The Geometry of Relations

Elias Gabriel Minian

Received: 14 October 2008 / Accepted: 5 February 2010 / Published online: 23 February 2010
© Springer Science+Business Media B.V. 2010

Abstract

The classical way to study a finite poset (X, \leq) using topology is by means of the simplicial complex Δ_{X} of its nonempty chains. There is also an alternative approach, regarding X as a finite topological space. In this article we introduce new constructions for studying X topologically: inspired by a classical paper of Dowker (Ann Math 56:84-95, 1952), we define the simplicial complexes K_{X} and L_{X} associated to the relation \leq. In many cases these polyhedra have the same homotopy type as the order complex Δ_{X}. We give a complete characterization of the simplicial complexes that are the K or L-complexes of some finite poset and prove that K_{X} and L_{X} are topologically equivalent to the smaller complexes $K_{X}^{\prime}, L_{X}^{\prime}$ induced by the relation $<$. More precisely, we prove that K_{X} (resp. L_{X}) simplicially collapses to K_{X}^{\prime} (resp. L_{X}^{\prime}). The paper concludes with a result that relates the K-complexes of two posets X, Y with closed relations $R \subset X \times Y$.

Keywords Relations • Simplicial complexes• Posets • Finite spaces • Nerves • Collapses

Mathematics Subject Classifications (2000) 06A06•06A11•06A15•55U05• $55 \mathrm{U} 10 \cdot 57 \mathrm{Q} 10$

1 Introduction

There is a construction, introduced by C.H. Dowker in [9], that associates two simplicial complexes K and L to a relation from one set to another. Dowker proved that the polyhedra $|K|$ and $|L|$ are homotopy equivalent and applied this result to relate the Čech and Vietoris homology groups of a topological space.

[^0]Other interesting applications of Dowker's result are given in [2] and [8]. In those papers these constructions are used to study the homotopy theory of global actions and groupoid atlases. In [2, Prop.7.7] it is proved that the fundamental group of a groupoid atlas coincides with the fundamental group of the nerve of its cover by local components. In [8], the strong fundamental group and the homology groups of groupoid atlases are defined in terms of nerves.

In this article we investigate the topology of finite posets from an alternative point of view, based on Dowker's construction of the K and L complexes associated to a relation. The classical way to study a finite poset (X, \leq) using topology is by means of its order complex Δ_{X}. This complex has been widely investigated by many authors and has implications in combinatorics, algebraic topology and combinatorial geometry (see [6] and [10] for standard applications of this complex). For example, in [16] Quillen analyzed the homotopy properties of the poset of p-subgroups of a finite group in terms of the order complex. There is an alternative approach to study finite posets topologically, which goes back to Alexandroff [1], regarding the poset as a finite T_{0}-space (see Section 2 for more details). By a theorem of McCord [12], the order complex of a finite poset and its corresponding finite T_{0}-space are weak homotopy equivalent; in particular, they have the same homology and homotopy groups. Finite spaces have been recently investigated in a series of joint papers with J. Barmak [3-5]. There is also a beautiful survey by P. May [11]. Here we introduce, for a finite poset (X, \leq), the simplicial complexes K_{X} and L_{X} associated to the relation $R \subset X \times X$ given by \leq and compare the geometry of these complexes with the geometry of the classical order complex. Under certain hypotheses on the poset, these complexes are homotopy equivalent to the order complex.

We also introduce the smaller complexes K_{X}^{\prime} and L_{X}^{\prime} associated to the relation $<$ of the poset. We show that K_{X} simplicially collapses to K_{X}^{\prime} and L_{X} collapses to L_{X}^{\prime}. This result allows to study topological properties of a finite poset (X, \leq) using the simpler complexes K_{X}^{\prime} and L_{X}^{\prime}, which have the same simple homotopy type as the complexes K_{X} and L_{X}.

The paper ends with a result that relates the K-complexes of two posets X, Y with closed relations $R \subset X \times Y$. This result is a variation of a Theorem by Quillen which relates the order complexes of the posets [16].

The rest of the paper is organized as follows. In Section 2 we recall Dowker's construction and the correspondence between finite posets and finite spaces. In Section 3 we prove a Galois-type correspondence between equivalence classes of relations $R \subset X \times Y$ defined on a fixed nonempty set X and the subcomplexes of the simplex spanned by the elements of X. In Section 4 we introduce and investigate the complexes K_{X} and L_{X} associated to a finite poset (X, \leq). We give a complete characterization of the complexes which are the K or L-complexes of some finite poset and compare the topology of $K_{X}\left(\right.$ resp. $\left.L_{X}\right)$ with the topology of K_{X}^{\prime} (resp. L_{X}^{\prime}). Section 5 is devoted to the study of the relationship between the K-complexes of two posets with a closed relation.

