~ A(ay) if and only if
a(h) = pa,(eh + B) for some e € {—1, 1} and p, B € k with p # 0.

Thanks to this result we will always assume our polynomials to be monic, i.e.
we will write them in the form a(h) = []_,(h — ;) with Ay, ..., A, the roots of the
polynomial a(#). Note that we may also, up to isomorphism, translate all roots by the
same —f and change the sign of all of them.

Remark 2.1.2 Tt follows from [10] that the polynomials defining two Morita equiva-
lent GWAs must have the same degree.

Before studying the general case we recall the following result in degree 2.

Theorem 2.1.3 ([9], Theorem 5) Let a(h) = (h—Ar))(h—X;) and b(h) = (h—
u1)(h — o) be two polynomials of degree 2. Then A(a) and A(b) are Morita
equivalent if and only if Ay — ko = £(u1 — p2) + m for some m € Z.

2.2 A Sufficient Condition
The following is a direct consequence of [10, Lemma 2.4 and Theorem 2.3].

Proposition 2.1 Set a,b € k[h] two polynomials with distinct roots respectively
{ri, 1 <i<n}and {u;, 1 <i < n}, satisfying condition (2). Suppose that there exist a
permutation t € S,, and (my, ..., m,) € Z" such that \; = )\’I(i) +m; forall 1 <i<n.
Then the GWAs A(a) and A(b) are Morita-equivalent.

Note that for n =2 this condition is equivalent to the one appearing in
Theorem 2.1.3.

2.3 Morita Equivalence and Trace Function

In the rest of this Section we study necessary conditions for Morita equivalence. As-
sume that a and b are two polynomials in k[/], with simple roots having non-integer
differences, such that A(a) and A(b) are k-linearly Morita equivalent noetherian
domains. Such an equivalence, that we will denote F, from the category of (say) left
A(a)-modules to left A(b)-modules is given by tensoring with a bimodule 4y P 4,
finitely generated and projective as a left and as a right module. This functor
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induces a group isomorphism Ky (F) between Ky(A(a)) and Ko(A(b)) and a k-linear
isomorphism HH,(F) between HHy(A(a)) and HHy(A(D)). Here as usually Ky(A)
denotes the Grothendieck group of A, generated by finitely generated projective
modules, and HH,(A) the Hochschild homology space in degree zero, which is also
the k-vector space of traces A/[A, Al.

Moreover, Ky(F) must preserve the usual rank function rk : Ko(A) — Z, defined
on a projective P as the length of the FracA-module (FracA) ® 4 P. So if we denote
Ky(A) = Ker(rk), we have the following commutative diagram:

Ro(A@) —— Ko(A@) ——= HHy(A)

i Ro(F) J{ Ko(F) l HHy(F) 3)
~ i tr
Ko(A(b)) — Ko(AD)) —— HHy(AD))

Here i denotes the canonical injection and #r the usual Hattori-Stallings trace map.
Remark that Ky(F) is an isomorphism of groups too (for more details see [5]).
Following the ideas of [9], we will describe as precisely as possible the maps Ko(F)
and HH,(F).

2.4 A Basis for I?O(A(a))

Let a € k[h] be a polynomial of degree n with simple roots satisfying (2). Thanks to
[4, Theorem 3.28], we can assume that a(k) is monic, thatis a(h) = ]—H’:, (h — X;). Then
thanks to [10, Theorem 3.5] and Quillen’s localization sequence [8] we know (by an
argument analogous to [9, Proposition 1]) that [A(a)], [PE“)], e [Pflal ] form a basis
of Ko(A(a)), with Pl@ = A(a)x + A(a)(h — A;). Moreover, thanks to [10, Lemma
2.4], we know that the Pf”) are progenerators, and give Morita equivalences between
A(a) and A(b;), where b;=(th — X1, — 1) ]_[#i(h — ;) is the polynomial obtained
from a by replacing %; by A; + 1. Then one easily verifies the following result.

Proposition 2.4.1 With the notations above ([PE“)] —[A(@)], 1 <i<n-—1)isa basis
of Ky(A(a)).

