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BINOMIAL D-MODULES
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The authors dedicate this work to the memory of Karin Gatermann, friend and colleague

ABSTRACT. We study quotients of the Weyl algebra by left ideals whose generators consist
of an arbitraryZd-graded binomial idealI in C[∂1, . . . , ∂n] along with Euler operators de-
fined by the grading and a parameterβ ∈ Cd. We determine the parametersβ for which these
D-modules (i) are holonomic (equivalently, regular holonomic, whenI is standard-graded);
(ii) decompose as direct sums indexed by the primary components ofI; and (iii) have holo-
nomic rank greater than the rank for genericβ. In each of these three cases, the parameters in
question are precisely those outside of a certain explicitly described affine subspace arrange-
ment inCd. In the special case of Horn hypergeometricD-modules, whenI is a lattice basis
ideal, we furthermore compute the generic holonomic rank combinatorially and write down
a basis of solutions in terms of associatedA-hypergeometric functions. This study relies fun-
damentally on the explicit lattice point description of theprimary components of an arbitrary
binomial ideal in characteristic zero, which we derive in our companion article [DMM08].
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1. INTRODUCTION

1.1. Hypergeometric series.A univariate power series ishypergeometricif the successive
ratios of its coefficients are given by a fixed rational function. These functions, and the ele-
gant differential equations they satisfy, have proven ubiquitous in mathematics. As a small
example of this phenomenon, consider the Hermite polynomials. These hypergeometric
functions naturally occur, for instance, in physics (energy levels of the harmonic oscilla-
tor) [CDL77], numerical analysis (Gaussian quadrature) [SB02], combinatorics (matching
polynomials of complete graphs) [God81], and probability (iterated Itô integrals of standard
Wiener processes) [Itô51].

Perhaps the most natural definition of hypergeometric powerseries in several variables is
the following, whose bivariate specialization was studiedby Jakob Horn as early as 1889
[Hor1889]. More references include [Hor31], the first of sixarticles, all in Mathematische
Annalen between 1931 and 1940, and all containing “Hypergeometrische Funktionen zweier
Veränderlichen” (hypergeometric functions in two variables) in their titles.

Definition 1.1. A formal seriesF (z) =
∑

α∈Nm aαz
α1

1 · · · z
αm
m in m variables with com-

plex coefficients ishypergeometric in the sense of Hornif there exist rational functions
r1, r2, . . . , rm in m variables such that

(1.1)
aα+ek

aα

= rk(α) for all α ∈ Nm andk = 1, . . . , m.

Here we denote bye1, . . . , em the standard basis vectors ofNm.

Write the rational functions of the previous definition as

rk(α) = pk(α)/qk(α + ek) k = 1, . . .m,

wherepk andqk are relatively prime polynomials.

Let ∂zi
denote the partial derivative operator∂

∂zi
. Since for all monomial functionszα and

polynomialsg we haveg(z1∂z1
, . . . , zm∂zm)zα = g(α1, . . . , αm)zα, the seriesF satisfies the

following Horn hypergeometric system of differential equations:

(1.2) qk(z1∂z1
, . . . , zm∂zm)F (z) = zkpk(z1∂z1

, . . . , zm∂zm)F (z) k = 1, . . . , m,

provided that, fork = 1, . . . , m, the conditionqk(α) = 0 is satisfied wheneverαk = 0. See
also Remark 1.6.

Of particular interest are the series where the numerators and denominators of the rational
functionsrk factor into products of linear factors. (Contrast with the notion of “proper hy-
pergeometric term” in [PWZ96].) Notice that by the fundamental theorem of algebra, this is
not restrictive when the number of variables ism = 1.

1.2. Binomial ideals and binomial D-modules. The central objects of study in this ar-
ticle are thebinomialD-modules, to be introduced in Definition 1.3, which reformulate
and generalize the classical Horn hypergeometric systems,as we shall see in Section 1.4.
Our definition is based on the point of view developed by Gelfand, Graev, Kapranov, and
Zelevinsky [GGZ87, GKZ89], and contains their hypergeometric systems as special cases;
see Section 1.3.
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To construct a binomialD-module, the starting point is an integer matrixA, about which we
wish to be consistent throughout.

Convention 1.2.A = (aij) ∈ Zd×n denotes an integerd×nmatrix of rankdwhose columns
a1, . . . , an all lie in a single open linear half-space ofRd; equivalently, the cone generated
by the columns ofA is pointed (contains no lines), and all of theai are nonzero. We also
assume thatZA = Zd; that is, the columns ofA spanZd as a lattice.

The reformulation of Horn systems in Section 1.4 proceeds bya change of variables, so we
will usex = x1, . . . , xn and∂ = ∂1, . . . , ∂n (where∂i = ∂xi

= ∂/∂xi), instead ofz1, . . . , zm

and∂z1
, . . . , ∂zm , whenever we work in the binomial setting. The matrixA induces aZd-

grading of the polynomial ringC[∂1, . . . , ∂n] = C[∂], which we call theA-grading, by
settingdeg(∂i) = −ai. An ideal ofC[∂] is A-gradedif it is generated by elements that are
homogeneous for theA-grading. For example, abinomial idealis generated bybinomials
∂u−λ∂v, whereu, v ∈ Zn are column vectors andλ ∈ C; such an ideal isA-graded precisely
when it is generated by binomials∂u−λ∂v each of which satisfies eitherAu = Av or λ = 0
(in particular, monomials are allowed as generators of binomial ideals). The hypotheses onA
mean that theA-grading is apositiveZd-grading[MS05, Chapter 8].

The Weyl algebraD = Dn of linear partial differential operators, written with thevariables
x and∂, is also naturallyA-graded by additionally settingdeg(xi) = ai. Consequently, the
Euler operatorsin our next definition areA-homogeneous of degree0.

Definition 1.3. For eachi ∈ {1, . . . , d}, theith Euler operatoris

Ei = ai1x1∂1 + · · ·+ ainxn∂n.

Given a vectorβ ∈ Cd, we writeE − β for the sequenceE1 − β1, . . . , Ed − βd. (The
dependence of the Euler operatorsEi on the matrixA is suppressed from the notation.)

For anA-graded binomial idealI ⊆ C[∂], we denote byHA(I, β) the left idealI + 〈E − β〉
in the Weyl algebraD. ThebinomialD-moduleassociated toI isD/HA(I, β).

We will explain in Section 1.4 how Horn systems correspond tothe binomialD-modules
arising from a very special class of binomial ideals calledlattice basis ideals.

Our goal for the rest of this Introduction (and indeed, the rest of the paper) is to demonstrate
not merely that the definition of binomialD-modules can be made in this generality—and
that it leads to meaningful theorems—but that itmustbe made, even if one is interested only
in classical questions concerning Horn hypergeometric systems, which arise from lattice
basis ideals. Furthermore, once the definition has been made, most of what we wish to prove
about Horn hypergeometric systems generalizes to all binomial D-modules.

1.3. Toric ideals and A-hypergeometric systems.The fundamental examples of bino-
mial D-modules, and the ones which our definition most directly generalizes, are theA-
hypergeometric systems(or GKZ hypergeometric systems) of Gelfand, Graev, Kapranov, and
Zelevinsky [GGZ87, GKZ89]. GivenA as in Convention 1.2, these are the leftD-ideals
HA(IA, β), also denoted byHA(β), where

(1.3) IA = 〈∂u − ∂v : Au = Av〉 ⊆ C[∂1, . . . , ∂n]
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is thetoric ideal for the matrixA. The systemsHA(β) have many applications; for exam-
ple, they arise naturally in the moduli theory of Calabi-Yaucomplete intersections in toric
varieties, and (therefore) they play an important role in applications of mirror symmetry in
mathematical physics [BvS95, Ho99, Hos06, HLY96].

The idealIA is a primeA-graded binomial ideal, and the quotient ringC[∂]/IA is the semi-
group ring for the affine semigroupNA generated by the columns ofA. There is a rich
theory of toric ideals, toric varieties, and affine semigroup rings, whose core philosophy
is to exploit the connection between the algebra of the semigroup ringC[∂]/IA = C[NA]
and the combinatorics of the semigroupNA. In this way, algebro-geometric results on toric
varieties can be obtained by combinatorial means, and purely combinatorial facts about poly-
hedral geometry can be proved using algebraic techniques. We direct the reader to the texts
[Ful93, GKZ94, MS05] for more information.

