Gibbs random graphs on point processes

Pablo A. Ferrari,^{1,4,a)} Eugene A. Pechersky,^{2,b)} Valentin V. Sisko,^{3,c)} and Anatoly A. Yambartsev^{4,d)}

 ¹Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina
 ²Dobrushin Laboratory of Institute for Information Transmission Problems of Russian Academy of Sciences, 19, Bolshoj Karetny, Moscow, Russia
 ³Federal University of Fluminense, Institute of Matematics and Statistics, Rua Mário Santos Braga, s/n, 24020-140 Niterói, RJ, Brazil
 ⁴Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010, CEP 05508-090, São Paulo SP, Brazil

(Received 3 March 2010; accepted 12 October 2010; published online 29 November 2010)

Consider a discrete locally finite subset Γ of \mathbb{R}^d and the complete graph (Γ , E), with vertices Γ and edges E. We consider Gibbs measures on the set of sub-graphs with vertices Γ and edges $E' \subset E$. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when Γ is sampled from a homogeneous Poisson process; and (b) for a fixed Γ with sufficiently sparse points. © 2010 American Institute of Physics. [doi:10.1063/1.3514605]

I. INTRODUCTION

Let a sample $\Gamma \subset \mathbb{R}^d$ of a *point process* be a locally finite set of \mathbb{R}^d . We consider an ensemble of graphs with *vertices* Γ and random *edges* belonging to the set of unordered pairs of points in Γ . The edges can be open or closed and we study probability distributions on the set of configurations of open edges. The classical example is the *Erdös-Rényi's random graph* where each edge is open independently of the others with some probability, see Refs. 1 and 2. We introduce interactions between edges and/or vertices and study the associated Gibbs measures.

Given a configuration of open edges, two edges *collide* if both of them are open and they have a vertex in common. *Monomers* are those vertices that belong to no open edge. Each collision and each monomer contribute a positive energy; any open edge contributes a positive energy proportional to its length. The energy function H is described explicitly in (1) later. The Gibbs measure associated with H at inverse temperature $\beta > 0$ gives more weight to configurations with few monomers, few (or no) collisions and short edges.

In Theorem 1, we give sufficient conditions on Γ for the existence of an infinite volume Gibbs measure. An open edge not colliding with any other edge is called *dimer*. In Theorem 2, we show that the ground states for any locally finite configuration Γ are composed only of monomers and dimers. Theorem 3 gives conditions for the uniqueness of the ground state. Theorem 4 shows that if Γ is a sample of a homogeneous Poisson process with small density and low temperature, then there is no percolation for almost all Γ . Non-percolation in this context is the absence of an infinite sequence of colliding open edges a.s. with respect to the Gibbs measure. Theorem 5 proves that if Γ is "sparse" and the temperature is sufficiently low, then there is no percolation a.s. with respect to

0022-2488/2010/51(11)/113303/9/\$30.00

51, 113303-1

© 2010 American Institute of Physics

^{a)}Electronic mail: pferrari@dm.uba.ar and pablo@ime.usp.br.

^{b)}Electronic mail: pech@iitp.ru.

^{c)}Electronic mail: valentin@mat.uff.br.

^{d)}Electronic mail: yambar@ime.usp.br.

113303-2 Ferrari et al.

the Gibbs measure. In particular for Γ satisfying an ε -hard-core condition (that is, the ball of radius ε around each point of Γ has no other point of Γ) for some $\varepsilon > 0$, there is no percolation.

II. DEFINITIONS

Let Γ be a locally finite set of \mathbb{R}^d and consider the complete graph (Γ, E) with vertex set Γ and edge set $E := \{\gamma \gamma' : \gamma, \gamma' \in \Gamma\}$. The length of the edge $e = \gamma \gamma'$, is denoted by $L(e) := |\gamma - \gamma'|$. For a point $\gamma \in \Gamma$, let $S_{\gamma} := \{\gamma \gamma' \in E : \gamma' \in \Gamma\}$, the set of edges incident on γ .