2.5 Trace of [Pf“)] —[A(a)]
We compute here the trace of the projective module Pl@ .

Proposition 2.5.1 Let a(h) € k[h] be a polynomial of degree at least 2 satisfying
the criterion of Proposition 1.1, and denote A = A(a). Factorize a(h) = u(h)w(h)
with u and w non-constant polynomials. Assume that u and w are relatively prime
polynomials. The left A-ideal P = Ax+ Aw(h) is projective, and its trace is the
class of the polynomial 1 + w(h) B(h) — w(h — 1) B(h — 1), where B(h), C(h) are two
polynomials such that B(h)w(h) + C(h)u(h) = 1.

Proof Consider the epimorphism of A-modules G: A® A — P defined by
G(1,0) =x, G(0,1) = w(h). Then one may easily check that G admits a section
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F:P—> A® A defined by Fx) = (Cth—1Duth—-1),Bh-1)x), Flwh)) =
(C(h)y, w(h)B(h)). Then tr(P) is nothing but the usual trace of the idempotent
F o G € M,(A), and one concludes using the defining relation between B and C. O

Notations

e Since a(h) = (h—Xy)...(h—x,) has degree n, we see from 3.1.1 in [7] that
HHy(A(a)) is naturally isomorphic to the subspace of k[h] spanned by the
classes of 1, h, ..., W"~2. For convenience we will denote 1, and 4% the classes
of 1 and hP SO that HHy(A(a)) =k.1,® EB" 2 k.h%. Similarly HHy(A(b)) =
k1p & @y k.h.

e For any integer p > 0 denote k, the space of polynomials of degree not greater
than p. Given n distinct scalars A4, ..., A,, denote by (vy, ..., v,) the basis of k,,_;
consisting of Lagrange interpolation polynomials associated to (A1, ..., %,), i.e.
vV = Lt,'/}"[, with u; = Hj;ﬁi(h — )\.]‘) and ri = Hj;éi()‘i — )‘j) = ui()\,‘).

In fact, each u; is the quotient of two Vandermonde determinants,
_VOa, ... A1, by )\i+lv---7)\n)( Vi, ..o h) )*1
VA, ..oy diy ooy Ay) Vi, ..o Xiy ooy An)

VO, .o hici, By A, oo Ap)
V()\ly---,)‘n)

with the convention that V(Ay, ..., A,) is the determinant of the n x n matrix with
(i, j)th entry /\;f_‘ foralll <i,j<n.

Proposition 2.5.2 Set a(h) = (h—Ay)...(h—A,). Let Pl@ = A(a)x + A(a)(h — 1)
forall 1 <i<n—1 be the left A(a)-modules considered above. Then tr(Pl@) is the

class of the polynomial 1 + (o — l)ul@ /ri, where o is the k-algebra automorphism of
k[h] defined by o (h) = h —

Proof We apply the preceding Proposition with u(h) = [];,;(h — 1)) and w(h) =
h — %;. The euclidian division of u by w gives u = (h — 4;) O + r;, with degQ =
n —2. Setting B(h) = —Q/r; and C(h) = 1/r;, one gets tr(P(“)) as the class of the
polynomial 1 4 “=* — "(" ) One concludes then using the fact that o is an algebra
morphism. ’ u]

Since the polynomial giving the trace of P<”) is of degree n — 2, it may be identified

with its class in HHy(A(a)). Denote by pl(“) the image of (o — 1)(v;) in HHy(A(a)),
so that tr(P\”) = 1, + p\“.

Lemma 2.5.3 The set (p(”) e p,(f) \) is a basis of HHy(A(a)).

Proof First we check that replacing v,(h) by the constant polynomial 1, the set
(vi,...,v,-1, 1) is still a basis of k,_;. For this, let ag, oy, ..., a,—1 € k be such
that ag + Z?;,l a;v;(h) = 0. Evaluating in A = X, we get oy = 0, and we conclude
thanks to the fact that the v;’s are linearly independent. Now define the linear map
S:ky 1 — kynoby S(P)=0(P)— P. The set (p(”) ...,prO)l, 0) is the image of the
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basis above by S. Writing the matrix of S in the canonical bases, one easily sees that
it is surjective. This ends the proof. o

Clearly we have the same results with b instead of a and the w;’s instead of the
Ai’s. We give now an interpretation of the trace polynomials pf”) in terms of Schur
polynomials.