Much is known aboutA-hypergeometricD-modules. They are holonomic for all parame-
ters [GKZ89, Ado94], and they are regular holonomic exactlywhenIA is Z-graded in the
usual sense [Hot91, SW08]. In this case, (Gamma-)series expansions for the solutions of
HA(β) centered at the origin and convergent in certain domains canbe explicitly computed
[GKZ89, SST00]. The generic (minimal) holonomic rank is known to bevol(A), the nor-
malized volume of the convex hull of the columns ofA and the origin [GKZ89, Ado94], and
holonomic rank is independent of the parameterβ if and only if the semigroup ringC[NA]
is Cohen-Macaulay [GKZ89, Ado94, MMW05]. We will extend allof these results, suit-
ably modified, to the general setting of binomialD-modules. The important caveat is that a
general binomialD-module can exhibit behavior that is forbidden to GKZ systems (see Ex-
ample 1.10, for instance), so it is impossible for the extension to be entirely straightforward.

1.4. Binomial Horn systems. Classical Horn systems, which we are about to define pre-
cisely, were first studied by Appell [App1880], Mellin [Mel21], and Horn [Hor1889]. They
directly generalize the univariate hypergeometric equations for the functionspFq; see [SK85,
Sla66] and the references therein. As we mentioned earlier,our motivation to consider bi-
nomialD-modules is that they contain as special cases these classical Horn systems. The
definition of these systems involves a matrixB about which, like the matrixA from Conven-
tion 1.2, we wish to be consistent throughout.

Convention 1.4. Let B = (bjk) ∈ Zn×m be an integer matrix of full rankm ≤ n. Assume
that every nonzero element of the column-span ofB over the integersZ is mixed, meaning
that it has at least one positive and one negative entry; in particular, the columns ofB are
mixed. We writeb1, . . . , bn for the rows ofB. Having chosenB, we setd = n−m and pick
a matrixA ∈ Zd×n whose columns spanZd as a lattice, such thatAB = 0.

If d 6= 0, the mixedness hypothesis onB is equivalent to the pointedness assumption forA
that appears in Convention 1.2. We do allowd = 0, in which caseA is the empty matrix.

Definition 1.5. For a matrixB ∈ Zn×m as in Convention 1.4 and a vectorc = (c1, . . . , cn)
in Cn, theclassical Horn system with parameterc is the left idealHorn(B, c) in the Weyl
algebraDm generated by them differential operators

qk(θz)− zkpk(θz), k = 1, . . . , m,
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whereθz = (θz1
, . . . , θzm), θzk

= zk∂zk
(1 ≤ k ≤ m), and

qk(θz) =
∏

bjk>0

bjk−1
∏

ℓ=0

(bj · θz + cj − ℓ) and pk(θz) =
∏

bjk<0

|bjk|−1
∏

ℓ=0

(bj · θz + cj − ℓ).

Remark 1.6. When the parameterc is generic, one can find a local basis of solutions of
Horn(B, c) that consists of Puiseux series of the formzvF (z), for certain complex vectors
v and power seriesF that are hypergeometric in the sense of Definition 1.1. The rational
functions giving the recursions for the coefficients of these seriesF are related to the defining
equations forHorn(B, c). We can see this more clearly in an example.

Example 1.7. For the column matrixB =
[

1 −1 −1 1
]t
, the corresponding Horn

system with parameter(c1, c2, c3, c4) consists of one operator in the single variablez, namely

(θz + c1)(θz + c4)− z(−θz + c2)(−θz + c3) = (θz + c1)(θz + c4)− z(θz − c2)(θz − c3).

We can follow the usual convention of normalizingc4 to 1 and renaming the parameters to
obtain the operator

(1.4) (θz + c)(θz + 1)− z(θz + a)(θz + b), (herea, b, c ∈ C).

This is the Gauss hypergeometric equation multiplied on theleft by the variablez (this does
not alter the space of local holomorphic solutions), and written in operator notation.

If c is not an integer, we can write down a local basis of solutionsfor (1.4) converging in a
disk centered at the origin. This basis consists of the functionsF (z) andz1−cG(z), where

F (z) = 1 +
ab

1! c
z +

a(a+ 1)b(b+ 1)

2! c(c+ 1)
z2 + · · · ,

G(z) = 1+
(a+1−c)(b+1−c)

1! (2−c)
z+

(a+1−c)(a+1−c+1)(b+1−c)(b+1−c+1)

2! (2−c)(2−c+1)
z2+· · ·.

The rational functions giving the recursions for the coefficients of the hypergeometric series
F andG are

r(α) =
(α+ a)(α + b)

(α+ c)(α + 1)
and s(α) =

(α + (a+ 1− c))(α + (b+ 1− c))

(α + (2− c))(α + 1)
,

respectively; the numerators and denominators of these rational functions bear a marked (and
non-coincidental) resemblance to the polynomials inθz that appear in the two terms of (1.4).

Using ideas of Gelfand, Kapranov, and Zelevinsky, the classical Horn systems can be rein-
terpreted as the following binomialD-modules, withβ = Ac.

Definition 1.8. Fix integer matricesB andA as in Convention 1.4, and letI(B) be thelattice
basis idealcorresponding to this matrix, that is, the ideal inC[∂] generated by the binomials

∏

bjk>0

∂
bjk
xj −

∏

bjk<0

∂
−bjk
xj for 1 ≤ k ≤ m.

Thebinomial Horn system with parameterβ is the left idealH(B, β) = HA(I(B), β) in the
Weyl algebraD = Dn.
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The classical-to-binomial transformation proceeds via the surjection

(1.5)
(C∗)n → (C∗)m

(x1, . . . , xn) 7→ xB = (
∏n

j=1 x
bj1

j , . . . ,
∏n

j=1 x
bjm

j ),

whereC∗ = C r {0} is the group of nonzero complex numbers. A solutionf(z1, . . . , zm) of
the classical Horn systemHorn(B, c) gives rise to a solutionxcf(xB) of the binomial Horn
systemH(B,Ac). When the columns ofB are a basis of the integer kernel ofA, this map
defines a vector space isomorphism between the (local) solution spaces. This was proved
in [DMS05, Section 5] forn > m in the homogeneous case, where the column sums ofB
are zero, but the proofs (which are elementary calculationstaking only a page) go through
verbatim forn ≥ m in the inhomogeneous case.

The transformationf(z) 7→ xcf(xB) takes classical series solutions supported onNm to
Puiseux series solutions supported on the translatec + ker(A) ⊆ Cn of the kernel ofA
in Zn. (Note thatker(A) contains the latticeZB spanned by the columns ofB as a fi-
nite index subgroup.) More precisely, the differential equationsE − β, which geomet-
rically impose torus-equivariance infinitesimally under the action of (the Lie algebra of)
ker((C∗)n → (C∗)m), result in series supported onc + ker(A), while the binomials in the
lattice basis idealI(B) ⊆ H(B,Ac) impose hypergeometric constraints on the coefficients.

Although the isomorphismf(z) 7→ xcf(xB) is only at the level of local holomorphic solu-
tions, notD-modules, it preserves many of the pertinent features, including the dimensions
of the spaces of local holomorphic solutions and the structure of their series expansions.
Therefore, although the classical Horn systems are our motivation, we take the binomial
formulation as our starting point: no result in this articledepends logically on the classical-
to-binomial equivalence.

1.5. Holomorphic solutions to Horn systems.The binomial rephrasing of Horn systems
led to formulas in [GGR92] for Gamma-series solutions viaA-hypergeometric theory. How-
ever, Gamma-series need not span the space of local holomorphic solutions ofH(B, β) at a
point of Cn that is nonsingular forH(B, β), even in the simplest cases. The reason is that
Gamma-series arefully supported: there is a cone of dimensionm (the maximum possible)
whose lattice points correspond to monomials with nonzero coefficients. Generally speaking,
Horn systems in dimensionm ≥ 2 tend to have many series solutions without full support.

Example 1.9. In the course of studying one of Appell’s systems of two hypergeometric
equations inm = 2 variables, Arthur Erdélyi [Erd50] mentions a modified formof the
following example. Given anyβ ∈ C2 and the two matrices

A =

[

3 2 1 0
0 1 2 3

]

, B =









1 0
−2 1

1 −2
0 1









satisfying Convention 1.4, the Puiseux monomialx
β1/3
1 x

β2/3
4 is a solution ofH(B, β).