Let $\overline{\Omega}$ be the set of subsets of *E*. A configuration $\omega \in \overline{\Omega}$ defines the sub-graph (Γ, ω) . Edges $e \in \omega$ are called *open* with respect to ω . Edges $e \in E \setminus \omega$ are called *closed* with respect to ω . When it is clear from the context we use the terms open and closed with no mention to the configuration ω . The *degree* $d_{\gamma}(\omega)$ of a vertex $\gamma \in \Gamma$ is the number of open edges in ω containing γ :

$$d_{\gamma}(\omega) := |S_{\gamma} \cap \omega|.$$

A. Gibbs measures

The set of $\omega \in \overline{\Omega}$ with finite-degree vertices is called

$$\Omega := \{ \omega : \omega \in \Omega, \ d_{\gamma}(\omega) < \infty \text{ for all } \gamma \}.$$

Our goal is to define a Gibbs distribution on Ω associated to the following formal Hamiltonian

$$H(\omega) := \sum_{e \in \omega} L(e) + \sum_{\gamma \in \Gamma} \phi_{\gamma}(\omega), \qquad (1)$$

where $\phi_{\gamma}(\omega)$ is the contribution of monomers and interacting edges in S_{γ} defined by

$$\phi_{\gamma}(\omega) := \begin{cases} h_0, & \text{if } d_{\gamma}(\omega) = 0; \\ 0, & \text{if } d_{\gamma}(\omega) = 1; \\ h_1\binom{d_{\gamma}(\omega)}{2}, & \text{if } d_{\gamma}(\omega) \ge 2. \end{cases}$$
(2)

where $0 < h_0 < h_1$ are fixed parameters. The potential $\phi_{\gamma}(\omega)$ depends only on the degree $d_{\gamma}(\omega)$. Degree zero contributes h_0 , degree 1 does not contribute and each pair of open edges incident on γ contributes h_1 .

The potential function ϕ_{γ} depends on infinitely many edges because to establish if $d_{\gamma}(\omega) = 0$ we have to check that $e \in \omega$ for infinitely many edges $e \in S_{\gamma}$. However, the usual Gibbs construction (including existence theorem) for this case works without special considerations.

We define a family of finite volume Gibbs measures. For bounded $\Lambda \subset \mathbb{R}^d$ the set $\Gamma_{\Lambda} := \Gamma \cap \Lambda$ is finite and so is $E_{\Lambda} := \{\gamma \gamma' : \gamma, \gamma' \in \Gamma_{\Lambda}\}$. The Gibbs state P_{Λ} on $\Omega_{\Lambda} := \{\omega \in \overline{\Omega} : \omega \subset E_{\Lambda}\}$ with the zero boundary configuration is defined by

$$\mathsf{P}_{\Lambda}(\omega) := \frac{\exp\{-\beta H_{\Lambda}(\omega)\}}{Z_{\Lambda}}, \qquad \omega \in \Omega_{\Lambda}, \tag{3}$$

where the parameter β is called *inverse temperature*, Z_{Λ} is the normalizing constant and

$$H_{\Lambda}(\omega) := \sum_{e \in \omega} L(e) + \sum_{\gamma \in \Gamma_{\Lambda}} \phi_{\gamma}(\omega), \qquad \omega \in \Omega_{\Lambda}.$$
(4)

Denote E_{Λ} the expectation with respect to P_{Λ} .

We only consider Gibbs distributions P on $\overline{\Omega}$ associated with the formal Hamiltonian H defined in (1) that can be constructed as a limit along subsequences of P_{Λ} , $\Lambda \uparrow \mathbb{R}^d$, where P_{Λ} is defined in (3). Since $\overline{\Omega}$ is compact, P exists but may have infinite-degree vertices. In Theorem 1 we show that under mild conditions on Γ , all vertex has finite degree with P -probability 1. This implies that P is concentrated on Ω . Uniqueness of P is not discussed in this article. The measure P_{Λ} can be seen as a measure on $\overline{\Omega}$ concentrating mass in the set Ω_{Λ} .

B. Percolation

A path of length *n* connecting γ_0 with γ_n in the graph (Γ , *E*) is a sequence of distinct vertices $\gamma_0, \ldots, \gamma_n$ and the edges connecting successive points. A path is *open* if all its edges $\gamma_i \gamma_{i+1}$ are open. A connected component of ω is a set of points that can be mutually connected by open paths and the open edges incident to those points. Maximal connected components of ω are called *open clusters*. The *open cluster at* γ , called $C_{\gamma}(\omega)$, is the maximal connected component containing γ . The *vertex set* of $C_{\gamma}(\omega)$ is the set of all vertices in Γ which are connected to γ by open paths and the *edge set* of $C_{\gamma}(\omega)$ is the set of edges of ω which join pairs of such vertices.