Proposition 2.5.4 Set as before a(h) = []iL,(h — A;). Let Pf“) = A(a)x + A(a)(h — 1)
for1 <i<n-—1.Then

tr(P®) = 1, + pi”

4

with

pl(a) — Z(_l)i+l((h_ 1)nfl_hnfl)a(], ... 1.0, .“70)()\1,...,):,', e )
5 —_—— ——

i=1
-1 n—I

Vs ooy Mgy hn)
V()\.l,...,)\n)

where o 10,....0R1, ..., Xis ..., Ay) denotes the Schur polynomial associated
— —

-1 n—I

to the partition (1,...,1,0,...,0) evaluated in (kl,...,):i,...,kn).
——— ———

-1 n—l

Proof Recall from Proposition 2.5.2 that

1
P = (with — 1) — ih)).

1

1
h=1—=2) =Tt —=2p | =
1._[ ! 1_[ o NN
JF J#i it
. <V()»1,-.-,)»i71,h— L Aigts o An)
B Vs iy e )

_V(Al,...,Ai_l,h,ki+1,...,kn)) VO, oo ki hn)
An)

Vs oo bty e, V(... A
Vg, oooshict, h— L dgg, oo h) = V(oo dict, By Ay ooy Ay)
Vs )

}\11171 }\gfl . (h _ 1)n—1 _ hn—l . )Ln—l

n

det Mo Ay e h—1—h -
) 1—1 11
———
i
B Vs ooy hn)
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Developing by the i-th column we obtain:

—1 1 1 1 —
VY Y R VR VR L

i+1
det . . . . .
Al Aot A Aipr o Ay
n . | | 1 -1
(_1)l+[((h _ 1)717[ _ h}’l*l).
; )

n
DD =) =g, 100 oM R A
i=1 —— ——

-1 n—l

Vs oo ki hy) o
' ; )

Vi, ...

Let us remark here that Schur polynomials also play a central role in the classifi-
cation up to Morita equivalence of Cherednik algebras in [5].

2.6 Computing HHy(F)

In this subsection we consider two polynomials a(h) =[], (h — ;) and b(h) =
]_[;f: { (h — ;) with all distinct roots with non-integer differences. Assuming that the
algebras A(a) and A(b) are Morita equivalent, and using the notations of Section 2.3,

we describe now HH((F) as a matrix («;;) € GL,(k), in the bases (p(“) ...,p,(f)l),
(P(b) P(b)l)
oo Dy

2.6.1 Notations

e Set P= 44)Paw, the progenerator such that F = P ® 4, ( ). Both A(a) and
A(b) are noetherian domains of uniform dimension 1, and A(b) is isomorphic
to End 4, (P), whose uniform dimension equals the uniform dimension of P.
This last one equals the rank of P - again using that A(a) has uniform dimension
1-so Pmust have rank 1 as an A(b)-module. As a consequence [ P] — [A(b)] has
rank 0 in Ky(A(b)), and there exist m,, ..., m,_; € Z such that [P] = [A(b)] +
ml([Pi’”] [AD)]) + . - 1([PP1 = [A(b)]) in Ko(A(b)) and tr®)(P) =
1p + m1p1~ ot mn,lp,H in HHy(A(b)).

e Because K(F) is a group isomorphism, there exists a matrix N = (n;) €
GL,_1(Z)such thatforall 1 <i <n— 1 we have

Ko(F) ([P = [A@]) = ny i ([P = TAD) + ... + 1y ([P = [AD))).
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It results from the definition of the m;’s that the matrix associated to K(F)
with respect to the bases ([P{”] - [A@)], ..., [P 1~ [A@], [A(@]) and ([P{"] —
[AD)L. ... [PD] = [AD)) [AD))]) is

my

2.6.2 Link Between the Matrices of EO(F) and HHy(F)

We still consider the commutative diagram (3). Then we getforall 1 <i<n—1
HHy(F) (e[ P"] = [A@)D) = t(Ko(F)(IP”] = [A@D),

thatis HHo(F)(p[") = tr(ni([P"1= TABID + .. + nuer i ([P 1 = [AB)D), 50

(b)

b
Ollzpi)—f' o, 11[7,, l—nl iP1 +~~~+nn—1.ipn_)1~

Since the p ) are linearly 1ndependent we get ap; =ny; forall 1 <k,i<n-—1,
that is, the matrices associated to KO(F ) and HH,(F) in our chosen bases are equal.