A key feature of the above example is that the solutions without full support persist for
arbitrary choices of the parameter vectorβ. The fact that this phenomenon occurs in much
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more generality—for arbitrary dimensionm ≥ 2, in particular—was realized only recently
[DMS05]. And it is not the sole peculiarity that arises in dimensionm ≥ 2: in view of
the transformation to binomial Horn systems in Section 1.4,the following demonstrates that
classical Horn systems can exhibit poor behavior for badly chosen parameters.

Example 1.10.Consider

A =

[

1 1 0 0
0 1 1 1

]

and B =









1 1
−1 −1

1 0
0 1









,

so that

H(B, β) = 〈∂1∂3 − ∂2, ∂1∂4 − ∂2〉+ 〈x1∂1 − x2∂2 − β1, x2∂2 + x3∂3 + x4∂4 − β2〉.

If β1 = 0, then any (local holomorphic) bivariate functionf(x3, x4) annihilated by the op-
eratorx3∂3 + x4∂4 − β2 is a solution ofH(B, β). The space of such functions is infinite-
dimensional; in fact, it has uncountable dimension, as it contains all monomialsxw3

3 xw4

4 with
w3, w4 ∈ C andw3 + w4 = β2.

Erdélyi’s goal for his study of the Appell system was to givebases of solutions that converged
in different regions ofC2, eventually covering the whole space, just as Kummer had done for
the Gauss hypergeometric equation more than a century before [Kum1836]. There has been
extensive work since then (see [SK85] and its references) onconvergence of more general
hypergeometric functions in two and three variables. But already for the classical case of
Horn systems, where the phenomena in Examples 1.9 and 1.10 are commonplace, Erdélyi’s
work raises a number of fundamental questions that have remained largely open (partial
answers in dimensionm = 2 being known [DMS05]; see Remark 1.18). The purpose of this
article is to answer the following completely and precisely.

Questions 1.11.FixB as in Convention 1.4 and consider the Horn systems determined byB.

1. For which parameters does the space of local holomorphic solutions around a nonsin-
gular point have finite dimension as a complex vector space?

2. What is a combinatorial formula for the minimum such dimension, over all possible
choices of parameters?

3. Which parameters are generic, in the sense that the minimum dimension is attained?
4. How do (the supports of) series solutions centered at the origin look, combinatorially?

These questions make sense simultaneously for classical Horn systems and binomial Horn
systems, since the answers are invariant under the classical-to-binomial transformation. That
the questions also make sense for binomialD-modules is our point of departure, for they can
be addressed in this generality using answers to the following.

Questions 1.11(continued). Consider the binomialD-modulesHA(I, β) for varyingβ∈Cd.

5. When isD/HA(I, β) a holonomicD-module?
6. When isD/HA(I, β) a regularholonomicD-module?
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The phenomena underlying all of the answers to Questions 1.11 can be described in terms of
lattice point geometry, as one might hope, owing to the nature of hypergeometric recursions
as relations between coefficients on monomials. The latticepoint geometry is elementary,
in the sense that it only requires constructions involving cosets and equivalence relations
in lattices. However, modern techniques are required to make the descriptions quantitatively
accurate and prove them. In particular, our progress applies two distinct and substantial steps:
precise advances in the combinatorial commutative algebraof binomial ideals in semigroup
rings [DMM08], and the functorial translation of those advances intoD-module theory here.

1.6. Combinatorial answers to hypergeometric questions.The supports of the various
series solutions toH(B, β) centered at the origin are controlled by how effectively the
columns ofB join the lattice points in the positive orthantNn. In essence, this is because the
coefficients on a pair of Puiseux monomials are related by thebinomial equations inI(B)
when their exponent vectors inc+ker(A) differ by a column ofB. This observation prompts
us to construct an undirected graphΓB(Nn) on the nodesNn with an edge between pairs of
points differing by a column ofB. Each connected component, orB-subgraph ofNn, is
contained in a single fiber of the projectionNn → Zn/ZB.

Certain pairs consisting of a subsetJ ⊆ {1, . . . , n} and a saturated sublatticeL ⊆ ZJ

contained inker(A) areassociatedto B. The columns ofB together with the vectors inL
determine a graphΓB,L(ZJ×NJ) with nodesZJ×NJ , whereJ is the complementary subset.
Each connected component ofΓ(B,L) is acted upon byL and hence is a union of cosets ofL.
The key feature of an associated latticeL ⊆ ZJ is that some of these components consist of
only finitely many cosets ofL; let us call these componentsL-bounded.

TheD-module theoretic consequences ofL-bounded components rely on a crucial distinc-
tion; see Definition 4.1, Definition 5.1, and Remark 5.3 for more precision and an etymology.

Definition 1.12. An associated saturated sublatticeL ⊆ ZJ ∩ ker(A) is calledtoral if L =
ZJ ∩ ker(A); otherwise,L ( ZJ ∩ ker(A) is calledAndean.

Example 1.13.[Example 1.10 continued] WithA andB as in Example 1.10, there are two
associated lattices, one withJ = {1, 2, 3, 4}, the other withJ = {3, 4}. The first one is
toral, while the second is Andean.

In what follows,AJ denotes the submatrix ofA whose columns are indexed byJ . We write
ZAJ ⊆ Zd = ZA for the group generated by these columns, andCAJ ⊆ Cd for the vector
subspace they generate.

Observation 1.14(cf. [DMM08, Theorem 3.2] and Lemma 2.5). The images inZA of the
L-bounded components for all of the Andean associated sublatticesL ⊆ ZJ comprise a finite
union of cosets ofZAJ . The union over allJ of the corresponding cosets ofCAJ is an affine
subspace arrangement inCd called theAndean arrangement(Definition 6.1 and Lemma 6.2).

Example 1.15.[Example 1.13 continued] The Andean arrangement in this case is

C [ 0 0
1 1 ] =

{ [

0
β2

]

: β2 ∈ C
}

.

As we have already checked, the Horn system in Example 1.10 fails to be holonomic for this
set of parameters.
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Observation 1.16(cf. [DMM08, Theorem 4.12] and its proof). A component inZJ × NJ

determined by a toral associated sublatticeL ⊆ ZJ is L-bounded if and only if its image in
NJ is bounded. IfCAJ = Cd, the number of such bounded images inNJ is finite; letµ(L, J)
be the product of this number with the index|L/(ZB ∩ZJ)| of the sublatticeZB ∩ ZJ in L.

Answers 1.17.The answers to Questions 1.11, phrased in the language of binomial Horn
systemsH(B, β), are as follows.

1. (Theorem 6.3) The dimension is finite exactly for−β not in the Andean arrangement.
2. (Theorem 6.10) The generic (minimum) rank is

∑

µ(L, J)·vol(AJ), the sum being over
all toral associated sublattices withCAJ = Cd, wherevol(AJ) is the volume of the
convex hull ofAJ and the origin, normalized so a lattice simplex inZAJ has volume1.

3. (Definition 6.9 and Theorem 6.10) The minimum rank is attained precisely when−β
lies outside of an affine subspace arrangement determined bycertain local cohomol-
ogy modules, with the same flavor as (and containing) the Andean arrangement.

4. (Theorem 6.10, Theorem 7.13, and Corollary 7.23) When theHorn system is regular
holonomic andβ is general, there areµ(L, J) · vol(AJ) linearly independent Puiseux
series solutions supported on (translates of)L-bounded components, with coefficients
determined by hypergeometric recursions. Onlyg · vol(A) many Gamma-series solu-
tions have full support, whereg = | ker(A)/ZB| is the index ofZB in its saturation.

5. (Theorem 6.3) Holonomicity is equivalent to the finite dimension in Answer 1.17.1.
6. (Theorem 6.3) Holonomicity is equivalent to regular holonomicity whenI is standard

Z-graded—i.e., the row-span ofA contains the vector[1 · · ·1]. Conversely, if there
exists a parameterβ for whichD/HA(I, β) is regular holonomic, thenI is Z-graded.

In Answer 1.17.4, the solutions for toral sublatticesL = ker(A)∩ZJ in whichJ is a proper
subset of{1, . . . , n} give rise to solutions that are bounded in theNJ directions, and hence
supported on sets of dimensionrank(L) = |J |−d < n−d = m. Answer 1.17.6 is, given the
other results in this paper, an (easy) consequence of the (hard) holonomic regularity results
of Hotta [Hot91] and Schulze–Walther [SW08]. Finally, let us note again that most of the
theorems quoted in Answers 1.17 are stated and proved in the context of arbitrary binomial
D-modules, not just Horn systems.