We give sufficient conditions for the absence of infinite clusters with P probability one; this is called *no percolation*.

III. MAIN RESULTS

A. Existence

Let $\alpha > 0$. A point set Γ is α -homogeneous if for any $\gamma \in \Gamma$,

$$T_{\gamma}(\alpha) := \sum_{\gamma' \in \Gamma} e^{-\alpha L(\gamma \gamma')} < \infty.$$
(5)

A point set Γ is *uniformly* α *-homogeneous* if

$$T(\alpha) := \sup_{\gamma \in \Gamma} T_{\gamma}(\alpha) < \infty.$$
(6)

If Γ consists of hard core ball centers of a fixed radius then Γ is uniformly α -homogeneous for all α ; this is because the number of points grows polynomially with the distance while the weight decreases exponentially. Almost all sample Γ from a Poisson process is α -homogeneous for all α but uniformly α -homogeneous for no α ; see Lemma 2.

Theorem 1: Take $0 < h_0 < h_1$, $\beta > 0$ and a β -homogeneous Γ . Then, any Gibbs measure P at inverse temperature β is concentrated on Ω .

B. Ground states

A configuration $\widehat{\omega}$ is a *local perturbation* of $\omega \in \Omega$ if the symmetric difference $\widehat{\omega} \Delta \omega$ is a finite set. A configuration $\omega \in \Omega$ is a *ground state* if

$$H(\widehat{\omega}) - H(\omega) \ge 0$$

for any local perturbation $\hat{\omega}$ of ω . The difference is well defined because all but a finite number of terms vanish.

The next result says that all ground states are composed by dimers and monomers.

Theorem 2: For any locally finite configuration Γ and any $0 < h_0 < h_1$ there exists at least one ground state. If ω is a ground state then

$$d_{\gamma}(\omega) \leq 1$$

for every $\gamma \in \Gamma$. The length of any open edge in ω is less than $2h_0$.

Let π_{λ} be the distribution of a homogeneous Poisson process on \mathbb{R}^d with rate $\lambda > 0$.

Theorem 3: There exists λ_g such that if $\lambda < \lambda_g$, then for π_{λ} -almost all Γ there is only one ground state.

113303-4 Ferrari et al.

J. Math. Phys. 51, 113303 (2010)

C. No percolation at low rate and temperature

We consider the random graph as a dependent percolation model.⁴ For $\gamma \in \Gamma$, let $|C_{\gamma}(\omega)|$ be the number of vertices in $C_{\gamma}(\omega)$ and let $\theta_{\gamma}(\mathsf{P})$ be the probability that the open cluster at γ is infinite:

$$\theta_{\gamma}(\mathsf{P}) := \mathsf{P}(|C_{\gamma}(\omega)| = \infty).$$

We say that there is no percolation for P if $\theta_{\gamma}(\mathsf{P}) = 0$.

Take a Poisson process of rate λ and a Gibbs state at inverse temperature β . We establish a (λ, β) -region where there is no percolation for P:

Theorem 4: *If*

$$\lambda \left(2h_0 + \frac{\log 2}{\beta} \right) \le 1 \tag{7}$$

then there is no percolation for P for π_{λ} -almost all Γ .

The next theorem is stronger but for more restricted sets Γ .

Theorem 5: *If* Γ *is such that*

$$\varepsilon := T(\beta) \exp(-\beta(h_1 - h_0)) < 1, \tag{8}$$

then there is no percolation for P.

Remark 1: Fix Γ , h_0 and h_1 . Then $T(\beta)$ is a non-increasing function of β . Therefore the inequality (8) is valid for all β big enough.