2 Preliminaries

In this section we recall Dowker's construction of the $K-$ and L-complexes and the relationship between finite spaces, finite posets and simplicial complexes.

2.1 Dowker's Construction

A relation between two nonempty sets X and Y is a subset R of the cartesian product $X \times Y$. We will write $x R y$ if $(x, y) \in R$. There is a canonical way to associate to R two simplicial complexes K and L.

Definition 2.1 The simplicial complex K is defined as follows. The n-simplices of K are the finite subsets $\left\{x_{0}, \ldots, x_{n}\right\}$ of X such that there exists some $y \in Y$ with $x_{i} R y$ for all $i=0, \ldots, n$. Similary, the simplices of L are the finite subsets σ of Y such that the elements of σ are related to a common element of X. In particular, the set of vertices of K is a subset of X and consists of the points of X which are related to some element in Y. Analogously, the set of vertices of L is a subset of Y. We refer to K and L as the K-complex and the L-complex associated to the relation R.

These constructions were introduced by C.H. Dowker in [9] where he proved the following result.

Theorem 2.2 (C.H. Dowker) Let $R \subset X \times Y$ be a relation and let K and L be the associated simplicial complexes. Then the polyhedra $|K|$ and $|L|$ are homotopy equivalent.

Here $|K|$ denotes the geometric realization of the simplicial complex K.
Dowker applied this result to relate the Čech and Vietoris homology groups of a space. More precisely, let X be a topological space and \mathcal{U} a cover of X by subsets, i.e. $X=\bigcup_{U \in \mathcal{U}} U$. Consider the relation $x R U$ if $x \in U$. The K-complex is called in this case the Vietoris complex of the covering, and it is denoted by $V(\mathcal{U})$, and the L-complex is called the nerve of the covering, which is denoted by $\mathcal{N}(\mathcal{U})$. Since the geometric realizations of $V(\mathcal{U})$ and $\mathcal{N}(\mathcal{U})$ are homotopy equivalent, it follows that the Čech and Vietoris homology coincide.

2.2 Finite Posets and Finite Spaces

In this article we investigate finite posets from a geometrical viewpoint using the $K-$ and L-complexes associated to the relations \leq and $<$ of the posets.

Sometimes it is very useful to regard finite posets as finite topological T_{0}-spaces. Recall that a topological space X is said to be T_{0} if for every pair of points of X there exists some open set containing one and only one of those points. The correspondence between finite T_{0}-spaces and finite posets is as follows. Given a finite poset (X, \leq), we define for each $x \in X$ the set

$$
U_{x}=\{y \in X \mid y \leq x\} .
$$

It is not difficult to verify that these sets form a basis for a topology. This is the topology associated to \leq. Conversely, given a finite T_{0} topological space X, we consider for each $x \in X$ the minimal open set U_{x} which is defined as the intersection of all open sets containing x. The partial order associated to the topology on X is given by the relation $x \leq y$ if $x \in U_{y}$. These applications define a one-toone correspondence between T_{0}-topologies and partial orders on the finite set X. Therefore one can consider finite T_{0}-spaces as finite posets and viceversa. Order
preserving functions correspond to continuous maps and lower sets to open sets. For more details on finite spaces, we refer to reader to the foundational articles [12, 21], P.May's notes [11] and the more recent articles [3-5]. See also [20] for the combinatorics of posets and $[6,10]$ for the topology of posets.

There classical way to study a finite poset (X, \leq) topologically is by means of its order complex Δ_{X}. Recall that the simplices of Δ_{X} are the nonempty (finite) chains in X. This construction goes back to [1], it is closely related to Segal's construction of a classifying space of a category [17] and it was developed and used by many authors. We refer the reader to [6] and [10] for standard applications and results about Δ_{X}. The articles $[4,5,12]$ relate the topology of a finite poset (X, \leq) viewed as a finite topological space with the topology of the associated simplicial complex Δ_{X}. In this paper, the relationship between the intrinsic topology of a finite poset and the topology of the associated order complex Δ_{X} will not be explicitly used.

We will compare the classical complex Δ_{X} of a finite poset (X, \leq) with new constructions which are based on the K - and L-complexes associated to the relations \leq and $<$ of the poset.

3 A Galois-Type Correspondence for Relations

In this section we investigate the relationship between the different relations $R \subset$ $X \times Y$ defined on a fixed nonempty set X and prove a Galois-type correspondence between the subcomplexes of the simplicial complex spanned by the set X and the equivalence classes of relations $R \subset X \times Y$.

