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Abstract The classical way to study a finite poset (X,≤) using topology is by means
of the simplicial complex �X of its nonempty chains. There is also an alternative
approach, regarding X as a finite topological space. In this article we introduce
new constructions for studying X topologically: inspired by a classical paper of
Dowker (Ann Math 56:84–95, 1952), we define the simplicial complexes KX and LX

associated to the relation ≤. In many cases these polyhedra have the same homotopy
type as the order complex �X . We give a complete characterization of the simplicial
complexes that are the K or L-complexes of some finite poset and prove that KX

and LX are topologically equivalent to the smaller complexes K′
X , L′

X induced by
the relation <. More precisely, we prove that KX (resp. LX) simplicially collapses to
K′

X (resp. L′
X). The paper concludes with a result that relates the K-complexes of

two posets X, Y with closed relations R ⊂ X × Y.
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1 Introduction

There is a construction, introduced by C.H. Dowker in [9], that associates two
simplicial complexes K and L to a relation from one set to another. Dowker
proved that the polyhedra |K| and |L| are homotopy equivalent and applied this
result to relate the Čech and Vietoris homology groups of a topological space.
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Other interesting applications of Dowker’s result are given in [2] and [8]. In those
papers these constructions are used to study the homotopy theory of global actions
and groupoid atlases. In [2, Prop.7.7] it is proved that the fundamental group of a
groupoid atlas coincides with the fundamental group of the nerve of its cover by
local components. In [8], the strong fundamental group and the homology groups of
groupoid atlases are defined in terms of nerves.

In this article we investigate the topology of finite posets from an alternative
point of view, based on Dowker’s construction of the K and L complexes associated
to a relation. The classical way to study a finite poset (X,≤) using topology is by
means of its order complex �X . This complex has been widely investigated by many
authors and has implications in combinatorics, algebraic topology and combinatorial
geometry (see [6] and [10] for standard applications of this complex). For example,
in [16] Quillen analyzed the homotopy properties of the poset of p-subgroups of a
finite group in terms of the order complex. There is an alternative approach to study
finite posets topologically, which goes back to Alexandroff [1], regarding the poset
as a finite T0-space (see Section 2 for more details). By a theorem of McCord [12],
the order complex of a finite poset and its corresponding finite T0-space are weak
homotopy equivalent; in particular, they have the same homology and homotopy
groups. Finite spaces have been recently investigated in a series of joint papers with
J. Barmak [3–5]. There is also a beautiful survey by P. May [11]. Here we introduce,
for a finite poset (X,≤), the simplicial complexes KX and LX associated to the
relation R ⊂ X × X given by ≤ and compare the geometry of these complexes with
the geometry of the classical order complex. Under certain hypotheses on the poset,
these complexes are homotopy equivalent to the order complex.

We also introduce the smaller complexes K′
X and L′

X associated to the relation <

of the poset. We show that KX simplicially collapses to K′
X and LX collapses to L′

X .
This result allows to study topological properties of a finite poset (X, ≤) using the
simpler complexes K′

X and L′
X , which have the same simple homotopy type as the

complexes KX and LX .
The paper ends with a result that relates the K-complexes of two posets X, Y with

closed relations R ⊂ X × Y. This result is a variation of a Theorem by Quillen which
relates the order complexes of the posets [16].

The rest of the paper is organized as follows. In Section 2 we recall Dowker’s
construction and the correspondence between finite posets and finite spaces. In
Section 3 we prove a Galois-type correspondence between equivalence classes of
relations R ⊂ X × Y defined on a fixed nonempty set X and the subcomplexes of
the simplex spanned by the elements of X. In Section 4 we introduce and investigate
the complexes KX and LX associated to a finite poset (X, ≤). We give a complete
characterization of the complexes which are the K or L-complexes of some finite
poset and compare the topology of KX (resp. LX) with the topology of K′

X (resp.
L′

X). Section 5 is devoted to the study of the relationship between the K-complexes
of two posets with a closed relation.