IV. PROOFS

Along this section Γ is assumed β -homogeneous. Let P^{o} be the product measure on $\overline{\Omega}$ with marginals

$$\mathsf{P}^{\mathsf{o}}(e \in \omega) = \frac{e^{-\beta L(e)}}{e^{-\beta L(e)} + e^{-2\beta h_0}}.$$
(9)

Lemma 1: Any infinite volume Gibbs measure P is stochastically dominated by the product measure P° : for any finite set of edges $\zeta \subset E$,

$$\mathsf{P}(\omega \supset \zeta) \leq \mathsf{P}^{\mathsf{o}}(\omega \supset \zeta).$$

Proof: We start proving that for any bounded $\Lambda \subset \mathbb{R}^d$, P_Λ is stochastically dominated by P^o_Λ the product measure defined on Ω_Λ . Holley Theorem says that if for all $\tilde{\omega} \subset E_\Lambda$

$$\mathsf{p} := \mathsf{P}_{\Lambda}(e \in \omega \mid \omega \setminus \{e\} = \tilde{\omega} \setminus \{e\}) \leq \mathsf{P}^{\mathsf{o}}_{\Lambda}(e \in \omega).$$
(10)

then P_{Λ} is stochastically dominated by P^{o}_{Λ} ; see Theorem 4.8 in Ref. 3. This is enough to prove the lemma because for finite ζ , { $\omega \supset \zeta$ } is a cylinder set and the limit

$$P(\omega \supset \zeta) = \lim_{\Lambda \uparrow \mathbb{R}^d} P_{\Lambda}(\omega \supset \zeta)$$
$$\leq \lim_{\Lambda \uparrow \mathbb{R}^d} P^{o}_{\Lambda}(\omega \supset \zeta) = P^{o}(\omega \supset \zeta)$$

holds along subsequences.

Now we prove (10). Let $e = \gamma_1 \gamma_2 \in E_{\Lambda}$. The conditional probability in (10) depends only on configurations on $(S_{\gamma_1} \cup S_{\gamma_2}) \cap E_{\Lambda} \setminus \{e\}$:

$$\mathsf{p} = \mathsf{P}_{\Lambda}(e \in \omega \mid \omega_{\gamma_1} = \tilde{\omega}_{\gamma_1}, \omega_{\gamma_2} = \tilde{\omega}_{\gamma_2}),$$

where $\omega_{\gamma} = \omega \cap S_{\gamma} \cap E_{\Lambda} \setminus \{e\}$. Consider three cases:

113303-5 Gibbs Random Graphs

- 1. $\tilde{\omega}_{\gamma_1} = \tilde{\omega}_{\gamma_2} = \emptyset$,
- 3. $\tilde{\omega}_{\gamma_1} \neq \emptyset$, $\tilde{\omega}_{\gamma_2} = \emptyset$ (and its symmetric version $\tilde{\omega}_{\gamma_1} = \emptyset$, $\tilde{\omega}_{\gamma_2} \neq \emptyset$).
- 3. $\tilde{\omega}_{\gamma_1} \neq \emptyset, \ \tilde{\omega}_{\gamma_2} \neq \emptyset.$

Case 1: The edge *e* is isolated of the rest, so the probability to be in ω is

$$\mathsf{p} = \frac{e^{-\beta L(e)}}{e^{-\beta L(e)} + e^{-2\beta h_0}} = \mathsf{P}^{\mathsf{o}}(e \in \omega).$$

Case 2: Let *m* be the number of open edges in $\tilde{\omega}_{\gamma_1}$. If *e* is open then it interacts with *m* open edges:

$$\mathsf{p} = \frac{e^{-\beta L(e) - \beta m h_1}}{e^{-\beta L(e) - \beta m h_1} + e^{-\beta h_0}}$$
$$< \frac{e^{-\beta L(e)}}{e^{-\beta L(e)} + e^{-2\beta h_0}} = \mathsf{P}^{\mathsf{o}}(e \in \omega).$$

Case 3: Let *m* be the number of open edges in $\tilde{\omega}_{\gamma_1} \cup \tilde{\omega}_{\gamma_2}$. Then,

$$\mathsf{p} = \frac{e^{-\beta L(e) - \beta m h_1}}{e^{-\beta L(e) - \beta m h_1} + 1} < \frac{e^{-\beta L(e)}}{e^{-\beta L(e)} + 1}$$
$$< \frac{e^{-\beta L(e)}}{e^{-\beta L(e)} + e^{-2\beta h_0}} = \mathsf{P}^{\mathsf{o}}(e \in \omega).$$

Proof of Theorem 1: Use Lemma 1 to dominate the degree of γ as follows

$$\mathsf{E}d_{\gamma} = \sum_{\gamma' \in \Gamma} \mathsf{P}(\gamma \gamma' \in \omega) \le \sum_{\gamma' \in \Gamma} \mathsf{P}^{\mathsf{o}}(\gamma \gamma' \in \omega)$$
$$= \sum_{\gamma' \in \Gamma} \frac{e^{-\beta L(\gamma \gamma')}}{e^{-\beta L(\gamma \gamma')} + e^{-2\beta h_0}} \le \frac{T_{\gamma}(\beta)}{e^{-2\beta h_0}} < \infty, \tag{11}$$

because Γ is β -homogeneous by hypothesis.