Definition 3.1 Let X be a fixed nonempty set, not necessarily finite. Since X is fixed, a relation $R \subset X \times Y$ will be denoted by (Y, R). Let K_{R} be the K-complex and L_{R} the L-complex associated to (Y, R). A relation (Y, R) is called covered if the projection on $Y, p: R \rightarrow Y$, is onto or equivalently, if for any $y \in Y$ there is an element $x \in X$ such that $x R y$.

Let X be a fixed nonempty set. For the rest of this section, all relations (Y, R) are assumed to be covered.

Notation 3.2 We denote by K_{*} the simplicial complex spanned by the set X, i.e. the simplices of K_{*} are all finite subsets of X. When T is a subcomplex of some simplicial complex S, we will write $T \leq S$.

Note that for any $(Y, R), K_{R} \leq K_{*}$. Conversely, we have

Proposition 3.3 For any $T \leq K_{*}$, there exists a (covered) relation (Y, R) such that $K_{R}=T$.

Proof Take $Y=S_{T}$, the set of simplices of T, and define $x R \sigma$ if $x \in \sigma$. It is easy to verify that $K_{R}=T$

Definition 3.4 A morphism $f:(Y, R) \rightarrow(Z, \tilde{R})$ is a set theoretic map $f: Y \rightarrow Z$ such that for every $x \in X$ and $y \in Y$,

$$
x R y \Rightarrow x \tilde{R} f(y)
$$

Remark 3.5 Note that a morphism $f:(Y, R) \rightarrow(Z, \tilde{R})$ induces a well defined simplicial map $L_{f}: L_{R} \rightarrow L_{\tilde{R}}$. Moreover, if there exists a morphism $f:(Y, R) \rightarrow$ (Z, \tilde{R}), then K_{R} is a subcomplex of $K_{\tilde{R}}$.

Recall that two simplicial morphisms $\phi, \psi: N \rightarrow M$ are called contiguous if $\phi(\sigma) \cup \psi(\sigma)$ is a simplex of M for every simplex $\sigma \in N$ (cf. [19, Section 3.5]).

Remark 3.6 Let $f, g:(Y, R) \rightarrow(Z, \tilde{R})$ be morphisms. Then the induced simplicial morphisms $L_{f}, L_{g}: L_{R} \rightarrow L_{\tilde{R}}$ are contiguous. In particular, $\left|L_{f}\right|$ and $\left|L_{g}\right|$ are homotopic continuous maps.

Definition 3.7 Two relations (Y, R) and (Z, \tilde{R}) are called equivalent if there are morphisms $f:(Y, R) \rightarrow(Z, \tilde{R})$ and $h:(Z, \tilde{R}) \rightarrow(Y, R)$. We denote in this case $(Y, R) \simeq(Z, \tilde{R})$.

Note that \simeq is an equivalence relation in the class of relations defined on X. To prove that it is transitive, note that any composition of morphisms is again a morphism. From Remarks 3.5 and 3.6, one deduces the following

Corollary 3.8 $\operatorname{If}(Y, R) \simeq(Z, \tilde{R})$, then
a. $\quad K_{R}=K_{\tilde{R}}$.
b. $\quad\left|L_{R}\right|$ and $\left|L_{\tilde{R}}\right|$ are homotopy equivalent.
c. Any morphism $g:(Y, R) \rightarrow(Z, \tilde{R})$ induces a homotopy equivalence $\left|L_{g}\right|$.

Note that, if the hypothesis $(Y, R) \simeq(Z, \tilde{R})$ is not satisfied, a morphism g : $(Y, R) \rightarrow(Z, \tilde{R})$ does not in general induce a homotopy equivalence. Consider for example the constant morphism $(Y, R) \rightarrow(*, \tilde{R})$ where $*$ is the singleton and $x \tilde{R} *$ for all $x \in X$.

Note also that if $g:(Y, R) \rightarrow_{\tilde{R}}(Z, \tilde{R})$ induces a homotopy equivalence, this does not imply that (Y, R) and (Z, \tilde{R}) are equivalent. Consider for instance a relation (Y, R) such that L_{R} is contractible. In that case, the map $(Y, R) \rightarrow(*, \tilde{R})$ induces a homotopy equivalence but in general (Y, R) is not equivalent to $(*, \tilde{R})$ unless there exists $y \in Y$ such that $x R y$ for all $x \in X$.

Definition and Remark 3.9 Given a relation (Y, R) and an element $y \in Y$, let S_{y} be the set of all elements of X which are related to y. Since we work with covered relations, these sets are nonempty. Moreover S_{y} is a generalized simplex of K_{R}, i.e. all its finite subsets are simplices of K_{R}. If S_{y} is finite, it is just a simplex in K_{R}.