2 Preliminaries

In this section we recall Dowker’s construction of the K− and L-complexes and the
relationship between finite spaces, finite posets and simplicial complexes.
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2.1 Dowker’s Construction

A relation between two nonempty sets X and Y is a subset R of the cartesian product
X × Y. We will write xRy if (x, y) ∈ R. There is a canonical way to associate to R
two simplicial complexes K and L.

Definition 2.1 The simplicial complex K is defined as follows. The n-simplices of K
are the finite subsets {x0, . . . , xn} of X such that there exists some y ∈ Y with xi Ry
for all i = 0, . . . , n. Similary, the simplices of L are the finite subsets σ of Y such that
the elements of σ are related to a common element of X. In particular, the set of
vertices of K is a subset of X and consists of the points of X which are related to
some element in Y. Analogously, the set of vertices of L is a subset of Y. We refer to
K and L as the K-complex and the L-complex associated to the relation R.

These constructions were introduced by C.H. Dowker in [9] where he proved the
following result.

Theorem 2.2 (C.H. Dowker) Let R ⊂ X × Y be a relation and let K and L be
the associated simplicial complexes. Then the polyhedra |K| and |L| are homotopy
equivalent.

Here |K| denotes the geometric realization of the simplicial complex K.
Dowker applied this result to relate the Čech and Vietoris homology groups of a

space. More precisely, let X be a topological space and U a cover of X by subsets,
i.e. X = ⋃

U∈U U . Consider the relation xRU if x ∈ U . The K-complex is called in
this case the Vietoris complex of the covering, and it is denoted by V(U), and the
L-complex is called the nerve of the covering, which is denoted by N (U). Since the
geometric realizations of V(U) and N (U) are homotopy equivalent, it follows that
the Čech and Vietoris homology coincide.

2.2 Finite Posets and Finite Spaces

In this article we investigate finite posets from a geometrical viewpoint using the K−
and L-complexes associated to the relations ≤ and < of the posets.

Sometimes it is very useful to regard finite posets as finite topological T0-spaces.
Recall that a topological space X is said to be T0 if for every pair of points of
X there exists some open set containing one and only one of those points. The
correspondence between finite T0-spaces and finite posets is as follows. Given a finite
poset (X, ≤), we define for each x ∈ X the set

Ux = {y ∈ X | y ≤ x}.
It is not difficult to verify that these sets form a basis for a topology. This is the
topology associated to ≤. Conversely, given a finite T0 topological space X, we
consider for each x ∈ X the minimal open set Ux which is defined as the intersection
of all open sets containing x. The partial order associated to the topology on
X is given by the relation x ≤ y if x ∈ Uy. These applications define a one-to-
one correspondence between T0-topologies and partial orders on the finite set X.
Therefore one can consider finite T0-spaces as finite posets and viceversa. Order
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preserving functions correspond to continuous maps and lower sets to open sets.
For more details on finite spaces, we refer to reader to the foundational articles
[12, 21], P.May’s notes [11] and the more recent articles [3–5]. See also [20] for the
combinatorics of posets and [6, 10] for the topology of posets.

There classical way to study a finite poset (X,≤) topologically is by means of its
order complex �X . Recall that the simplices of �X are the nonempty (finite) chains
in X. This construction goes back to [1], it is closely related to Segal’s construction
of a classifying space of a category [17] and it was developed and used by many
authors. We refer the reader to [6] and [10] for standard applications and results
about �X . The articles [4, 5, 12] relate the topology of a finite poset (X,≤) viewed as
a finite topological space with the topology of the associated simplicial complex �X .
In this paper, the relationship between the intrinsic topology of a finite poset and the
topology of the associated order complex �X will not be explicitly used.

We will compare the classical complex �X of a finite poset (X, ≤) with new con-
structions which are based on the K− and L-complexes associated to the relations ≤
and < of the poset.

3 A Galois-Type Correspondence for Relations

In this section we investigate the relationship between the different relations R ⊂
X × Y defined on a fixed nonempty set X and prove a Galois-type correspondence
between the subcomplexes of the simplicial complex spanned by the set X and the
equivalence classes of relations R ⊂ X × Y.