Lemma 2: Almost all samples Γ from the Poisson process distribution π_{λ} are α -homogeneous for all α .

Proof: Without losing generality assume $0 \in \Gamma$. Consider a sequence of hypercubes $\Lambda_n = [-n^{1/d}, n^{1/d}]^d$, $n \ge 0$. Any ring $W_n = \Lambda_{n+1} \setminus \Lambda_n$, $n \ge 0$, has volume 2. If $\gamma \in W_n$ then $L(0\gamma) \ge n^{1/d}$ and

$$\sum_{\gamma \in \Gamma} e^{-\alpha L(0\gamma)} \leq \sum_{n=0}^{\infty} |\Gamma \cap W_n| \exp(-\alpha n^{(1/d)}).$$

Since $|\Gamma \cap W_n|$ is a Poisson random variable with mean 2 for all *n*, the sum is finite π_{λ} -a.s. for any $\alpha > 0$.

Proof of Theorem 2: Assume ω is a ground state and proceed by contradiction: assume that there exists a vertex $\gamma \in \Gamma$ such that $d_{\gamma}(\omega) \ge 2$. Let $\gamma \gamma' \in \omega$. Let $\tilde{\omega}$ be the same as ω but without the edge $\gamma \gamma'$:

$$\tilde{\omega} := \omega \setminus \{\gamma \gamma'\}.$$

Then,

$$H(\omega) - H(\tilde{\omega}) = \begin{cases} L(\gamma \gamma') + (d_{\gamma}(\tilde{\omega}) + d_{\gamma'}(\tilde{\omega}))h_1 & \text{if } d_{\gamma'}(\tilde{\omega}) \ge 1, \\ L(\gamma \gamma') + d_{\gamma}(\tilde{\omega})h_1 - h_0 & \text{if } d_{\gamma'}(\tilde{\omega}) = 0. \end{cases}$$

Since $0 < h_0 < h_1$, we have $H(\omega) - H(\tilde{\omega}) > 0$, which contradicts that ω is a ground state.

There are no edges in a ground state with length L greater than $2h_0$, since the energy of two monomers is $2h_0 < L$.

113303-6 Ferrari et al.

Now we prove existence of at least one ground state. Let (Λ_n) be a sequence of increasing cubes covering $\mathbb{R}^d = \bigcup_n \Lambda_n$. Let ω_n be a configuration in Λ_n having the minimal energy over all configurations in Λ_n . There exists a subsequence (ω_i') of the sequence (ω_n) (that is $\omega_i' = \omega_{n_i}$) such that there exists a limit $\lim_{i\to\infty} \omega_i'(e)$ for every $e \in E$ (here w(e) = 1 if $e \in \omega$ and w(e) = 0 otherwise). Moreover, the sequence (ω_i') can be chosen in such a way that $\omega_j'(e) \equiv \text{const for all } j \geq i$ when $e \in E_{\Lambda_i}$. The configuration $\omega' = \bigcup_i \omega_i'$ is one of the ground states. To see it, let $\widehat{\omega}$ be a local perturbation of ω' . There exists k such that $\widehat{\omega}\Delta\omega' \subseteq E_{\Lambda_k}$. For i > k let $\widehat{\omega}_i$ be the restriction of $\widehat{\omega}$ to E_{Λ_i} . Since $\widehat{\omega}_i$ is a perturbation of ω_i' ,

$$H_{\Lambda_i}(\widehat{\omega}_i) - H_{\Lambda_i}(\omega'_i) \ge 0.$$

Since no ω_i has edges with a length greater than $2h_0$, there exists $i_1 \ge i_0$ such that

$$H(\widehat{\omega}) - H(\omega') = H_{\Lambda_{i_1}}(\widehat{\omega}_{i_1}) - H_{\Lambda_{i_1}}(\omega'_{i_1}) \ge 0.$$

This proves that ω' is a ground state.