Remark 1.18. We concentrate on the special case of Horn systems in Section7. The sys-
tematic study of binomial Horn systems was started in [DMS05] under the hypothesis that
m (the number of columns ofB) is equal to 2. See also [Sad02]. Our results here are more
general than those found in [DMS05] (as we treat all binomialD-modules, not just those
arising from lattice basis ideals of codimension 2), more refined (we have completely ex-
plicit control over the parameters) and stronger (for instance, our direct sum results hold at
the level ofD-modules and not just local solution spaces). On the other hand, the generic
holonomicity of classical HornD-modules (Definition 1.5) form > 2 remains unproven,
the bivariate case having been treated in [DMS05].

Example 1.19. [Example 1.9, continued] There are two associated sublatticesL ⊆ ZJ

here, both toral, and both satisfyingCAJ = C2: the sublatticeker(A) ⊆ Z4, where
J = {1, 2, 3, 4}, and the sublattice0 ⊆ ZJ for J = {1, 4}. Both of the multiplicities
µ
(

ker(A), {1, 2, 3, 4}
)

andµ
(

0, {1, 4}
)

equal1, while vol(A) = 3 andvol(A{1,4}) = 1, the
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latter because
[

3
0

]

and
[

0
3

]

form a basis for the lattice they generate. Hence there are four
solutions in total, three of them with full support and one—namely the Puiseux monomial in
Example 1.9—with support of dimension zero. See Example 1.20 for an (easy!) computation
of these associated lattices and their multiplicities.

1.7. Binomial primary decomposition. Our combinatorial study of binomial primary de-
composition in [DMM08] results in a natural language for quantifying which sublattices are
associated, which cosets appear in Observation 1.14, and which bounded images appear in
Observation 1.16. To be precise, a binomial prime idealIρ,J in C[∂1, . . . , ∂n] is determined
by a subsetJ ⊆ {1, . . . , n} and a characterρ : L → C∗ for some sublatticeL ⊆ ZJ .
The sublatticeL ⊆ ZJ is associated toI(B), in the language of Section 1.6, whenIρ,J

is associated toI(B) in the usual commutative algebra sense, and the multiplicity µ(L, J)
of L in I(B) from Observation 1.16 is|L/(ZB ∩ZJ )| times the commutative algebra multi-
plicity of Iρ,J in I(B). The factor of|L/(ZB ∩ ZJ)| counts the number of partial characters
ρ : L→ C∗ for whichIρ,J is associated toI(B); see Remark 6.11 for the general reason why.

Example 1.20.[Example 1.19, continued] The binomial Horn system is

H(B, β) = I(B) + 〈3x1∂1 + 2x2∂2 + x3∂3 − β1, x2∂2 + 2x3∂3 + 3x4∂4 − β2〉 ⊆ D4.

The primary decomposition of the lattice basis idealI(B) in C[∂1, ∂2, ∂3, ∂4] is

I(B) = 〈∂1∂3 − ∂
2
2 , ∂2∂4 − ∂

2
3〉 = 〈∂1∂3 − ∂

2
2 , ∂2∂4 − ∂

2
3 , ∂1∂4 − ∂2∂3〉 ∩ 〈∂2, ∂3〉.

The first of these components is the toric idealIA = Iρ,J of the twisted cubic curve, where
ρ : ker(A) = ZB → C∗ is the trivial character andJ = {1, 2, 3, 4}. The ideal〈∂2, ∂3〉 is the
binomial prime idealIρ,J for the (automatically) trivial characterρ : 0→ C∗ and the subset
J = {1, 4}. Both of these ideals have multiplicity1 in I(B), which is a radical ideal. This
explains the associated lattices and multiplicities in Example 1.19.

For a note on motivation, this project began with the conjectural statement of Theorem 7.13
(Answer 1.17.4), which we concluded must hold because of evidence derived from our
knowledge of series solutions. Its proof reduced quickly tothe statement of Example 3.7,
which directed all of the developments in the rest of the paper and in [DMM08]. Our conse-
quent application ofB-subgraphs and their generalizations toward the primary decomposi-
tion of binomial ideals serves as an advertisement for hypergeometric intuition as inspiration
for developments of independent interest in combinatoricsand commutative algebra.

1.8. Euler-Koszul homology. Binomial primary decomposition is not only the natural lan-
guage for lattice point geometry, it is the reason why lattice point geometry governs the
D-module theoretic properties of binomialD-modules. This we demonstrate by functorially
translating the commutative algebra ofA-graded primary decomposition directly into the
D-module setting. The functor we employ is Euler-Koszul homology (see the opening of
Section 2 for background and references), which allows us topull apart the primary com-
ponents of binomial ideals, thereby isolating the contribution of each to the solutions of the
corresponding binomialD-module. Here we see again the need to work with general bi-
nomialD-modules: primary components of lattice basis ideals, and intersections of various
collections of them, are more or less arbitraryA-homogeneous binomial ideals.
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We stress at this point that the combinatorial geometric lattice-point description of binomial
primary decomposition is a crucial prerequisite for the effective translation into the realm
of D-modules. Indeed, semigroup gradings pervade the arguments demonstrating the fun-
damentally holonomic behavior of Euler-Koszul homology for toral modules (Theorem 4.5)
and its resolutely non-holonomic behavior for Andean modules (Corollary 5.7). This is borne
out in Lemma 3.4 and Example 5.2, which say that quotients by binomial primary ideals are
either toral or Andean asC[∂]-modules, thus constituting the bridge from the commuta-
tive binomial theory in [DMM08] to the binomialD-module theory in Sections 2 and 6.
Taming the homological (holonomic) and structural properties of binomialD-modules in
Theorems 6.3, 6.8, and 6.10—which, together with Theorem 7.13 on series bases, form our
core results—also rests squarely on having tight control over the interactions of primary
decomposition with various semigroup gradings of the polynomial ring. The underlying
phenomenon is thus:

Central principle. Just as toric ideals are the building blocks of binomial ideals,A-hyper-
geometric systems are the building blocks of binomialD-modules.

As a final indication of how structural results for binomialD-modules have concrete combi-
natorial implications for Horn hypergeometric systems, let us see how the primary decom-
position in Example 1.20 results in the combinatorial multiplicity formula (Answer 1.17.2)
for the holonomic rank at generic parametersβ. The general result to which we appeal is
Theorem 6.8: for generic parametersβ, the binomialD-moduleD/HA(I, β) decomposes as
a direct sum over the toral primary components ofI.

Example 1.21.[Example 1.20, continued] The intersection inC4 = Spec(C[∂1, . . . , ∂4]) of
the two irreducible varieties in the zero set ofI(B) is the zero set of

〈∂1∂3 − ∂
2
2 , ∂2∂4 − ∂

2
3 , ∂1∂4 − ∂2∂3〉+ 〈∂2, ∂3〉 = 〈∂1∂4, ∂2, ∂3〉.

The primary arrangement in Theorem 6.8 is, in this case, the line inC2 spanned by
[

3
0

]

union
the line inC2 spanned by

[

0
3

]

. Whenβ lies off the union of these two lines, Theorem 6.8
yields an isomorphism ofD4-modules:

D4

H(B, β)
∼=

D4

〈∂1∂3 − ∂
2
2 , ∂2∂4 − ∂

2
3 , ∂1∂4 − ∂2∂3〉+ 〈E − β〉

⊕
D4

〈∂2, ∂3〉+ 〈E − β〉
.

The summands on the right-hand side are GKZ hypergeometric systems (up to extraneous
vanishing variables in the〈∂2, ∂3〉 case) with holonomic ranks3 and1, respectively.

We conclude this introduction with some general backgroundon D-modules. A leftD-
idealI is holonomicif its characteristic variety has dimensionn. Holonomicity has strong
homological implications, making the class of holonomicD-modules a natural one to study.
If I is holonomic, itsholonomic rank, i.e. the dimension of the space of solutions of the
D-idealI that are holomorphic in a sufficiently small neighborhood ofa point outside the
singular locus, is finite (the converse of this result is not true). We refer to the texts [Bor87,
Cou95, SST00] for introductory overviews of the theory ofD-modules; we point out that
the exposition in [SST00] is geared toward algorithms and computations. A treatment of
D-modules withregular singularitiescan be found in [Bjö79, Bjö93].
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Mathématiques in Luminy (CIRM). We thank these institutions for their gracious hospitality.