Definition 3.1 Let X be a fixed nonempty set, not necessarily finite. Since X is fixed,
a relation R ⊂ X × Y will be denoted by (Y, R). Let KR be the K-complex and
LR the L-complex associated to (Y, R). A relation (Y, R) is called covered if the
projection on Y, p : R → Y, is onto or equivalently, if for any y ∈ Y there is an
element x ∈ X such that xRy.

Let X be a fixed nonempty set. For the rest of this section, all relations (Y, R) are
assumed to be covered.

Notation 3.2 We denote by K∗ the simplicial complex spanned by the set X, i.e. the
simplices of K∗ are all finite subsets of X. When T is a subcomplex of some simplicial
complex S, we will write T ≤ S.

Note that for any (Y, R), KR ≤ K∗. Conversely, we have

Proposition 3.3 For any T ≤ K∗, there exists a (covered) relation (Y, R) such that
KR = T.

Proof Take Y = ST , the set of simplices of T, and define xRσ if x ∈ σ . It is easy to
verify that KR = T �	
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Definition 3.4 A morphism f : (Y, R) → (Z , R̃) is a set theoretic map f : Y → Z
such that for every x ∈ X and y ∈ Y,

xRy ⇒ xR̃ f (y).

Remark 3.5 Note that a morphism f : (Y, R) → (Z , R̃) induces a well defined
simplicial map L f : LR → LR̃. Moreover, if there exists a morphism f : (Y, R) →
(Z , R̃), then KR is a subcomplex of KR̃.

Recall that two simplicial morphisms φ,ψ : N → M are called contiguous if
φ(σ) ∪ ψ(σ) is a simplex of M for every simplex σ ∈ N (cf. [19, Section 3.5]).

Remark 3.6 Let f, g : (Y, R) → (Z , R̃) be morphisms. Then the induced simplicial
morphisms L f , Lg : LR → LR̃ are contiguous. In particular, |L f | and |Lg| are
homotopic continuous maps.

Definition 3.7 Two relations (Y, R) and (Z , R̃) are called equivalent if there are
morphisms f : (Y, R) → (Z , R̃) and h : (Z , R̃) → (Y, R). We denote in this case
(Y, R) � (Z , R̃).

Note that � is an equivalence relation in the class of relations defined on X.
To prove that it is transitive, note that any composition of morphisms is again a
morphism. From Remarks 3.5 and 3.6, one deduces the following

Corollary 3.8 If (Y, R) � (Z , R̃), then

a. KR = KR̃.
b. |LR| and |LR̃| are homotopy equivalent.
c. Any morphism g : (Y, R) → (Z , R̃) induces a homotopy equivalence |Lg|.

Note that, if the hypothesis (Y, R) � (Z , R̃) is not satisfied, a morphism g :
(Y, R) → (Z , R̃) does not in general induce a homotopy equivalence. Consider for
example the constant morphism (Y, R) → (∗, R̃) where ∗ is the singleton and xR̃∗
for all x ∈ X.

Note also that if g : (Y, R) → (Z , R̃) induces a homotopy equivalence, this does
not imply that (Y, R) and (Z , R̃) are equivalent. Consider for instance a relation
(Y, R) such that LR is contractible. In that case, the map (Y, R) → (∗, R̃) induces a
homotopy equivalence but in general (Y, R) is not equivalent to (∗, R̃) unless there
exists y ∈ Y such that xRy for all x ∈ X.

Definition and Remark 3.9 Given a relation (Y, R) and an element y ∈ Y, let Sy be
the set of all elements of X which are related to y. Since we work with covered
relations, these sets are nonempty. Moreover Sy is a generalized simplex of KR, i.e.
all its finite subsets are simplices of KR. If Sy is finite, it is just a simplex in KR.