2.6.3 Computing HHy(F)
Because the diagram (3) is commutative, we have forall 1 <i<n —1:

HHo(F)(tr ([P D) = tr(Ko(F)(LP{"D).- )
The left part of this equation is equal to HHy(F)(1, + pl"))

Lemma 2.6.1 The following formulas hold respectively in HHy(A(a)) and
HHy(A(D))

Z(x—x,»p(“) Ly Z(M; unp. (5)

Proof We give the proof for a(h), the proof for b (h) being completely similar. So
we omit the upper indices (a) in the following. Recall from the notations intro-
duced in Section 2.5 that p;(h) = (¢ — 1)(v;(h)), with vy (h), ..., v,(h) the Lagrange

interpolation polynomials associated to Ay, ..., A,. Reasoning in k,_;, we have h =
S dvi(h) and 1= Y"1, v;(h), so that h = Z:‘:]l (Ai — A vi(h) + A,. We conclude
by noticing that 1 = —(o — 1)(h). |

Now we have

n—1
HHo(F)(1, + p) = HHy(F) (Z( hjt +8,,)p(“))
Py

n—1 n—1

ZZ ( )\ + An +511)Olk117(b)).

j=1 k=1
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On the other hand, we have

tr(Ko(F)([P]) = tr([P ® a0 P\1)

n—1
=tr (Z ([P = LAD)]) + [A@)P])
k=1
n—1 n—1
= an,iP;((b) + 1, + kap;({b)
k=1 k=1
n—1
=Y (i + mu + (—pu + ) py-
k=1

So Eq. 4 givesrise foralll <k <n—1to

n—1

D Ay ey = ng A g+ (= + )
j=1

Thanks to Section 2.6.2 we can rewrite the preceding equation only in terms of the
n;’s, and finally summarize the results of this section in the following

Theorem 2.6.2 Set a=(h—2)...(h—A,), b=0"—pw)...(h—u,) € klh] two
polynomials of degree n such that »; —Aj € Z, p;j— ;€ 7Z for all i # j. Define
the following column vectors: A = (hy — Al, ..y hp — Au 1), Q= (ln — 1, o e oy o —
tn_1)' € k"' Assume the algebras A(a) and A(b) are Morita equivalent. Then
there exist a matrix N = (n;;) € GL,_(Z) and a column vector of integers M =
(my, ..., mu_1)" € 2" such that:

NA=Q+M (6)

Proof Tt results from the preceding computations that forall 1 <i, k <n — 1 we have
the following equation

n—1

Z(—)»,' + Ap + Sing = Ay + my + (=g + ).
=1

The term ny; appears once on both sides of this equality, so it cancels, and i does
not appear anymore in the equation. Then the statement of the theorem is just a
rephrasing of these facts in terms of matrices. u]

Remark 2.6.3

e Since GL(Z) = {1, —1}, condition (6) can be considered as an extension in
degree n of the condition obtained by Hodges in [9] (see Theorem 2.1.3).

e Condition (6) is actually saying that the Z-lattice generated in k by the X, — A;’s
has to be the same as the one generated by the w, — u;’s. There is a canonical
way to associate a noncommutative torus to a lattice (see [11, 15]), and we will
discuss this in Section 4.
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3 Discussion on the Case of Degree 3

In this section and the following one we assume that k = C. Consider two poly-
nomials a(h) = (h — A)(h — Ay)(h — A3) and b (h) = (h — 1) (h — uy)(h — u3) both
satisfying the criterion (2).

3.1 Notations
e Set P = 44)P A as in the previous section. We already know that [P] = [A(D)] +
mi((PP] = [AD)]) + ma((PY)] = [A(D))) and tr®(P) = 1, +my p{”’ +mypy for

i’ n2> € GL,(Z) such that

some m, m, € Z, and that there exists a matrix N = (n n
3 Ny

Ko(F)IP{"1 = [A@D) = ([P’ = TAB)D) + ns ([P’ ] = [AD)D,
Ko(F)IPS = TA@D = ma((P"1 = TADB)D + na((PY 1= [AD)D.

Theorem 2.6.2 translates in the following way in the present setting.