2. EULER-KOSZUL HOMOLOGY

The Euler operators in Definition 1.3 can be used to build a Koszul-like complex whose ze-
roth homology is theA-hypergeometric system in Definition 1.3. In its most basic form, this
construction is due to Gelfand, Kapranov, and Zelevinsky [GKZ89], and was developed by
Adolphson [Ado94, Ado99] and Okuyama [Oku06], among others. A functorial generaliza-
tion was introduced in [MMW05], where it was proved to be homology-isomorphic to an
ordinary Koszul complex detecting holonomic rank changes for varying parametersβ. Here
we review the definitions from [MMW05, Section 4] (where moredetails can be found), as
well as connection to the quasidegrees defined in [MMW05, Section 5].

Given a matrixA with columnsa1, . . . , an as in Convention 1.2, recall that the polynomial
ring C[∂] and the Weyl algebraD = Dn areA-graded bydeg(∂j) = −aj anddeg(xj) = aj .
Under thisA-grading, operatorsE1, . . . , Ed, and in fact all of the productsxj∂j ∈ D, are
homogeneous of degree0.

Given anA-graded leftD-moduleW , if z ∈ Wα is homogeneous of degreeα then set
degi(z) = αi. The mapEi − βi : W →W that sends each homogeneous elementz ∈W to

(2.1) (Ei − βi) ◦ z = (Ei − βi − degi(z))z,

and is extendedC-linearly to all ofW , determines aD-linear endomorphism ofW .

Definition 2.1. Fix β ∈ Cd and anA-gradedC[∂]-moduleV . TheEuler-Koszul complex
K.(E − β;V ) is the Koszul complex of leftD-modules defined by the sequenceE − β of
commuting endomorphisms on the leftD-moduleD ⊗C[∂] V concentrated in homological
degreesd to 0. Theith Euler-Koszul homologyof V isHi(E − β;V ) = Hi(K.(E − β;V )).

Example 2.2.Fix A andB as in Conventions 1.2 and 1.4.

1. Thebinomial HornD-modulewith parameterβ isH0(E − β; C[∂]/I(B)).
2. TheA-hypergeometricD-modulewith parameterβ isH0(E − β; C[∂]/IA); see (1.3).
3. If I ⊆ C[∂] is anyA-graded binomial ideal, thenH0(E − β; C[∂]/I) = D/HA(I, β).

Euler-Koszul homology behaves predictably with regard toA-graded translation.

Lemma 2.3.LetV be anA-gradedC[∂]-module andα ∈ Zd = ZA. If V (α) is theA-graded
module withV (α)α′ = Vα+α′ , thenH0(E − β;V (α)) ∼= H0(E − β + α;V )(α). �

We shall see that Euler-Koszul homology has the useful property of detecting “where” a
module is nonzero, the nonzeroness being measured in the following sense.

Definition 2.4. Let V be anA-gradedC[∂]-module. The set oftrue degreesof V is

tdeg(V ) = {β ∈ Zd : Vβ 6= 0}.
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The setqdeg(V ) of quasidegreesof V is the Zariski closure inCd of its true degreestdeg(V ).

Because of the next lemma, we shall often refer to quasidegree sets asarrangements.

Lemma 2.5. LetR be a noetherianA-graded ring that is finitely generated over its degree0
piece. The quasidegree set of any finitely generated gradedR-module is a finite union of
affine subspaces ofCd, each spanned by the degrees of some subset of the generatorsofR.

Proof. EveryA-graded module has anA-graded associated prime, and therefore a submod-
ule isomorphic to anA-graded translate of a quotient by anA-graded prime. Now use Noe-
therian induction to conclude that every such module has a filtration whose successive quo-
tients areA-translates of quotients ofR modulo prime ideals. But being an integral domain,
the true degree set of a quotientR/p by a prime idealp is the affine semigroup generated by
the degrees of the generators ofR that remain nonzero inR/p. �

Example 2.6.Let I = 〈bd−de, bc−ce, ab−ae, c3−ad2, a2d2−de3, a2cd−ce3, a3d−ae3〉
be a binomial ideal inC[∂], where we write∂ = (∂1, ∂2, ∂3, ∂4, ∂5) = (a, b, c, d, e), and let

A =

[

1 1 1 1 1
0 1 2 3 1

]

and B =













−2 −1 0
3 0 1
0 3 0
−1 −2 0

0 0 −1













.

One easily verifies that the binomial idealI is graded byZA = Z2. If ω is a primitive cube
root of unity (ω3 = 1), thenI, which is a radical ideal, has the prime decomposition

I = 〈a, c, d〉 ∩ 〈bc− ad, b2 − ac, c2 − bd, b− e〉

∩ 〈ωbc− ad, b2 − ωac, ω2c2 − bd, b− e〉

∩ 〈ω2bc− ad, b2 − ω2ac, ωc2 − bd, b− e〉.

If V = C[a, b, c, d, e]/〈a, c, d〉, thenqdeg(V ) is the diagonal line inC2. In contrast, the
quotient by each one of the other three prime ideals there hasquasidegree set equal to all
of C2. It follows thatqdeg(C[∂]/I) = C2.

Let m be the maximal ideal〈∂1, . . . ∂n〉 of C[∂]. SinceA is pointed with no nonzero columns,
m is the unique maximalA-graded ideal. Given anA-gradedC[∂]-moduleV , its local
cohomology modules

H i
m
(V ) = lim

−→ t Exti
C[∂](C[∂]/mt, V )

supported atm areA-graded; see [MS05, Chapter 13]. Even whenV is finitely generated, its
local cohomology modulesH i

m
(V ) need not be; but their Matlis duals are, so their quaside-

gree sets are still arrangements.

Lemma 2.7. If V is a finitely generatedA-gradedC[∂]-module, then the quasidegree set
qdeg(H i

m
(V )) of theith local cohomology module ofV is a union of finitely many integer

translates of the complex subspacesCAJ ⊆ Cn spanned by{aj : j ∈ J} for variousJ .
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Proof. Let εA =
∑n

j=1 aj . In the graded version [Mil02b, Theorem 6.3] of the Greenlees-
May theorem [GM92], settingE equal to the injective hull of the residue fieldC[∂]/m yields
the naturalA-graded local duality vector space isomorphism

Extn−i
C[∂](V,C[∂])α

∼= HomC(H i
m
(V )−α+εA

,C).

(Use the caseG = C[∂] to deduce that the right-hand side of [Mil02b, Theorem 6.3] is the
derivedHom into the canonical moduleωC[∂], which is isomorphic as a graded module to the
principal ideal〈∂1 · · ·∂n〉; see also [BH93, Section 3.5] forZ-graded local duality.) Hence
εA + qdeg(H i

m
(V )) = −qdeg(Extn−i

C[∂](V,C[∂])) is the negative of the quasidegree set of a
finitely generated module. The result is now a consequence ofLemma 2.5. �

3. BINOMIAL PRIMARY DECOMPOSITION

In this section we review some prerequisites on primary decomposition of binomial ideals
from [ES96] and [DMM08], including interactions withA-gradings. For the applications to
HornD-modules in Section 7, we pay special attention to lattice basis ideals. For the duration
of this section we work over a polynomial ringC[∂] in commuting variables∂ = ∂1, . . . , ∂n.

If L ⊆ Zn is a sublattice, then thelattice idealof L is IL = 〈∂u+ −∂u− : u = u+−u− ∈ L〉.
Here and henceforth,u+ hasith coordinateui if ui ≥ 0 and0 otherwise. The vectoru− ∈ Nq

is defined byu+−u− = w, or equivalently,u− = (−u)+. More general thanIL are the ideals

Iρ = 〈∂u+ − ρ(u)∂u− : u = u+ − u− ∈ L〉

for any partial characterρ : L → C∗ of Zn, which includes the data of both its domain
latticeL ⊆ Zn and the map toC∗. (The idealIρ is calledI+(ρ) in [ES96].) The idealIρ is
prime if and only ifL is asaturatedsublattice ofZn, meaning thatL equals itssaturation

sat(L) = (QL) ∩ Zn,

whereQL = Q ⊗Z L is the rational vector space spanned byL in Qn. In fact [ES96,
Corollary 2.6], every binomial prime ideal inC[∂] has the form

Iρ,J = Iρ + 〈∂j : j /∈ J〉

for some saturated partial characterρ (i.e., whose domain is a saturated sublattice) and subset
J ⊆ {1, . . . , n} such that the binomial generators ofIρ only involve variables∂j for j ∈ J
(some of which might actually be absent from the generators of Iρ).