We prove now the Galois-type correspondence for relations:

Theorem 3.10 Let X be a f inite set and let K∗ be the simplicial complex spanned
by X. There exists a one-to-one correspondence between subcomplexes of K∗ and
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equivalence classes of covered relations (Y, R) on X. This correspondence assigns to
each subcomplex T of K∗ the class of the relation (ST , R) as in Proposition 3.3 and to
each class (Y, R) the subcomplex KR ≤ K∗. Moreover,

KR ≤ KR̃ ⇐⇒ ∃ f : (Y, R) → (Z , R̃)

Proof The first part of the Theorem follows from results 3.3, 3.5 and 3.8 of above.
Suppose now that (Y, R) and (Z , R̃) are relations on X with KR ≤ KR̃. Let y ∈ Y

and let Sy be its associated generalized simplex. Since X is finite and KR ≤ KR̃, then
Sy is actually a simplex of KR̃ and therefore there exists some z ∈ Z such that xR̃z for
all x ∈ Sy. Define f (y) = z. The function f : Y → Z defined this way is a morphism
of relations since

xRy =⇒ x ∈ Sy =⇒ xR̃ f (y).

This completes the proof. �	

Remark 3.11 Note that the finiteness hypothesis is needed to prove the implication

KR ≤ KR̃ =⇒ ∃ f : (Y, R) → (Z , R̃).

If X is infinite, take Y = P(X) the set of all nonempy subsets of X and let Z =
P f (X) the set of all nonempty finite subsets of X and define xRT (and xR̃T) if
x ∈ T. Then KR = KR̃ but there is no morphism f : (Y, R) → (Z , R̃).

Example-Application 3.12 Let X be a topological space and let U and V be two
covers of X by subsets, such that V refines U , i.e. for any V ∈ V there is some U ∈ U
such that V ⊆ U . If we consider U and V as relations on X as above, then there is a
morphism of relations f : V → U . In fact such a morphism is precisely a ref inement
map (or a canonical projection in the terminology of [19]). Therefore V refines U if
and only if there is a morphism of relations f : V → U and two coverings refine each
other if and only if they are equivalent (as relations on X). From Corollary 3.8 it
follows the well-known fact that the nerves of two covers which refine each other are
homotopy equivalent.

4 The K and L-Complexes of a Finite Poset

Definition 4.1 Let (X, ≤) be a finite poset. We denote by KX and LX the complexes
associated to the relation R ⊂ X × X given by ≤. Note that the simplices of KX

are the subsets {x0, . . . , xn} of X such that there exists y ∈ X with xi ≤ y for all i.
Similarly, the simplices of LX are the subsets with a common lower bound z ∈ X.

Let (X,≤) be a finite poset, viewed as a finite T0-space. Recall that the minimal
open set Ux = {y ∈ X, y ≤ x} of an element x corresponds to the intersection of
all the open subsets which contain x. Similarly, the minimal closed sets of X are the
subspaces of the form Fx = {y ∈ X, x ≤ y}, where Fx corresponds to the intersection
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of all closed subsets of X containing x. In view of Dowker’s Theorem we obtain the
following

Corollary 4.2 Let X be a f inite T0-space. Let N (V) denote the nerve of the minimal
closed sets of X and denote by N (U) the nerve of its the minimal open sets. Then

|N (V)| � |N (U)|.

Proof The poset (X, ≤) can be identified with the poset (U ,⊆) of minimal open sets
of X (ordered by inclusion), each element x is identified with its minimal open set
Ux. Analogously, X can be identified with the poset (V, ⊇) of minimal closed sets
of X. Under these identifications, the simplicial complexes KX and LX associated
to the relation ≤ defined on X × X, are exactly the nerves N (V) and N (U) of the
minimal closed and open sets respectively. Now the result follows from the fact that
|KX | � |LX |. �	

In the rest of the paper we investigate the simplicial complexes KX and LX

associated to the relation ≤ of a finite poset (X,≤). By definition it is clear that �X

is a subcomplex of KX and LX but in general it does not have the same homotopy
type as KX (and LX), as the following example shows.

Example 4.3 Let X be the poset with Hasse diagram

•

��
��

��
��

� •

��
��

��
��

�

• •

Clearly �X is a one dimensional sphere S1 but KX and LX are contractible.

In many situations, �X is homotopy equivalent to KX and LX , moreover the
inclusions �X � KX and �X � LX are deformation retracts. This follows from the
following result of McCord [13].

Lemma 4.4 (McCord) Let U be a cover of a space with the property that the intersec-
tion of any f inite collection of elements of U is either empty or a member of U . Let
C(U) be the subcomplex of the nerve N (U) whose simplices are the nonempty chains
of U . Then the inclusion C(U) � N (U) is a deformation retract.