Proof of Theorem 3: Let Γ be a sample of π_{λ} , the law of a Poisson process with intensity λ . Let U be the union of all circles of radius h_0 centered at the points of Γ . There exists a critical intensity λ_c such that for any $\lambda < \lambda_c$ any maximal connected component of U is bounded π_{λ} -a.s.; see Theorem 3.3 in Ref. 5. Thus, for $\lambda < \lambda_c \pi_{\lambda}$ -almost-all Γ is a union of finite clusters $\Gamma = \bigcup_{i=1}^{\infty} \Gamma_i$, $|\Gamma_i| < \infty$, and for any $i \neq j$ and for any $\gamma \in \Gamma_i$, $\gamma' \in \Gamma_j$ the distance $|\gamma - \gamma'| > 2h_0$. There are open edges only inside the clusters Γ_i . Since Γ_i are finite there exists a unique configuration in Γ_i minimizing the energy.

The random connection model. Choose a point configuration Γ with π_{λ} and then the edges with P° . The resulting random graph is called *random-connection model* with rate λ and *connection function*

$$g(x) := \frac{e^{-\beta x}}{e^{-\beta x} + e^{-2\beta h_0}}.$$
 (12)

See Chapter 6 in Ref. 5. The connection function g(x) is the probability that two points at distance x be connected. To show Theorem 4 we will dominate our graph with this model. The next lemma gives a sufficient condition for non-percolation in the random connection model.

Lemma 3: In the region (7) for π_{λ} -almost all Γ there is no percolation in the random-connection model with connection function (12).

Proof: Theorem 6.1 of Ref. 5 establishes that the random-connection model with connection function (12) does not percolate if

$$\lambda \int_0^\infty g(x) \mathrm{d}x < 1. \tag{13}$$

For any $\beta > 0$ and any $h_0 > 0$ the integral of g(x) in (13) is finite and equals

$$\int_0^{2h_0} \frac{e^{-\beta x}}{e^{-\beta x} + e^{-2\beta h_0}} \mathrm{d}x + \int_{2h_0}^\infty \frac{e^{-\beta x}}{e^{-\beta x} + e^{-2\beta h_0}} \mathrm{d}x := J_1(\beta) + J_2(\beta).$$

The first integral on the right side of the above equality is increasing and tends to $2h_0$ as $\beta \to \infty$. The second integral tends to 0 as $\beta \to \infty$. Fix $\beta > 0$ and choose λ such that

$$\lambda < rac{1}{2h_0 + J_2(eta)} \leq rac{1}{\int g(x) \mathrm{d}x}.$$

We obtain the lemma by computing $J_2(\beta) = \frac{\log 2}{\beta}$.

Proof of Theorem 4: Lemma 1 says that the Gibbs measure P is dominated by the product measure P^o defined by (9). Lemma 3 implies that the product measure P^o does not percolate under the conditions of the theorem. Thus the Gibbs measure P does not percolate for μ_{λ} -a.s. Γ .

Lemma 4: Let B_{γ} and D_{γ} be a partition of S_{γ} . Assume B_{γ} is finite and that ξ is a nonempty set of edges contained in B_{γ} . Then, for any $e \in D_{\gamma}$,

$$\mathsf{P}(e \in \omega \,|\, \omega \cap B_{\gamma} = \xi) \leq \exp(-\beta L(e) - \beta(h_1 - h_0)).$$

Proof: Consider any bounded $\Lambda \subset \mathbb{R}^d$ such that $\Lambda \supset B_{\gamma} \cup \{e\}$. Let

$$A := \{ \omega \subset E_{\Lambda} : \omega \cap B_{\gamma} = \xi, \ e \in \omega \},$$
$$Z := \sum_{\omega \subset E_{\Lambda} : \omega \cap B_{\gamma} = \xi} \exp(-\beta H_{\Lambda}(\omega))$$

and compute

$$P_{\Lambda}(e \in \omega \mid \omega \cap B_{\gamma} = \xi)$$

$$= \frac{1}{Z} \sum_{\omega \in A} \exp(-\beta H_{\Lambda}(\omega))$$

$$= \frac{1}{Z} \sum_{\omega \in A} \exp(-\beta (H_{\Lambda}(\omega) - H_{\Lambda}(\omega \setminus \{e\})) \exp(-\beta H_{\Lambda}(\omega \setminus \{e\}))$$