Example 3.1. The intersectand〈a, c, d〉 in Example 2.6 equals the prime idealIρ,J for J =
{2, 5} andL = {0} ⊆ ZJ . The remaining three intersectands are the prime idealsIρ,J for the
three charactersρ that are defined onker(A) but trivial on its index3 sublatticeZB spanned
by the columns ofB, whereJ = {1, 2, 3, 4, 5}.

Theorem 3.2([DMM08, Theorem 3.2]). Fix a binomial idealI. Write∂J for the monomial
∏

j∈J ∂j . Each associated primeIρ,J has an explicitly defined monomial idealUρ,J such that

I =
⋂

Iρ,J∈Ass(I)

Cρ,J for Cρ,J =
(

(I + Iρ) : ∂∞J
)

+ Uρ,J

is a decomposition ofI as an intersection of primary binomial ideals.
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It is not important for our present purposes precisely whatUρ,J is in general; all we need
are various consequences, especially for the structure of the quotientsC[∂]/Cρ,J , derived in
[DMM08] from the explicit description. The flavor is captured in the following example and
in Example 3.7, where the precise answer for certain minimalprimes is quite clean.

Example 3.3. Fix matricesA andB as in Convention 1.4. This identifiesZd with the quo-
tient of Zn/ZB modulo its torsion subgroup. Thelattice basis idealcorresponding to the
latticeZB = {Bz : z ∈ Zm} is defined by

I(B) = 〈∂u+ − ∂u− : u = u+ − u− is a column ofB〉 ⊆ C[∂1, . . . , ∂n].

Each of the minimal primes ofI(B) arises, after row and column permutations, from a block
decomposition ofB of the form

(3.1)

[

N BJ

M 0

]

,

whereM is a mixed submatrix ofB of sizeq×p for some0 ≤ q ≤ p ≤ m [HS00]. (Matrices
with q = 0 rows are automatically mixed; matrices withq = 1 row are never mixed.) We
note that not all such decompositions correspond to minimalprimes: the matrixM has to
satisfy another condition which Hoşten and Shapiro call irreducibility [HS00, Definition 2.2
and Theorem 2.5]. IfI(B) is a complete intersection, then only square matricesM will
appear in the block decompositions (3.1), by a result of Fischer and Shapiro [FS96].

For each partial characterρ : sat(ZBJ) → C∗ extending the trivial character onZBJ , the
ideal Iρ,J is associated toI(B), whereJ = J(M) = {1, . . . , n} r rows(M) indexes the
n − q rows not inM . We reiterate that the symbolρ here includes the specification of the
sublatticesat(ZBJ) ⊆ Zn. The corresponding primary componentCρ,J of I(B) is simplyIρ
if q = 0, but will in general be non-radical whenq ≥ 2 (recall thatq = 1 is impossible).

SinceA-gradings are central to our theory, we collect some relevant results from [DMM08].
Recall Conventions 1.2 and 1.4. Henceforth,AJ denotes the submatrix ofA whose columns
are indexed byJ . We writeZAJ ⊆ Zd = ZA for the group generated by these columns.

Lemma 3.4. Fix a partial characterρ : L → C∗ for a saturated sublatticeL ⊆ ZJ ⊆ Zn.
LetCρ,J be anA-graded binomialIρ,J -primary ideal. ThenL ⊆ ZJ ∩ kerZ(A) = kerZ(AJ),
the Krull dimension satisfiesdim(C[∂]/Iρ,J ) ≥ rank(AJ), and the following are equivalent.

• TheHilbert functionZA→ N defined byα 7→ dimC(C[∂]/Cρ,J )α is bounded above.
• The homomorphismZJ/L ։ ZAJ ⊆ Zd is injective.
• L = kerZ(AJ).
• dim(C[∂]/Iρ,J) = rank(AJ).

When these conditions are satisfied, the moduleC[∂]/Cρ/J and the latticeL are calledtoral,
the idealIρ,J is called atoral prime, andCρ,J is called atoral (primary) component. When
these conditions are not satisfied, substituteAndean(see Remark 5.3) for “toral” above.

Proof. These conditions are the ones appearing, respectively, in [DMM08, Definition 4.3,
Proposition 4.7, Corollary 4.8, and Lemma 4.9]. �
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Example 3.5.In Example 3.1, the homomorphismA{2,5} : Z{2,5} → Z2 is not injective since
it maps both basis vectors to

[

1
1

]

; thus the prime ideal〈a, c, d〉 is an Andean component ofI.
In contrast, the remaining associated prime ideals are all toral by Lemma 3.4, withAJ = A.

The final example in this section demonstrates, at long last,just how concrete binomial
primary decomposition can be when expressed in combinatorial terms. It will be applied
directly in Section 7 to construct solutions to binomial Horn systems. Example 3.7 was, for
us, the motivation and starting point for all of the other results in this article and in [DMM08].
To state it, we need a definition.

Definition 3.6. Any integer matrixM with q rows defines an undirected graphΓ(M) having
vertex setNq and an edge fromu to v if u− v or v − u is a column ofM . An M-subgraph
of Nq is a connected component ofΓ(M). AnM-subgraph isboundedif it has finitely many
vertices, andunboundedotherwise. (See Example 7.8 for an explicit computation inN3.)

Example 3.7.Resume the notation of Example 3.3. IfIρ,J is a toral minimal prime ofI(B)
given by a matrix decomposition as in (3.1), soJ = J(M), then

Cρ,J = I(B) + Iρ,J + UM ,

whereUM ⊆ C[∂j : j ∈ J ] is the idealC-linearly spanned by all monomials with exponent
vectors in the union of the unboundedM-subgraphs ofNJ ; this is [DMM08, Corollary 4.14],
which also says that every monomial inCρ,J already lies inUM .

4. TORAL MODULES

Much of this article concerns widely divergingD-module theoretic behavior lifted from
the toral vs. Andean dichotomy in the primary components of graded binomial ideals. The
functor translating toD-modules is Euler-Koszul homology, which was originally conceived
of for toric modules [MMW05, Definition 4.5]. Here, we shall show that allof the main
results in [MMW05] hold, with essentially the same proofs, for the more general class of
toral modules in Definition 4.1. The key starting point is the filtration characterization in
Proposition 4.2. Our main results for toral modules are Theorems 4.5, 4.6, 4.8, and 4.9.

Definition 4.1. An A-gradedC[∂]-moduleV is natively toral if there is a binomial prime
idealIρ,J and a degreeα ∈ Zd such thatV (α) ∼= C[∂]/Iρ,J is a toral quotient (Lemma 3.4).
The moduleV is toral if it is finitely generated and itsA-graded Hilbert function is bounded.

Proposition 4.2. AnA-gradedC[∂]-moduleV is toral if and only if it has a filtration0 =
V0 ⊂ V1 ⊂ · · · ⊂ Vℓ−1 ⊂ Vℓ = V whose successive quotientsVk/Vk−1 are all natively toral.

Proof. The proof proceeds by Noetherian induction to reduce to the prime case, and then
by showing that every toral prime is binomial. The argument is the same as for [DMM08,
Proposition 4.7], but with general modulesV in place of primary quotientsC[∂]/Cρ,J . �

The argument in the proof of Proposition 4.2 actually shows more.

Lemma 4.3. If W ⊆ V areA-graded modules withV toral, thenW andV/W are toral.
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Proof. Intersecting any toral filtration ofV with W yields a filtration ofW whose suc-
cessive quotients are toral because they areA-graded modules over natively toral quotients
C[∂]/Iρ,J . HenceW is toral. The same argument works for the image filtration inV/W . �

We begin recounting the results of [MMW05] with an elementary observation about how
Euler-Koszul homology works for modules killed by some of the variables; the proof is the
same as [MMW05, Lemma 4.8]. For notation, letEJ

i be the operator obtained fromEi by
setting the termsxj∂j to zero forj /∈ J . This operator can be thought of as lying in the Weyl
algebraDJ in the variablesxj and∂j for j ∈ J . Denote byxJ thex-variables forj /∈ J .

Lemma 4.4. If the variables∂j for j /∈ J annihilate anA-gradedC[∂]-moduleV , then
D⊗C[∂]V ∼= C[xJ ]⊗C(DJ⊗C[∂J ]V ) asD = DJ⊗CDJ -modules. Acting byEi onD⊗C[∂]V as
in (2.1) is the same as acting byEJ

i on the right-hand factor ofC[xJ ]⊗C (DJ ⊗C[∂J ] V ). �

Many of the following results are stated in the context ofholonomicD-modules, which by
definition are the finitely generated leftD-modulesW with Extj

D(W,D) = 0 for j 6= n.
WhenW is holonomic, the vector spaceC(x) ⊗C[x] W over the fieldC(x) of rational func-
tions inx1, . . . , xn has finite dimension equal to theholonomic rankrank(W ) by a celebrated
theorem of Kashiwara; see [SST00, Theorem 1.4.19 and Corollary 1.4.14].