If we take U as the covering of minimal open sets of X and use the identifications
of above, we obtain

Corollary 4.5 Let X be a f inite T0-space such that for any x, y ∈ X the intersection
Ux ∩ Uy is either empty or equals Uz for some z ∈ X. Then the inclusion �X ⊂ LX is
a deformation retract.

The posets of the form X = L − {0̂, 1̂}, with L a finite lattice, satisfy the hypothesis
of the previous corollary. Therefore, if X is such a poset, the simplicial complexes KX
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and LX have the same homotopy type as the standard simplicial complex �X . Note
that Corollary 4.5 follows also from the Crosscut Theorem (see for example [6, Thm.
10.8]) and Example-Application 3.12.

4.1 Classification of the Poset Structures on a Finite Set in Terms
of the K-Complexes

We investigate now how the constructions of above are related to the classification
of all the poset structures that can be defined on a finite set X. More explicitly, given
a subcomplex T of the simplicial complex K∗ spanned by the set X, we ask whether
it is possible to define a poset structure ≤ on X such that T is the K-complex (resp.
the L-complex) of this relation.

In order to be the K-complex of a poset structure ≤ on X, the set of vertices
of T should be the whole set X since the relation ≤ must be reflexive. The second
condition that T must satisfy is deduced from the following lemma.

Lemma 4.6 Let (X, ≤) be a f inite poset and let KX be the associated K-complex. Let
σ be a maximal simplex of KX. Then σ = Uy the minimal open set of y, for some
maximal element y ∈ X. In particular, any maximal simplex σ of KX contains exactly
one maximal element of X and any maximal element of X is in only one maximal
simplex of KX.

Proof Let σ = {z0, . . . , zm} be a maximal simplex of KX . Since σ ∈ KX , then there
exists some y ∈ X such that zi ≤ y for all i. Since σ is maximal, y = z j for some j
and y must be also a maximal element of X, for if y < w for some w, then we could
add w to σ and this contradicts the maximality of σ . Therefore one (and only one) of
the z′

is is a maximal element y of X and the others are the elements of X which are
smaller than y. Note that since σ is maximal, all elements smaller than y must belong
to σ . �	

Thus, in order to be the K-complex of a poset structure, in any maximal simplex σ

of T there must be an element y which does not belong to any other maximal simplex
of T. For example, the boundary of the closed 2-simplex is a simplicial complex of
3 elements which is not the K-complex of any poset structure. This is because the
maximal simplices are {a, b}, {a, c}, {b , c} (and all vertices belong to more than one
maximal simplex). In general, for the same reasons, the boundary of any closed
n-simplex is not a K-complex of any poset structure.

In fact, the condition of above is essentially the obstruction to be a K-complex:

Theorem 4.7 Let T be a f inite simplicial complex with vertex set X. Then T is the K-
complex associated to a poset structure ≤ on X if and only if for any maximal simplex
σ of T there exists some y ∈ σ such that y /∈ σ ′ for all maximal simplices σ ′ �= σ .

Proof One implication follows immediately from Lemma 4.6 and previous remarks.
To prove the other implication: Suppose T satisfies the condition on its maximal
simplices. We define a poset structure on X (of length 2) as follows. Let σ1, . . . , σr

be the maximal simplices of T. By hypothesis, for each i = 1, . . . , r we can choose
some yi ∈ σi such that yi /∈ σ j for all j �= i. These y′

is will be the maximal elements of
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the poset. Define the relation x ≤ y if x = y or y = yi for some i and x ∈ σi. It is not
difficult to prove that this is a well defined poset structure on X and that T is the
K-complex of this stucture. This completes the proof. �	

Remark 4.8 Note that the poset structure constructed in the proof of the Theorem
is of length 2. Therefore the K-complex of any poset structure on a finite set X
coincides with the K-complex of one of length 2. This implies of course that many
poset structures on X have the same associated K-complex and also that for some
poset structures, the associated K-complex does not have the homotopy type of the
standard polyhedron �X , since the complex �X of a poset of length 2 is a graph
(=simplicial complex of dimension 1) and any graph has the homotopy type of a
bouquet of circles

∨
α S1.