Proposition 3.1.1 Set a=(h— X )(h—A)(h—23),b = (h— pu)(h—p)(h—p3) €
k[h] two polynomials of degree 3 such that \j — Aj € Z, u; — ;€ Z for all i # j.
Assume the algebras A(a) and A(b) are Morita equivalent. Then there exist a matrix

(Zl Zz> € M,(Z) and integers m;, my € Z such that
3 14

ning — nyny = £1
(A1 + A3 + (A + A3)ny = my + (— g + ©3)
(A1 +A3)nz + (=Ay + A3)ng = my + (— 2 + ©3) (7)
We shall note that in the “generic” case, knowing 1;’s, u;’s and my’s satisfy-

ing Eq. 6, the matrix N is uniquely determined. More precisely, given i;, A2, A3,
W1, fa, 43, My, my and two matrices N and N’ satisfying Eq. 6, assume that

(A3 =21/ (k3 —22) € Q. (8)

Since the vector ((A3 — A1)/(A3 — A3), 1) should be in the kernel of the matrix
N — N/, this matrix has to be null, thatis N = N'.

3.2 Reduction of the Matrix HHy(F)

We present in this section the matrices HH,(F) associated to some elementary
operations on the roots of the polynomial a(h).
3.2.1 Exchanging Ay and A,

We consider the polynomial b (h) = (h — Ay)(h — A1) (h — A3), that is we set u; =
A2, o = A1 and w3 = Az. Obviously A(a) = A(b) = A, and the Morita equivalence
may be given by P = 44)A(b) - Then tr® (P) =1, and m; = my =0. Also
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we have Ky (F) = 1Id, and Pi“) =Ax+Ath— 1) = Ax+ Ath— up) = P;b), so that
n; =0,n3 = 1. Then Egs. 7 lead to n, = 1,n4s =0, and we finally get <n1 n2> =

n3 ny
01
(00) =,

3.2.2 Exchanging A, and 13

We consider the polynomial b (h) = (h — A;)(h — A3)(h — A,), that is we set u; =
A1, 2 = A3 and pu3 = A,. Once again A(a) = A(b) = A, and the Morita equivalence
may be given by P = 44)A(D) 4, so that tr®(P) = 1, and m; = m, = 0. We have
Ko(F) =1d, and P\’ = Ax+ A(h— 1) = P\"”’,so n, = 1, n3 = 0. Then Egs. 7 lead

_ _ ny nyp _ 1 -1 _
tony; = —1,ny = —1, and we finally get (m n4) = (0 —l) = N,.

323 = A+ 1

By [10, Theorem 2.3 and Lemma 2.4], P = Pib) provides a Morita equivalence
between A(a) and A(D), with u; = A, + 1, uo = Ay, u3 = A3. By definition of P, we
get m; = 1, m, = 0. Then the identity matrix /, satisfies the Eqgs. 7.

3240 —Ai+1

It is known after [4] that A(a) is isomorphic to A(b) for b(h) = a(1 — h). So once
again using P = 44)A(b) a(e in this context we get m; = m, = 0. The matrix —1I,
satisfies the Egs. 7. Moreover the isomorphism is given by x > y, y > x, h > 1 — h.

3.3 A Subgroup of SL,(Z)

The necessary condition appearing in Proposition 3.1.1 is still weaker than the
sufficient condition of Proposition 2.1. In the following we show that the necessary
condition (7) cannot be sufficient in degree 3, at least not without the extra assump-
tion that the polynomials a and b both satisty Eq. 2.

Given two polynomials @ and b, a permutation of the first two roots of b leads
to multiplication on the right of HH(F) by the matrix N,. Thanks to this, we may
assume that HH(F) € SL,(7Z), thatis njngy — nynz = 1.

Notation Let G be the subgroup consisting of matrices N € SL,(Z), such that for
all triples (A, A2, A3) and (w1, o, u3) satisfying Eq. 7, the algebras A(a) and A(b)
are Morita equivalent, with a = (h — X )(h — X2)(h — x3) and b = (h — ) (h — wa)
(h — u3).