We prove now the Galois-type correspondence for relations:
Theorem 3.10 Let X be a finite set and let K_{*} be the simplicial complex spanned by X. There exists a one-to-one correspondence between subcomplexes of K_{*} and
equivalence classes of covered relations (Y, R) on X. This correspondence assigns to each subcomplex T of K_{*} the class of the relation $\left(S_{T}, R\right)$ as in Proposition 3.3 and to each class (Y, R) the subcomplex $K_{R} \leq K_{*}$. Moreover,

$$
K_{R} \leq K_{\tilde{R}} \Longleftrightarrow \exists f:(Y, R) \rightarrow(Z, \tilde{R})
$$

Proof The first part of the Theorem follows from results 3.3, 3.5 and 3.8 of above.
Suppose now that (Y, R) and (Z, \tilde{R}) are relations on X with $K_{R} \leq K_{\tilde{R}}$. Let $y \in Y$ and let S_{y} be its associated generalized simplex. Since X is finite and $K_{R} \leq K_{\tilde{R}}$, then S_{y} is actually a simplex of $K_{\tilde{R}}$ and therefore there exists some $z \in Z$ such that $x \tilde{R} z$ for all $x \in S_{y}$. Define $f(y)=z$. The function $f: Y \rightarrow Z$ defined this way is a morphism of relations since

$$
x R y \Longrightarrow x \in S_{y} \Longrightarrow x \tilde{R} f(y)
$$

This completes the proof.

Remark 3.11 Note that the finiteness hypothesis is needed to prove the implication

$$
K_{R} \leq K_{\tilde{R}} \Longrightarrow \exists f:(Y, R) \rightarrow(Z, \tilde{R})
$$

If X is infinite, take $Y=P(X)$ the set of all nonempy subsets of X and let $Z=$ $P_{f}(X)$ the set of all nonempty finite subsets of X and define $x R T$ (and $x \tilde{R} T$) if $x \in T$. Then $K_{R}=K_{\tilde{R}}$ but there is no morphism $f:(Y, R) \rightarrow(Z, \tilde{R})$.

Example-Application 3.12 Let X be a topological space and let \mathcal{U} and \mathcal{V} be two covers of X by subsets, such that \mathcal{V} refines \mathcal{U}, i.e. for any $V \in \mathcal{V}$ there is some $U \in \mathcal{U}$ such that $V \subseteq U$. If we consider \mathcal{U} and \mathcal{V} as relations on X as above, then there is a morphism of relations $f: \mathcal{V} \rightarrow \mathcal{U}$. In fact such a morphism is precisely a refinement map (or a canonical projection in the terminology of [19]). Therefore \mathcal{V} refines \mathcal{U} if and only if there is a morphism of relations $f: \mathcal{V} \rightarrow \mathcal{U}$ and two coverings refine each other if and only if they are equivalent (as relations on X). From Corollary 3.8 it follows the well-known fact that the nerves of two covers which refine each other are homotopy equivalent.

4 The \boldsymbol{K} and \boldsymbol{L}-Complexes of a Finite Poset

Definition 4.1 Let (X, \leq) be a finite poset. We denote by K_{X} and L_{X} the complexes associated to the relation $R \subset X \times X$ given by \leq. Note that the simplices of K_{X} are the subsets $\left\{x_{0}, \ldots, x_{n}\right\}$ of X such that there exists $y \in X$ with $x_{i} \leq y$ for all i. Similarly, the simplices of L_{X} are the subsets with a common lower bound $z \in X$.

Let (X, \leq) be a finite poset, viewed as a finite T_{0}-space. Recall that the minimal open set $U_{x}=\{y \in X, y \leq x\}$ of an element x corresponds to the intersection of all the open subsets which contain x. Similarly, the minimal closed sets of X are the subspaces of the form $F_{x}=\{y \in X, x \leq y\}$, where F_{x} corresponds to the intersection
of all closed subsets of X containing x. In view of Dowker's Theorem we obtain the following

Corollary 4.2 Let X be a finite T_{0}-space. Let $\mathcal{N}(\mathcal{V})$ denote the nerve of the minimal closed sets of X and denote by $\mathcal{N}(\mathcal{U})$ the nerve of its the minimal open sets. Then

$$
|\mathcal{N}(\mathcal{V})| \simeq|\mathcal{N}(\mathcal{U})| .
$$

Proof The poset (X, \leq) can be identified with the poset (\mathcal{U}, \subseteq) of minimal open sets of X (ordered by inclusion), each element x is identified with its minimal open set U_{x}. Analogously, X can be identified with the poset (\mathcal{V}, \supseteq) of minimal closed sets of X. Under these identifications, the simplicial complexes K_{X} and L_{X} associated to the relation \leq defined on $X \times X$, are exactly the nerves $\mathcal{N}(\mathcal{V})$ and $\mathcal{N}(\mathcal{U})$ of the minimal closed and open sets respectively. Now the result follows from the fact that $\left|K_{X}\right| \simeq\left|L_{X}\right|$.