From Theorem 4.7, one can also deduce:

Corollary 4.9 K∗ is the K-complex of (X, ≤) if and only if (X, ≤) has a maximum.

Since the L-complex of a finite poset (X,≤) is the K-complex of the opposite (or
dual) poset of (X, ≤), the same result holds for the associated L-complexes.

Theorem 4.10 Let T be a f inite simplicial complex with vertex set X. Then T is the
L-complex associated to a poset structure ≤ on X if and only if for any maximal
simplex σ of T there exists some y ∈ σ such that y /∈ σ ′ for all maximal simplices σ ′ �=
σ .

4.2 The Complexes Associated to the Relation <

Now we compare the K- and L-complexes associated to the relation ≤ with the
analogous and smaller complexes associated to the relation <.

Let (X, ≤) be a finite poset. As before, we denote by KX and LX the complexes
induced by the relation ≤ and let K′

X and L′
X be the K− and L-complexes associated

to the relation <. It is clear that K′
X and L′

X are empty if the poset is discrete, so let
us suppose that (X, ≤) is not discrete. Moreover, we will assume that no connected
component of X is a single point. By definition, the simplices of K′

X are the subsets
of X consisting of elements x0, . . . , xn such that there is some y ∈ X with xi < y
for all i. Clearly K′

X < KX . Similarly, L′
X < LX . We will show that all of them

KX , K′
X , LX , L′

X have the same homotopy type. Moreover, we will see that KX

simplicially collapses to K′
X . Similarly one can prove that LX collapses to L′

X .
The notion of simplicial collapse was introduced by J.H.C. Whitehead in the late

thirties and now it is a fundamental tool in algebraic topology and in combinatorial
geometry. We recall the basic definitions.

Definition 4.11 There is an elementary simplicial collapse from a finite simplicial
complex T to a subcomplex M < T if there is a simplex σ of T which is contained
properly in only one simplex σ ′ and M = T − {σ, σ ′}. A finite simplicial complex K
collapses to a subcomplex K′ if there is a sequence of elementary collapses from K
to K′. We denote in this case K ↘ K′.
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It is easy to see that if T ↘ M then |M| ⊂ |T| is a strong deformation retract.
A polyhedron is called collapsible if it admits a triangulation K which collapses to
a point. It is clear that a collapsible polyhedron is contractible but the converse is
not true. A classical example of a contractible and non collapsible polyhedron is the
dunce hat (see [25]). For a comprehensive exposition on collapses and simple ho-
motopy theory, the classical references are Whitehead’s original papers [22–24]. The
standard references for simple homotopy theory of CW-complexes include Milnor’s
article [14] and M.M.Cohen’s book [7] and for the infinite case, Siebenmann’s paper
[18].

There is also a notion of collapse for posets (or equivalently, for finite T0-spaces),
which was introduced in a joint paper with J.A. Barmak [5]. An elementary collapse
in this setting consists of removing just a single point of the poset (which is called
a weak point). Via the associated simplicial complex �X , this notion corresponds
exactly to the classical notion of simplicial collapse.

We will need the following basic lemma from [22].

Lemma 4.12 (Whitehead [22]) Let M, N, T be f inite simplicial complexes such that
M ∩ N ⊂ T and N ↘ T. Then M ∪ N ↘ M ∪ T.

Now we can compare the complexes associated to the relations ≤ and <.

Theorem 4.13 Let (X, ≤) be a f inite poset such that no connected component is a
single point. Let KX , LX be the simplicial complexes associated to ≤ and K′

X , L′
X the

complexes associated to <. Then KX ↘ K′
X and LX ↘ L′

X.

Proof We prove the case KX ↘ K′
X , the other case is similar.