It is clear from Section 3.2 that —I, and N; N, belong to G. These two elements
generate a subgroup Gg isomorphic to Z/27Z x 7Z/3Z. The six elements of this

0 —1 1 -1

01 —11 1 -1
—N1N2: <_1 1),(N|N2)2: (_1 0) = N2N1 and —N2N| = (1 0 )

subgroup are the identity matrix I, its opposite — I, = <_] 0 ), NN, = (0 -1 ),
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Proposition 3.3.1 The matrices N\ N, and — I, generate G; that is: G = G.

Proof Let N = (Zl Zz) be an element of SL,(Z). We will show that if N is not
3 Ny

one of the six matrices above, then there exist triples (A, A2, A3) and (1, na, i13)
satisfying Eq. 7, such that the algebra A(a) is simple with finite global dimension
and the algebra A(b) is not, with a = (h — x)(h — A)(h — A3) and b = (h — )
(h—u2)(h—p3).So N ¢ G.

e Assume |njny| > 1. Since N € SL,(Z), this implies n; # n,. Consider now the
triple A; = 1/(2n;), A» =1/(2n;) and A3 = 0. It results from the hypotheses
that 0 < [A; — ;| < 1 for all i # j. So the algebra A(a) is simple and of finite
global dimension. But for a triple w, ua, us satisfying Eq. 7 we get uz — u; =
—m; — 1 € Z, so the algebra A(b) is not simple, or not of finite global dimension
if nmp = —1.

e The case |n3ng| > 11is dealt with similarly.

So a matrix in the group G has all its entries in the set {0, 1, —1}.

e n;=0. Then necessarily nyn; = —1. Assume first that n, = —n3;=1. If

01

—-10
the triples (A =3/4+i, A, =1/4—i,A3=0) and (u; =—1/4+i,uy =3/4+
i, u3 = 0) leads as before to a simple and a non simple algebras. If ny =
—1 then consider (A =3/4, A, = 1/4,A3 =0) and (u; = 1/4, uo = —1, u3 = 0).
Note that a similar example will do as soon as n3ns = 1, or by symmetry of the
problem as soon as nyn, = 1, and that none of the matrices in G satisfies such
a hypothesis. At last, taking ny = 1 gives N = —N; N,, which belongs to Gg. If
n, = —n3 = —1 then multiplying by — I, leads to similar conclusions. So x ¢ G.

e n; = 1. We have three subcases, depending on the value of n,.

ny =0 then denote x= the corresponding matrix. Considering

1. ny =0. Then necessarily ny = 1. So if n3 = 0 then N = Id; if n3 = 1 then we
are in the case n3ny = 1 which can be dealt with as before; if n3 = —1 then

_11 (1)> =x"'N>N,. So N ¢ Ge, otherwise we

one can easily check N = <
would have x € G.

2. np =1. Then nin, = 1, and we already noticed that none of the matrices
satisfying such a hypothesis is in G.

3. np=—1.Then ny +n3 =1, i.e. (n3,ny) € {(1,0), (0, 1)}. The first case cor-
responds to — N, Ny, which belongs to G¢. One checks easily that the second
case corresponds to the matrix N = x(N,N;)~!, which cannot belong to G,

otherwise we would have x € G.

e n; = —1. This case is strictly similar to the preceding one, up to multiplication by
the matrix — I, which belongs to Gg. n}

4 Links with Quantum Tori

As for the previous section, we assume here that k = C.
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4.1 Quantum Tori

We recall the following

Definition 4.1.1 Let n > 1 be an integer and Q = (g;j) € M,(C*) be a multiplica-
tively antisymmetric matrix (i.e. g;qi = qi; =1 Vi, j). The quantum torus (or
MacConnell-Pettit algebra [12]) parametrized by Q is the C-algebra denoted Ty =
ColX;", ..., XF'] generated by Xi,..., X,, with relations X;X; = ¢;;X;X;, and
their inverses X, ', ..., X, .

These algebras play a crucial role in quantum algebra (see for example [6]),
and have been extensively studied. Note that when n = 2 the matrix Q is uniquely
determined by the entry g = 2. In this case we may denote the associated quantum
torus by T, or C,[X;*', X5°']. We will focus in the sequel on the following property.

Proposition 4.1.2 ([12], Proposition 1.3) Let Tg = Co[ X, ..., X1 be a quantum
torus. The following conditions are equivalent:

1. the centre of Ty is reduced to C;
2. Tgisasimplering;
3. if(my,...,my,) € 7" satisfies

n
nq',:'j"zl, Vi<j<n 9)
k=1

thenm; =0 forall1 <i<n.