In the rest of the paper we investigate the simplicial complexes K_{X} and L_{X} associated to the relation \leq of a finite poset (X, \leq). By definition it is clear that Δ_{X} is a subcomplex of K_{X} and L_{X} but in general it does not have the same homotopy type as K_{X} (and L_{X}), as the following example shows.

Example 4.3 Let X be the poset with Hasse diagram

Clearly Δ_{X} is a one dimensional sphere S^{1} but K_{X} and L_{X} are contractible.
In many situations, Δ_{X} is homotopy equivalent to K_{X} and L_{X}, moreover the inclusions $\Delta_{X} \mapsto K_{X}$ and $\Delta_{X} \mapsto L_{X}$ are deformation retracts. This follows from the following result of McCord [13].

Lemma 4.4 (McCord) Let \mathcal{U} be a cover of a space with the property that the intersection of any finite collection of elements of \mathcal{U} is either empty or a member of \mathcal{U}. Let $C(\mathcal{U})$ be the subcomplex of the nerve $\mathcal{N}(\mathcal{U})$ whose simplices are the nonempty chains of \mathcal{U}. Then the inclusion $C(\mathcal{U}) \longmapsto \mathcal{N}(\mathcal{U})$ is a deformation retract.

If we take \mathcal{U} as the covering of minimal open sets of X and use the identifications of above, we obtain

Corollary 4.5 Let X be a finite T_{0}-space such that for any $x, y \in X$ the intersection $U_{x} \cap U_{y}$ is either empty or equals U_{z} for some $z \in X$. Then the inclusion $\Delta_{X} \subset L_{X}$ is a deformation retract.

The posets of the form $X=\mathcal{L}-\{\hat{0}, \hat{1}\}$, with \mathcal{L} a finite lattice, satisfy the hypothesis of the previous corollary. Therefore, if X is such a poset, the simplicial complexes K_{X}
and L_{X} have the same homotopy type as the standard simplicial complex Δ_{X}. Note that Corollary 4.5 follows also from the Crosscut Theorem (see for example [6, Thm. 10.8]) and Example-Application 3.12.

4.1 Classification of the Poset Structures on a Finite Set in Terms of the K-Complexes

We investigate now how the constructions of above are related to the classification of all the poset structures that can be defined on a finite set X. More explicitly, given a subcomplex T of the simplicial complex K_{*} spanned by the set X, we ask whether it is possible to define a poset structure \leq on X such that T is the K-complex (resp. the L-complex) of this relation.

In order to be the K-complex of a poset structure \leq on X, the set of vertices of T should be the whole set X since the relation \leq must be reflexive. The second condition that T must satisfy is deduced from the following lemma.

Lemma 4.6 Let (X, \leq) be a finite poset and let K_{X} be the associated K-complex. Let σ be a maximal simplex of K_{X}. Then $\sigma=U_{y}$ the minimal open set of y, for some maximal element $y \in X$. In particular, any maximal simplex σ of K_{X} contains exactly one maximal element of X and any maximal element of X is in only one maximal simplex of K_{X}.

Proof Let $\sigma=\left\{z_{0}, \ldots, z_{m}\right\}$ be a maximal simplex of K_{X}. Since $\sigma \in K_{X}$, then there exists some $y \in X$ such that $z_{i} \leq y$ for all i. Since σ is maximal, $y=z_{j}$ for some j and y must be also a maximal element of X, for if $y<w$ for some w, then we could add w to σ and this contradicts the maximality of σ. Therefore one (and only one) of the $z_{i}^{\prime} s$ is a maximal element y of X and the others are the elements of X which are smaller than y. Note that since σ is maximal, all elements smaller than y must belong to σ.

Thus, in order to be the K-complex of a poset structure, in any maximal simplex σ of T there must be an element y which does not belong to any other maximal simplex of T. For example, the boundary of the closed 2 -simplex is a simplicial complex of 3 elements which is not the K-complex of any poset structure. This is because the maximal simplices are $\{a, b\},\{a, c\},\{b, c\}$ (and all vertices belong to more than one maximal simplex). In general, for the same reasons, the boundary of any closed n-simplex is not a K-complex of any poset structure.

In fact, the condition of above is essentially the obstruction to be a K-complex:
Theorem 4.7 Let T be a finite simplicial complex with vertex set X. Then T is the K complex associated to a poset structure \leq on X if and only if for any maximal simplex σ of T there exists some $y \in \sigma$ such that $y \notin \sigma^{\prime}$ for all maximal simplices $\sigma^{\prime} \neq \sigma$.