$$\leq \exp(-\beta L(e) - \beta (h_1 - h_0)) \frac{1}{Z} \sum_{\omega \in A} \exp(-\beta H_{\Lambda}(\omega \setminus \{e\}))$$

$$\leq \exp(-\beta L(e) - \beta (h_1 - h_0)) P_{\Lambda}(e \notin \omega \mid \omega \cap B_{\gamma} = \xi)$$

$$\leq \exp(-\beta L(e) - \beta (h_1 - h_0)). \qquad (14)$$

The event $\{e \in \omega\}$ is cylindrical and so is $\{\omega \cap B_{\gamma} = \xi\}$, as B_{γ} is finite by hypothesis. Hence we can take the limit as $\Lambda \uparrow \mathbb{R}^d$ and conclude.

Proof of Theorem 5: Without losing generality we assume that the origin is a point of Γ , $0 \in \Gamma$. Let $C(\omega)$ be the vertex set of the graph $C_0(\omega)$ and $E(\omega)$ its edge set. Let us show that under the conditions of the theorem the expected number of vertices in the open cluster of the origin $\mathsf{E}|C|$ is finite. This is inspired in the method of generations introduced by Menshikov⁶ to show no percolation in the site percolation model.

For a given configuration ω let $E(\omega)$ be the edge set of the open cluster $C(\omega)$, let $V_0(\omega) = \{0\}$ and for $n \ge 1$ define

$$V_{n}(\omega) := \{ \gamma' \in \Gamma \setminus (V_{0}(\omega) \cup \dots \cup V_{n-1}(\omega)) :$$

there is a $\gamma \in V_{n-1}(\omega)$ such that $\gamma \gamma' \in E(\omega) \},$ (15)

$$O_{n}(\omega) := \{ \gamma \gamma' \in E(\omega) : \gamma \in V_{n-1}(\omega), \gamma' \in V_{n-1}(\omega) \cup V_{n}(\omega) \}.$$

Each vertex in $V_n(\omega)$ is attained with at least a path of *n* distinct open edges starting from the origin but cannot be attained with a shorter open path. Each edge in $O_n(\omega)$ is the *n*-th step of an open self avoiding path starting from the origin and not belonging to a shorter open path. Since $(V_n, n \ge 0)$ is a partition of the set of vertices of the open cluster at 0,

$$\mathsf{E}|C| = \sum_{n=0}^{\infty} \mathsf{E}|V_n|.$$
(16)

If we show that for ε defined in (8) and $n \ge 0$,

$$\mathsf{E}|V_{n+1}| \leq \varepsilon \mathsf{E}|V_n|, \tag{17}$$

then the sum in (16) is bounded by $\frac{\varepsilon}{1-\varepsilon}$ and the theorem is proven.

113303-8 Ferrari et al.

Proof of (17): Call $\tilde{O}_n(\omega) := O_1(\omega) \cup \ldots \cup O_n(\omega)$. The edges of the (n + 1)-th generation is the union of the edges belonging to the stars centered at the points of V_n and not contained in previous generations:

$$O_{n+1}(\omega) = \bigcup_{\gamma \in V_n(\omega)} (\omega \cap S_{\gamma} \setminus \widetilde{O}_n(\omega)).$$
(18)

For $n \ge 1$ define

$$F_n(\omega) := \{\gamma \gamma' \in E \setminus E(\omega) : \gamma \in V_{n-1}(\omega), \gamma' \in \Gamma\}$$

the set of closed edges incident to the vertices in V_{n-1} . Let $\widetilde{F}_n := F_1 \cup \cdots \cup F_n$.

Let ξ be a possible set of open edges for the first *n* generations: $\xi = \widetilde{O}_n(\xi)$. For any ω , if $\xi = \widetilde{O}_n(\xi) = \widetilde{O}_n(\omega)$, then $\widetilde{F}_n(\xi) = \widetilde{F}_n(\omega)$. Since every vertex has finite degree, the set of possible ξ is countable and

$$\sum_{\xi} \mathsf{P}(\widetilde{O}_n(\omega) = \xi) = 1$$

where the sum runs over finite $\xi \subset E$ such that $\xi = \widetilde{O}_n(\xi)$.