The simplices of KX − K′
X are exactly the simplices of KX containing some

maximal element y of X. By Lemma 4.6, the maximal simplices of KX − K′
X are

the simplices of the form σ = {y, x0, . . . , xn} where y is a maximal element in X and
the set {x0, . . . , xn} consists of all elements of X such that xi < y. Note that the set of
elements which are smaller than y is not empty by the hypothesis on the connected
components of X. Since all the faces of the maximal simplex σ = {y, x0, . . . , xn}
which contain the vertex y are not faces of any other maximal simplex σ ′, we can
suppose without loss of generality, that KX − K′

X contains only one maximal simplex
σ .

Let N be the closed (n + 1)-simplex spanned by σ = {y, x0, . . . , xn} and let T be
the closed n-simplex spanned by {x0, . . . , xn}. Since N ↘ T ([22, Lemma2]), by the
lemma of above we have

KX = K′
X ∪ N ↘ K′

X ∪ T = K′
X

�	

5 The K-Complexes of Closed Relations

We finish the paper with a result that relates the K-complexes of two posets X, Y
with closed relations R ⊂ X × Y.
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Definition 5.1 Given two posets (X, ≤), (Y, ≤), a relation R ⊂ X × Y between the
underlying sets is called closed if it satisfies the following property. For any (x, y) ≤
(x′, y′) ∈ X × Y, if (x, y) ∈ R then (x′, y′) ∈ R

Remark 5.2 Note that, in the finite case, this is equivalent to R being a closed subset
of the finite space X × Y with the product topology.

There is a well-known result by Quillen [16] (see also [6, Thm. 10.10]) which
relates the closed relations with the order complexes �X and �Y . Explicitly,

Theorem 5.3 (Quillen) Let X and Y be posets and let R ⊂ X × Y be a closed relation.
For any x ∈ X and y ∈ Y, let �x be the simplicial complex of nonempty f inite chains
of the subposet Sx = {y ∈ Y, xRy} ⊂ Y and �y the corresponding simplicial complex
of the subposet Sy = {x ∈ X, xRy} ⊂ X. If �x and �y are contractible for all x and y,
then �X and �Y are homotopy equivalent.

We will prove a variant of Quillen’s result for the K-complexes. Unfortunately the
analogous result (replacing �X ,�Y , �x and �y by the corresponding K-complexes)
is not valid, as we show in the following example.

Example 5.4 Consider the following posets X and Y

3•

��
��

��
��

� •4

��
��

��
��

�

1• •2

d•

��
��

��
��

�
e•

��
��

��
��

��

��
��

��
��

� • f

��
��

��
��

�

a• •
b •c

and the closed relation

R = {(1, d), (2, e), (3, b), (3, c), (3, d), (3, e), (3, f ), (4, a), (4, d), (4, e)}.
It is easy to see that the K-complex of each Sx and Sy is contractible but the K-
complexes of X and Y are not homotopy equivalent. The first one is contractible
and the second one is homotopy equivalent to S1. This is also an example of two
posets with |�X | � |�Y | but with K-complexes of different homotopy types.

However the K-complexes satisfy the following weaker version of the theorem.

Theorem 5.5 Let X and Y be posets and let R ⊂ X × Y be a closed relation. If the
subposets Sx and Sy have maximum for all x ∈ X and y ∈ Y, then the K-complexes
KX and KY are homotopy equivalent.

Proof Consider R as a subposet of the product poset X × Y and denote by KR the
K-complex of R. We will prove that the projection R → X (resp. R → Y) induces a
homotopy equivalence KR → KX (resp. KR → KY). By Quillen’s Theorem A [15],
it suffices to prove that p−1(σ ) ⊂ KR is contractible for every closed simplex σ of
KX . Let σ = {x0, . . . , xn} be a simplex of KX , then there exists x′ ∈ X such that
xi ≤ x′ for all i. Let (x, y) be a vertex of p−1(σ ) ⊂ KR. Therefore x = xi for some
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i = 0, . . . , n and xRy. Since the relation is closed, we have that x′ Ry. Denote by y′ the
maximum element of Sx′ . Then (x, y) ≤ (x′, y′). We have proved that all the vertices
of p−1(σ ) ⊂ KR are smaller than (x′, y′). By definition of the K-complex, this implies
that p−1(σ ) ⊂ KR is a closed simplex (or a generalized simplex in the infinite case)
and therefore contractible. �	
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