Proof One implication follows immediately from Lemma 4.6 and previous remarks. To prove the other implication: Suppose T satisfies the condition on its maximal simplices. We define a poset structure on X (of length 2) as follows. Let $\sigma_{1}, \ldots, \sigma_{r}$ be the maximal simplices of T. By hypothesis, for each $i=1, \ldots, r$ we can choose some $y_{i} \in \sigma_{i}$ such that $y_{i} \notin \sigma_{j}$ for all $j \neq i$. These $y_{i}^{\prime} s$ will be the maximal elements of
the poset. Define the relation $x \leq y$ if $x=y$ or $y=y_{i}$ for some i and $x \in \sigma_{i}$. It is not difficult to prove that this is a well defined poset structure on X and that T is the K-complex of this stucture. This completes the proof.

Remark 4.8 Note that the poset structure constructed in the proof of the Theorem is of length 2 . Therefore the K-complex of any poset structure on a finite set X coincides with the K-complex of one of length 2 . This implies of course that many poset structures on X have the same associated K-complex and also that for some poset structures, the associated K-complex does not have the homotopy type of the standard polyhedron Δ_{X}, since the complex Δ_{X} of a poset of length 2 is a graph (=simplicial complex of dimension 1) and any graph has the homotopy type of a bouquet of circles $\bigvee_{\alpha} S^{1}$.

From Theorem 4.7, one can also deduce:

Corollary 4.9 K_{*} is the K-complex of (X, \leq) if and only if (X, \leq) has a maximum.

Since the L-complex of a finite poset (X, \leq) is the K-complex of the opposite (or dual) poset of (X, \leq), the same result holds for the associated L-complexes.

Theorem 4.10 Let T be a finite simplicial complex with vertex set X. Then T is the L-complex associated to a poset structure \leq on X if and only if for any maximal simplex σ of T there exists some $y \in \sigma$ such that $y \notin \sigma^{\prime}$ for all maximal simplices $\sigma^{\prime} \neq$ σ.

4.2 The Complexes Associated to the Relation <

Now we compare the K - and L-complexes associated to the relation \leq with the analogous and smaller complexes associated to the relation $<$.

Let (X, \leq) be a finite poset. As before, we denote by K_{X} and L_{X} the complexes induced by the relation \leq and let K_{X}^{\prime} and L_{X}^{\prime} be the K - and L-complexes associated to the relation $<$. It is clear that K_{X}^{\prime} and L_{X}^{\prime} are empty if the poset is discrete, so let us suppose that (X, \leq) is not discrete. Moreover, we will assume that no connected component of X is a single point. By definition, the simplices of K_{X}^{\prime} are the subsets of X consisting of elements x_{0}, \ldots, x_{n} such that there is some $y \in X$ with $x_{i}<y$ for all i. Clearly $K_{X}^{\prime}<K_{X}$. Similarly, $L_{X}^{\prime}<L_{X}$. We will show that all of them $K_{X}, K_{X}^{\prime}, L_{X}, L_{X}^{\prime}$ have the same homotopy type. Moreover, we will see that K_{X} simplicially collapses to K_{X}^{\prime}. Similarly one can prove that L_{X} collapses to L_{X}^{\prime}.

The notion of simplicial collapse was introduced by J.H.C. Whitehead in the late thirties and now it is a fundamental tool in algebraic topology and in combinatorial geometry. We recall the basic definitions.

Definition 4.11 There is an elementary simplicial collapse from a finite simplicial complex T to a subcomplex $M<T$ if there is a simplex σ of T which is contained properly in only one simplex σ^{\prime} and $M=T-\left\{\sigma, \sigma^{\prime}\right\}$. A finite simplicial complex K collapses to a subcomplex K^{\prime} if there is a sequence of elementary collapses from K to K^{\prime}. We denote in this case $K \searrow K^{\prime}$.

It is easy to see that if $T \searrow M$ then $|M| \subset|T|$ is a strong deformation retract. A polyhedron is called collapsible if it admits a triangulation K which collapses to a point. It is clear that a collapsible polyhedron is contractible but the converse is not true. A classical example of a contractible and non collapsible polyhedron is the dunce hat (see [25]). For a comprehensive exposition on collapses and simple homotopy theory, the classical references are Whitehead's original papers [22-24]. The standard references for simple homotopy theory of CW-complexes include Milnor's article [14] and M.M.Cohen's book [7] and for the infinite case, Siebenmann's paper [18].

There is also a notion of collapse for posets (or equivalently, for finite T_{0}-spaces), which was introduced in a joint paper with J.A. Barmak [5]. An elementary collapse in this setting consists of removing just a single point of the poset (which is called a weak point). Via the associated simplicial complex Δ_{X}, this notion corresponds exactly to the classical notion of simplicial collapse.