Fix $\gamma \in V_n(\xi)$ and let $B_{\gamma}(\xi) := S_{\gamma} \cap (\widetilde{O}_n(\xi) \cup \widetilde{F}_n(\xi))$, the set of edges incident to γ already determined by ξ and $D_{\gamma}(\xi) := S_{\gamma} \setminus B_{\gamma}(\xi)$ the edges in S_{γ} that are not fixed by ξ . Since ξ is finite, so is $B_{\gamma}(\xi)$. Take $e \in D_{\gamma}(\xi)$. Then,

$$\mathsf{P}(e \in \omega \mid \widetilde{O}_n(\omega) = \xi) = \mathsf{P}(e \in \omega \mid \omega \cap B_{\gamma}(\xi) = \xi \cap B_{\gamma}(\xi))$$
$$\leq \exp(-\beta L(e) - \beta(h_1 - h_0)),$$

by Lemma 4; indeed $\xi \cap B_{\gamma}(\xi)$ is not empty. The obtained bound does not depend on ξ . Since $|V_n(\xi)| \le |O_n(\xi)|$ for all ξ and $n \ge 1$,

$$\mathsf{E}(|V_{n+1}| \mid \tilde{O}_n(\omega) = \xi) \leq \mathsf{E}(|O_{n+1}| \mid \tilde{O}_n(\omega) = \xi)$$

$$= \sum_{\gamma \in V_n(\xi)} \sum_{e \in D_{\gamma}(\xi)} \mathsf{P}(e \in \omega \mid \tilde{O}_n(\omega) = \xi)$$

$$\leq \sum_{\gamma \in V_n(\xi)} \sum_{e \in E_{\gamma}} \exp(-\beta L(e) - \beta(h_1 - h_0))$$

$$\leq T(\beta) \exp(-\beta(h_1 - h_0)) |V_n(\xi)| = \varepsilon |V_n(\xi)|.$$

Hence,

$$\mathsf{E}|V_{n+1}| = \sum_{\xi} \mathsf{E}(|V_{n+1}| \mid \widetilde{O}_n(\omega) = \xi) \,\mathsf{P}(\widetilde{O}_n(\omega) = \xi) \,\leq \,\varepsilon \mathsf{E}|V_n|.$$

V. FINAL REMARKS

Since the ground state of Gibbs Random Graph does not percolate, the theorems about nonpercolation show a kind of "stability" of the ground states.

Sufficient conditions for the existence of an infinite open cluster and monotonicity of θ_{γ} as function of β (or (λ, β)) are open problems.

ACKNOWLEDGMENTS

The work of E.A.P. was partly supported by CNPq grants 300576/92-7 and 662177/96-7, (PRONEX) and FAPESP grant 99/11962-9, RFBR grants 07-01-92216 and 08-01-00105.

The work of V.V.S. was supported by FAPERJ (grants E-26/170.008/2008 and E-26/110.982/2008) and CNPq (grants 471891/2006-1, 309397/2008-1 and 471946/2008-7).

113303-9 Gibbs Random Graphs

The work of A.Ya. was partly supported by FAPERJ grant E26/170.008/2008, and CNPq 306092/2007-7.

- ² R. Durrett, *Random Graph Dynamics* (Cambridge University Press, Cambridge, 2007).
 ³ H.-O. Georgii, O. Häggström, and C. Maes, "*The random geometry of equilibrium phases.*" In phase transitions and critical phenomena, Vol. 18. Phase Transit. Crit. Phenom., vol. 18. Academic Press, San Diego, CA, 1-142.
- ⁴G. R. Grimmett, and D. J. A. Welsh, *Disorder in Physical Systems*, edited by (The Clarendon Press Oxford University Press, New York, 1990).
- ⁵R. Meester, and R. Roy, *Continuum percolation*. Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 1996), vol. 119.
- ⁶M. V. Men'shikov, S. A. Molchanov, and A. F. Sidorenko, (1986). Percolation theory and some applications. In Probability theory. Mathematical statistics. Theoretical cybernetics, Vol. 24 (Russian). Itogi Nauki i Tekhniki. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 53-110, i. Translated in J. Soviet Math. 42(4), 1766 (1988).

¹B. Bollobás, *Random Graphs*, 2nd ed. (Cambridge University Press, Cambridge, 2001), vol.73.