If n =2, this condition is equivalent to saying that g is not a root of unity.
Since we are dealing with Morita equivalences, we may mention also the following
consequence of [12, Theorem 1.4], [13, Théoréme 4.2] and [14, Lemma 3.1.1].

Theorem 4.1.3 Let Q = (g;), Q' = (qgj) € M, (C*) be multiplicatively antisymmetric
matrices. Assume that the quantum tori T g and Ty parametrized by Q and Q' are
simple. Then the following are equivalent:

1. Tgand Ty are isomorphic;
2. there exists M = (m;;) € GL,(Z) such that for all i, j one has

;o Myinyj |
9= 19% >
1,k

3. Tg and Ty are birationnally equivalent (i.e. have isomorphic skew-fields of
fractions);
4. Tgand Ty are Morita equivalent.

If n = 2 then condition 2 is easily seen to be equivalent to g’ = g or g~!. Now
we will explain how this is related to GWAs. The next subsection is devoted to the
case n = 2.
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4.2 Rank 2 Case

Our motivation here is the survey paper [11] by Yuri Manin. Even if the author
is there interested in differential noncommutative geometry and considers smooth
and rapidly decreasing functions, we will keep an algebraic point of view and only
consider noncommutative Laurent polynomials.

Consider a lattice of rank two Z @ 07 C C, with 0 € C \ Q. To this datum one as-
sociates the quantum torus 7, with g = g(0) = €*™’. From the preceding subsection
we see that T, is simple if and only if 0 ¢ Q, and that T and T, are isomorphic
ifand only if ' = 0 + m or 0’ = —6 + m with m € Z. This leads to the following.

Proposition 4.2.1 Consider two GWAs defined by polynomials of degree two a(h) =
(h—A)(h—22) and b(h) = (h—p)(h — p2). Fix 6 =k — Ay, 0" =py — po, q=
e’ q' = ¥ and denote by T, and T, the associated quantum tori. If T, (resp.
Ty ) is simple, then A(a) (resp. A(b)) is simple and has finite global dimension.

Assuming now that this condition holds for both q and q' in the following state-
ments, we have:

e A(a) >~ A(Db)ifand only if6 = £6'.
o A(a) and A(b) are Morita equivalent if and only if T, ~ T,.

Proof The first assertion and the first item are straightforward from previous
remarks. For the last point, just note that ¢’ = ¢g*! if and only if ' = 40 +m,
with m € Z. u}

Remark 4.2.2 The previous Proposition provides an alternative approach to Hodges’
result concerning Morita equivalence for GWA when n = 2.

The following subsection is devoted to obtain some generalizations in any degree.
4.3 Rank n

Notations For a polynomial a(h) = ]_[:'zl(h —A;) we will denote ©(a) = (6;)) the
matrix in M, (Z) defined by 6;; = A; — A;. This matrix is not uniquely determined,
since it actually depends on an indexing of the roots of a. In the sequel we will always
assume that the polynomial a is given with an indexing of its roots (counted with
their multiplicities if necessary), and state our results up to a reindexing of these
roots (see for example next Proposition). Now we set g;; = e?7% and Q(a) = (qi) €
M, (C*). The matrix Q(a) is multiplicatively antisymmetric, and T will denote
the quantum torus associated to these data. We first note the following fact.

Proposition 4.3.1 With the notations above, two generalized Weyl algebras A(a) and
A(b) are isomorphic if and only if ©(b) = £S~'©(a) S for a permutation matrix S.

Proof Denote by (A, ..., A,) and (uy, ... un,) the roots of a(h) and b (h), counted
with their multiplicities. It results from Theorem 2.1.1 that A(a) and A(b) are
isomorphic if and only if there exist a permutation o, a scalar g and a sign € such
that u; = €Ay; + B for all i. From this, one easily deduces the “only if” direction. For
the reciprocal, assume that p; — ptj = €(As; — A,). Thanks to Theorem 2.1.1 one can
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assume that up to isomorphism € = 1 and o = Id, and that A, = u; = 0, and then
a(h) = b (h). n]

Corollary 4.3.2 If the algebras A(a) and A(b) are isomorphic then the associated
quantum tori To and Tge) are isomorphic.