We shall also be interested in whether ourD-modules areregular holonomic, the definition of
which can be found in [Bjö79]. For anA-hypergeometricD-module (Example 2.2), regular
holonomicity is known [Hot91] to occur whenA is homogeneous, meaning that there is a
row vectorψ ∈ Qd such thatψA equals the row vector[1, . . . , 1]. In this case, theZA = Zd-
grading onC[∂] coarsens naturally to thestandardZ-grading, in which deg(∂j) = 1 ∈ Z

for all j.

Theorem 4.5. If V is a toral C[∂]-module andβ ∈ Cd, then the Euler-Koszul homology
Hi(E − β;V ) is holonomic for alli. Moreover, the following are equivalent.

1. H0(E − β;V ) has holonomic rank0.
2. H0(E − β;V ) = 0.
3. Hi(E − β;V ) = 0 for all i ≥ 0.
4. −β 6∈ qdeg(V ).

If, in addition, the matrixA is homogeneous, thenHi(E−β;V ) is regular holonomic for alli.

Proof. This is the toral generalization of [MMW05, Proposition 5.1] and [MMW05, Propo-
sition 5.3]. To see that it holds, start with [MMW05, Notation 4.4]: instead of only allowing
submatrices ofA corresponding to faces of the semigroupNA, we allow submatricesAJ with
arbitrary column setsJ ⊆ {1, . . . , n}. Then, in [MMW05, Definition 4.5], replace “toric”
with “toral” and changeSFk

to C[∂]/Iρ,J ; that this defines toral modules is by Lemma 3.4.

The key is [MMW05, Lemma 4.9]. In the proof there, first replaceMF
β = D/HA(IF

A , β)
by D/HA(Iρ,J , β). Then observe that rescaling the variables viaρ induces anA-graded
automorphism ofD commuting with the construction of Euler-Koszul complexes(because
xj∂j is invariant under the automorphism). Hence the theorem fornatively toral modules
need only be proved in the special caseρ = identity. This allows us to useIAJ

+ 〈∂j : j 6∈ J〉
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instead ofIρ,J . The rest of the proof of [MMW05, Lemma 4.9] goes through unchanged, and
whenA is homogeneous, provides regular holonomicity as a consequence of the analogous
result for GKZ systems from [Hot91, SW08].

Now extend the proof of [MMW05, Proposition 5.1] to the toralsetting. For the first para-
graph of that proof, replace “toric” with “toral” and replace SF by C[∂]/Iρ,J . For the later
paragraphs of the proof, begin by working with the moduleM there being native toral. This
allows us to replaceIA, when it arises as an annihilator toward the end, withIρ,J , thereby
proving the native toral case. For the arbitrary toral case,simply note that for any exact
sequence0 → V ′ → V → V ′′ → 0 in which V ′ andV ′′ both have (regular) holonomic
Euler-Koszul homology, each Euler-Koszul homology moduleof V is placed between two
(regular) holonomic modules, and is hence (regular) holonomic.

Finally, to generalize [MMW05, Proposition 5.3], replace “toric” with “toral” in the state-
ment and proof. Then, in the proof, replaceIF

A by Iρ,J andSF by C[∂]/Iρ,J . �

Next we record the toral generalization of [MMW05, Theorem 6.6].

Theorem 4.6.The Euler-Koszul homologyHi(E−β;V ) of a toral moduleV is nonzero for
somei ≥ 1 if and only if−β ∈ qdeg(H i

m
(V )) for somei < d. More precisely, ifk equals

the smallest homological degreei for which−β ∈ qdeg(H i
m
(V )), thenHd−k(E − β;V ) is

holonomic of nonzero rank whileHi(E − β;V ) = 0 for i > d− k.

Proof. Begin by noting thatExti
C[∂](V,C[∂]) is toral wheneverV is toral. This is the toral

generalization of [MMW05, Lemma 6.1]; the same proof works,mutatis mutandis, replacing
SA in [MMW05] by C[∂]/Iρ,J here. Now extend [MMW05, Theorem 6.3] to the toral case:
the only property of toric modules used in its proof is the holonomicity of Euler-Koszul
homology, which we have shown is true for toral modules in Theorem 4.5. Finally, to torally
extend the toric [MMW05, Theorem 6.6], start with the first sentence of the proof, which for
toral modules is Lemma 4.7, below. After that, the proof goesthrough verbatim, given that
we have shown the results it cites for toric modules to be truefor toral modules. �

Lemma 4.7. If V is toral, then its Krull dimension satisfiesdim(V ) = dim(qdeg(V )) ≤ d.

Proof. For natively toral modules this follows from Lemma 3.4. For arbitrary toral modules,
the Krull dimension and the dimension of the quasidegree setboth equal the maximum of
the corresponding dimensions for the composition factors in any toral filtration. �

One of the observations in [MMW05] is that hypergeometric systemsD/HA(I, β) for vary-
ing β should be viewed as a family ofD-modules fibered overCd. If (the holonomic rank
function of theD-modules in) such a family is to behave well, it suffices to verify that it
is a holonomic family[MMW05, Definition 2.1]. For families arising from toric modules
this is done in [MMW05, Theorem 7.5], which we now generalizeto the toral setting. As
a matter of notation, letb = b1, . . . , bd be commuting variables of degree zero, soD[b] is a
polynomial algebra over the Weyl algebraD. For anyA-gradedC[∂]-moduleV , construct
theglobal Euler-Koszul complexK.(E−b;V ) of leftD[b]-modules andglobal Euler-Koszul
homologyH.(E−b;V ) by replacingD andβ in Definition 2.1 withD[b] andb here. Finally,
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if C(x) is the field of rational functions inx1, . . . , xn, write V(x) = C(x) ⊗C[x] V for any
C[x]-moduleV, includingV = C[b][x], where we setV(x) = C[b](x).

Theorem 4.8. If V is toral, then the sheaf̃V on Cd whose global section module isV =
H0(E − b;V ) constitutes a holonomic family overCd; in other words,Vβ = H0(E − β;V )
is holonomic for allβ ∈ Cd, andV(x) is finitely generated as a module overC[b](x).

Proof. [MMW05, Proposition 7.4] holds forIρ,J in place ofIF
A after harmlessly rescaling the

x andξ variables inversely to each other, which affects neitherAxξ nor the initial ideal in
question. Therefore we may, in the proof of [MMW05, Theorem 7.5], simply change “toric”
to “toral” and base the induction again onIρ,J andC[∂]/Iρ,J instead ofIF

A andSA. �

Consideringbi andβi as elements in the polynomial ringC[b], we can take ordinary Koszul
homologyH.(b − β;W ) for any C[b]-moduleW . This gets used in the generalization of
[MMW05, Theorem 8.2] to arbitraryA-gradedC[∂]-modules, which we state along with
the toral generalization of [MMW05, Theorem 9.1]. For the latter, we need also thejump
arrangementZjump(V ) =

⋃

i≤d−1 qdeg(H i
m
(V )) of anA-graded moduleV overC[∂].

Theorem 4.9. If V is anA-gradedC[∂]-module andV = H0(E − b;V ), then

Hi(E − β;V ) ∼= Hi(b− β;V),

the left and right sides being Euler-Koszul and ordinary Koszul homology, respectively. If, in
addition,V is toral, then−β lies in the jump arrangementZjump(V ) if and only if the holo-
nomic rank ofH0(E − β;V ) is not minimal (among all possible choices ofβ).

Proof. [MMW05, Theorem 8.2] and its proof both work verbatim for arbitrary A-graded
C[∂]-modules. That being given, the proof of [MMW05, Theorem 9.1] works just as well
for toral modules, since we have now seen that all of the earlier results in [MMW05] do. �

5. ANDEAN MODULES

The finiteness properties of toral modules encapsulated by Theorem 4.5 will be contrasted in
Corollary 5.7 (the heart of which is Theorem 5.6) with the infiniteness that occurs for Andean
modules. The feature of toral modules that drives the proofsin Section 4 is the toral filtration
in Proposition 4.2. It would be optimal if we could simply define an Andean module, in
general, to mean one that is not toral—that is, one whose Hilbert function is unbounded—
and conclude a similar filtration feature for Andean modules. Alas, this notion of Andean
module is too inclusive for our purposes: it does not imply a filtration characterization, in
general, even though for the quotient ofC[∂] by a binomial primary ideal, the unbounded
Hilbert function characterization is equivalent to the filtration one (Example 5.2). Therefore,
we take as our foundation the filtration feature. The particular form of this feature is dictated
by combinatorial primary decomposition, particularly [DMM08, Example 4.6].