We will need the following basic lemma from [22].

Lemma 4.12 (Whitehead [22]) Let M, N, T be finite simplicial complexes such that $M \cap N \subset T$ and $N \searrow T$. Then $M \cup N \searrow M \cup T$.

Now we can compare the complexes associated to the relations \leq and $<$.
Theorem 4.13 Let (X, \leq) be a finite poset such that no connected component is a single point. Let K_{X}, L_{X} be the simplicial complexes associated to \leq and $K_{X}^{\prime}, L_{X}^{\prime}$ the complexes associated to $<$. Then $K_{X} \searrow K_{X}^{\prime}$ and $L_{X} \searrow L_{X}^{\prime}$.

Proof We prove the case $K_{X} \searrow K_{X}^{\prime}$, the other case is similar.
The simplices of $K_{X}-K_{X}^{\prime}$ are exactly the simplices of K_{X} containing some maximal element y of X. By Lemma 4.6, the maximal simplices of $K_{X}-K_{X}^{\prime}$ are the simplices of the form $\sigma=\left\{y, x_{0}, \ldots, x_{n}\right\}$ where y is a maximal element in X and the set $\left\{x_{0}, \ldots, x_{n}\right\}$ consists of all elements of X such that $x_{i}<y$. Note that the set of elements which are smaller than y is not empty by the hypothesis on the connected components of X. Since all the faces of the maximal simplex $\sigma=\left\{y, x_{0}, \ldots, x_{n}\right\}$ which contain the vertex y are not faces of any other maximal simplex σ^{\prime}, we can suppose without loss of generality, that $K_{X}-K_{X}^{\prime}$ contains only one maximal simplex σ.

Let N be the closed $(n+1)$-simplex spanned by $\sigma=\left\{y, x_{0}, \ldots, x_{n}\right\}$ and let T be the closed n-simplex spanned by $\left\{x_{0}, \ldots, x_{n}\right\}$. Since $N \searrow T$ ([22, Lemma2]), by the lemma of above we have

$$
K_{X}=K_{X}^{\prime} \cup N \searrow K_{X}^{\prime} \cup T=K_{X}^{\prime}
$$

5 The \boldsymbol{K}-Complexes of Closed Relations

We finish the paper with a result that relates the K-complexes of two posets X, Y with closed relations $R \subset X \times Y$.

Definition 5.1 Given two posets $(X, \leq),(Y, \leq)$, a relation $R \subset X \times Y$ between the underlying sets is called closed if it satisfies the following property. For any $(x, y) \leq$ $\left(x^{\prime}, y^{\prime}\right) \in X \times Y$, if $(x, y) \in R$ then $\left(x^{\prime}, y^{\prime}\right) \in R$

Remark 5.2 Note that, in the finite case, this is equivalent to R being a closed subset of the finite space $X \times Y$ with the product topology.

There is a well-known result by Quillen [16] (see also [6, Thm. 10.10]) which relates the closed relations with the order complexes Δ_{X} and Δ_{Y}. Explicitly,

Theorem 5.3 (Quillen) Let X and Y be posets and let $R \subset X \times Y$ be a closed relation. For any $x \in X$ and $y \in Y$, let Δ_{x} be the simplicial complex of nonempty finite chains of the subposet $S_{x}=\{y \in Y, x R y\} \subset Y$ and Δ_{y} the corresponding simplicial complex of the subposet $S_{y}=\{x \in X, x R y\} \subset X$. If Δ_{x} and Δ_{y} are contractible for all x and y, then Δ_{X} and Δ_{Y} are homotopy equivalent.

We will prove a variant of Quillen's result for the K-complexes. Unfortunately the analogous result (replacing $\Delta_{X}, \Delta_{Y}, \Delta_{x}$ and Δ_{y} by the corresponding K-complexes) is not valid, as we show in the following example.

Example 5.4 Consider the following posets X and Y

and the closed relation

$$
R=\{(1, d),(2, e),(3, b),(3, c),(3, d),(3, e),(3, f),(4, a),(4, d),(4, e)\}
$$

It is easy to see that the K-complex of each S_{x} and S_{y} is contractible but the K complexes of X and Y are not homotopy equivalent. The first one is contractible and the second one is homotopy equivalent to S^{1}. This is also an example of two posets with $\left|\Delta_{X}\right| \simeq\left|\Delta_{Y}\right|$ but with K-complexes of different homotopy types.

However the K-complexes satisfy the following weaker version of the theorem.
Theorem 5.5 Let X and Y be posets and let $R \subset X \times Y$ be a closed relation. If the subposets S_{x} and S_{y} have maximum for all $x \in X$ and $y \in Y$, then the K-complexes K_{X} and K_{Y} are homotopy equivalent.