Proof Permuting the generators with respect to the matrix S, one only has to prove
that the matrix Q(a) and its transpose define the same quantum torus. According
to the notations of Theorem 4.1.3 the isomorphism is defined thanks to the matrix
M = (m,]) where my =0, myj = 1if ]Z 2; my =0, myj = 1if ]7&2, mjj = —81‘]‘ if
i > 2. One uses the fact that A;;A j = A to verify that condition 2 of Theorem 4.1.3 is
satisfied. We leave the details to the reader. o

Remark 4.3.3 This result strongly relies on the particular form of the parametrization
matrices we have here, and the fact that 1;;A 5 = ;. For instance, taking A, u, p € C*

1 A u
algebraically independent, the matrix [ A=' 1 p | and its transpose parametrize
-1 -1
uwoop 1

two quantum tori which are not isomorphic, since the corresponding matrix G =
(i) € GL3(Z) in Theorem 4.1.3 should satisfy g}, 83,83, = —1.

We introduce now the following condition on A(a).

Definition 4.3.4 With the notations above, a generalized Weyl algebra A(a) will be
called g-simple if the associated quantum torus 7o, is simple.

Proposition 4.3.5 Assume that the GWA A(a) is gq-simple. Then it is simple and has
finite global dimension.

Proof By Proposition 1.1 we only have to show that if A; — A; € Z then the matrix
O (a) cannot satisfy condition (9). But this is clear by using the vector of Z" with 1 in
the ith place, —1 in the jth place and 0 everywhere else. u]

Remark 4.3.6 In the case n =2, for a polynomial a = (h — A;)(h — A;), being g-
simple is equivalent to the condition A; — A, ¢ Q. This shows that g-simplicity is
strictly stronger than simplicity and finite global dimension.

Now we restate condition 2 of Theorem 4.1.3 in terms of matrices ® (a) and ®(b)
associated to the roots of the polynomials a and b.

Proposition 4.3.7 Let a(h) = []._,(h — 1;) and b (h) = [[_,(h — ) be two polyno-
mials such that the GWAs A(a) and A(b) are q-simple. Then the quantum tori T g
and Towy are isomorphic if and only if there exist two matrices M € GL,(Z) and
N € M, (Z) such that M'®(a)M = O(b) + N.

It would be interesting to relate this to Condition (6). We end this discussion with
some results in this direction concerning the case n = 3.
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44 Casen=3

The conditions above concerning the matrices can be restated, using cofactor ma-
trices. More precisely, let M,-j be the matrix obtained from M by deleting line i
and column j. Recall that if we denote by cof(M) the matrix such that cof(M);; =
(—1)i+fdet(A7ij) then M - cof(M)' = det(M) - Id, so det(cof(M)) =1 (since n =3
and det(M) = £1). We also have det(/ciof(M)) = det(cof(M))*, and det(cof(M)) =
det(cof’ (M)), where (cof’(M))i,- = det(M;;). We rephrase in this case the conditions
of the previous Proposition in terms of cofactor matrices.

Proposition 4.4.1 Under the hypotheses of the above proposition, for n =3, the
condition concerning matrices holds if and only if

A23 H23 V23
cof (M) - | ais | = iz |+ | vi3
Al2 K12 Y12

Taking into account that A;; = Aj3 — A3, and similarly for the u’s, we are able to
establish a relation between Morita equivalences and isomorphisms of quantum tori
forn = 3.

Theorem 4.4.2 Fix n = 3. If two generalized Weyl algebras A(a) and A(b) of degree
n are Morita equivalent, then their associated quantum tori are isomorphic.

Proof Given two Morita equivalent algebras A(a) and A(b), let N = (Zl Zz) €
3 14

G L,(Z) be a matrix as in Section 3. We will construct a matrix Ne G L5(Z) such
that

a3 M23 Y23
NNz |=npns |+ s
A2 K12 Y12
R ny n3 0
In fact, it is sufficienttotake N = | np n; 0 |,wherec=ny —n3+landd = n, —
c d1

ny — 1.
It is then straightforward to find a matrix M € G L3(Z) such that N = cof (M)'. O
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