Proof Consider R as a subposet of the product poset $X \times Y$ and denote by K_{R} the K-complex of R. We will prove that the projection $R \rightarrow X(\operatorname{resp} . R \rightarrow Y)$ induces a homotopy equivalence $K_{R} \rightarrow K_{X}$ (resp. $K_{R} \rightarrow K_{Y}$). By Quillen's Theorem A [15], it suffices to prove that $p^{-1}(\sigma) \subset K_{R}$ is contractible for every closed simplex σ of K_{X}. Let $\sigma=\left\{x_{0}, \ldots, x_{n}\right\}$ be a simplex of K_{X}, then there exists $x^{\prime} \in X$ such that $x_{i} \leq x^{\prime}$ for all i. Let (x, y) be a vertex of $p^{-1}(\sigma) \subset K_{R}$. Therefore $x=x_{i}$ for some
$i=0, \ldots, n$ and $x R y$. Since the relation is closed, we have that $x^{\prime} R y$. Denote by y^{\prime} the maximum element of $S_{x^{\prime}}$. Then $(x, y) \leq\left(x^{\prime}, y^{\prime}\right)$. We have proved that all the vertices of $p^{-1}(\sigma) \subset K_{R}$ are smaller than $\left(x^{\prime}, y^{\prime}\right)$. By definition of the K-complex, this implies that $p^{-1}(\sigma) \subset K_{R}$ is a closed simplex (or a generalized simplex in the infinite case) and therefore contractible.

References

1. Alexandroff, P.S.: Diskrete Räume. MathematiceskiiSbornik (N.S.) 2, 501-518 (1937)
2. Bak, A., Brown, R., Minian, E.G., Porter, T.: Global actions, groupoid atlases and applications. J. Homotopy Relat. Struct. 1, 101-167 (2006)
3. Barmak, J.A., Minian, E.G.: 2-Dimension from the topological viewpoint. Order 24, 49-58 (2007)
4. Barmak, J.A., Minian, E.G.: Minimal finite models. J. Homotopy Relat. Struct. 2, 127-140 (2007)
5. Barmak, J.A., Minian, E.G.: Simple homotopy types and finite spaces. Adv. Math. 218, 87-104 (2008)
6. Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics. Elsevier, New York (1995)
7. Cohen, M.M.: A Course in Simple Homotopy Theory. Springer-Verlag, New York (1970)
8. del Hoyo, M., Minian, E.G.: Classical invariants for global actions and groupoid atlases. Appl. Categ. Struct. 16(6), 689-721 (2008)
9. Dowker, C.H.: Homology groups of relations. Ann. Math. 56, 84-95 (1952)
10. Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics, vol. 21. Springer, Berlin (2008)
11. May, J.P.: Finite topological spaces. Notes for REU (2003). Available at http://www.math. uchicago.edu/ may/MISCMaster.html
12. McCord, M.C.: Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. 33, 465-474(1966)
13. McCord, M.C.: Homotopy type comparison of a space with complexes associated with its open covers. Proc. Am. Math. Soc. 18(4), 705-708 (1967)
14. Milnor, J.: Whitehead Torsion. Bull. Amer. Math. Soc. 72, 358-426 (1966)
15. Quillen, D.: Higher algebraic K-theory I. Lect. Notes Math. 341, 85-147 (1973)
16. Quillen, D.: Homotopy properties of the poset of non-trivial p-subgroups of a group. Adv. Math. 28, 101-128 (1978)
17. Segal, G.: Classifying spaces and spectral sequences. Inst. Hautes Etudes Sci. Publ. Math. 34, 105-112 (1968)
18. Siebenmann, L.C.: Infinite simple homotopy types. Indag. Math. 32, 479-495 (1970)
19. Spanier, E.: Algebraic Topology. McGraw Hill, New York (1966)
20. Stanley, R.: Enumerative Combinatorics, vol. 1. Cambrdige Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge (1997)
21. Stong, R.E.: Finite topological spaces. Trans. Am. Math. Soc. 123, 325-340 (1966)
22. Whitehead, J.H.C.: Simplicial spaces, nuclei and m-groups. Proc. Lond. Math. Soc. 45, 243-327 (1939)
23. Whitehead, J.H.C.: On incidence matrices, nuclei and homotopy types. Ann. Math. 42, 1197-1239 (1941)
24. Whitehead, J.H.C.: Simple homotopy types. Am. J. Math. 72, 1-57 (1950)
25. Zeeman, E.C.: On the dunce hat. Topology 2, 341-358 (1964)

[^0]: E.G. Minian's research is partially supported by Conicet and by grant ANPCyT PICT 17-38280.
 E. G. Minian (\triangle)

 Departamento de Matemática FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina e-mail: gminian@dm.uba.ar