Definition 5.1. An A-gradedC[∂]-moduleV is natively Andeanif there is anα ∈ Zd and
an Andean quotient ringC[∂]/Iρ,J (Lemma 3.4) over whichV (α) is torsion-free of rank1
and admits aZJ/L-grading that refines theA-grading viaZJ/L → Zd = ZA, whereρ is
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defined onL ⊆ ZJ . If V has a finite filtration0 = V0 ⊂ V1 ⊂ · · · ⊂ Vℓ−1 ⊂ Vℓ = V whose
successive quotientsVk/Vk−1 are all natively Andean, thenV is Andean.

Example 5.2.C[∂]/Cρ,J is Andean for any Andean primary componentCρ,J of anyA-graded
binomial ideal. This follows immediately from the statements [DMM08, Corollaries 2.13
and 3.3] about gradings and filtrations for primary binomialideals.

Remark 5.3. The adjective “Andean” describes the geometry of the gradings on theC[∂]-
modulesC[∂]/Cρ,J : collapsing (coarsening) the natural grading by theZJ/L-torsorB to
theA-grading [DMM08, Corollary 2.13] makes theB-graded degrees sit like a high thin
mountain range overZd, supported on finitely many translates ofZAJ .

Here is a weak form of Euler-Koszul rigidity for Andean modules (but see Corollary 5.7).

Lemma 5.4. If V is an Andean module and−β 6∈ qdeg(V ), thenHi(E − β;W ) = 0 =
Hi(E − β;V/W ) for all i and allA-graded submodulesW ⊆ V .

Proof. First assume thatV is natively Andean. The torsion-freeness ensures thatqdeg(V )
is aZd-translate of the complex spanCAJ of the columns ofA indexed byJ , so let us also
assume for the moment thatqdeg(V ) = CAJ . The result for thisV and all of itsA-graded
submodules follows from Lemma 4.4, because theC-linear span ofEJ

1 − β1, . . . , E
J
d − βd

contains a nonzero scalar ifβ /∈ CAJ (some linear combination ofEJ
1 , . . . , E

J
d is zero, while

the corresponding linear combination ofβ1, . . . , βd is nonzero, and hence a unit).

The case whereV is natively Andean (or a submodule thereof) andqdeg(V ) = α + CAJ

is proved by applying the above argument toV (−α), using Lemma 2.3. The case whereV
is a general Andean module is proved by induction on the length of an Andean filtration,
using thatqdeg(V ) = qdeg(V ′) ∪ qdeg(V ′′) whenever0 → V ′ → V → V ′′ → 0 is an
exact sequence. Finally, for anA-graded submoduleW of a general Andean moduleV ,
intersectingW with an Andean filtration ofV yields a filtration ofW whose successive
quotients are submodules of native Andean modules. Hence the proof of vanishing of Euler-
Koszul homology by induction on the length of the filtration still applies.

The vanishing of allHi(E−β;V/W ) follows easily from the vanishing forV and forW . �

The following lemma will allow us to reduce to the case of Andean quotientsC[∂]/Iρ,J

whenever we need to work with natively Andean modules.

Lemma 5.5. A natively Andean moduleV has a filtration whose successive quotients areA-
graded translates of various quotientsC[∂]/Iρ,J , each being natively either toral or Andean.
At least one of these quotients is natively Andean.

Proof. By definition,V is torsion free of rank1 over an Andean quotientC[∂]/Iτ,S where
S ⊆ {1, . . . , n} andτ is a partial character (we use non-standard notation to avoid confusion
with the statement we need to prove). Harmlessly rescaling the variables, we may assume
thatIτ,S = IL + 〈∂j : j /∈ S〉, soC[∂]/Iτ,S is a semigroup ringC[Q] for someQ ⊆ ZS/L.
ReplacingV with anA-graded translate, we may further assume thatV is ZS/L-graded.
Using Noetherian induction as in the proof of Lemma 2.5, we construct a filtration ofV
whose successive quotients areZS/L-graded translates of quotientsC[Q]/pQ′ modulo prime
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idealspQ′ for facesQ′ ⊆ Q (these are theC[∂]/Iρ,J of the statement). Each of these, being
A-graded, is either natively toral or natively Andean. Moreover, if all of them were toral,
thenV would be toral as well, so the last assertion follows. �

Now we combine the Euler-Koszul theory for Andean and toral modules to conclude that the
hypergeometricD-modules associated to Andean modules, if nonzero, are verylarge.

Theorem 5.6. If an A-gradedC[∂]-moduleV possesses a surjection to an Andean mod-
uleW , and if−β ∈ qdeg(W ), thenH0(E − β;V ) has uncountably many linearly indepen-
dent solutions near any general pointx ∈ Cn; that is,HomD(H0(E−β;V ),Ox) is a vector
space of uncountable dimension overC, whereOx is the local ring of analytic germs atx.

Proof. Since a surjection ofC[∂]-modules induces a surjection of zeroth Euler-Koszul ho-
mologyH0(E − β; · ), we may assume thatV = W is Andean.

Consider an exact sequence0 → V ′ → V → V ′′ → 0 of Andean modules in whichV ′′ is
natively Andean. If−β /∈ qdeg(V ′′), thenH0(E − β;V ′) ∼= H0(E − β;V ) by Lemma 5.4
for V ′′, so we may harmlessly replaceV with V ′. Continuing in this manner, using induction
on the length of an Andean filtration ofV , we may assume that−β ∈ qdeg(V ′′). But then,
sinceH0(E − β;V ) always surjects ontoH0(E − β;V ′′), we may assume thatV = V ′′ is
natively Andean. By Lemma 2.3, we may further assume thatV is torsion-free of rank1 over
some Andean quotientR = C[∂]/Iρ,J , and thatV containsR with noA-graded translation.

Using Lemma 5.5 and its notation, take a filtration0 = V0 ⊂ V1 ⊂ · · · ⊂ Vℓ = V in which
each of the successive quotientsVk/Vk−1 is aA-graded translate of some prime quotient that
is natively either toral or Andean. We are free to chooseV1 = R, and we do so. Letk be the
largest index such thatVk/Vk−1 is Andean and−β ∈ qdeg(Vk/Vk−1), noting that such an
index exists becauseV1/V0 = R satisfies the condition. SinceV surjects ontoV/Vk−1, we
find thatH0(E−β;V ) surjects ontoH0(E−β;V/Vk−1). Therefore, replacingV byV/Vk−1

andZd-translating again via Lemma 2.3 if necessary, it is enough to prove the casek = 1,
with V1 = R.

If the above filtration has lengthℓ > 1, then the kernel and cokernel of the homomorphism
H0(E− β;Vℓ−1)→H0(E − β;V ) are holonomic, beingHi(E − β;V/Vℓ−1) for i ∈ {0, 1};
this is by Theorem 4.5 ifV/Vℓ−1 is toral, and by Lemma 5.4 ifV/Vℓ−1 is Andean with
−β /∈ qdeg(V/Vℓ−1). Therefore the desired result holds forV if and only if it holds forVℓ−1.
This argument reduces us to the caseℓ = 1 by induction onℓ, so we may assume that
V = R = C[∂]/Iρ,J .

The condition−β ∈ qdeg(R) means exactly that−β, or equivalentlyβ, lies in the complex
column spanCAJ . Let Â be a matrix for the projectionZJ → ZJ/L, and writeZÂ = ZJ/L.
If β̂ is a vector inCÂmapping toβ under the surjection toCAJ afforded by Lemma 3.4, then
denote byÊ − β̂ the sequence of Euler operators associated toÂ. Thought of as elements
in the space of affine linear functionsZJ → C, the Euler operatorsEJ

1 − β1, . . . , E
J
d − βd

truncated fromE − β generate a sublatticeZ{EJ − β} properly contained in the sublat-
tice Z{Ê − β̂} generated bŷE − β̂. The binomial hypergeometric systemD/HÂ(Iρ,J , β̂)
is holonomic of positive rank by Theorem 4.5 (forZJ/L-graded toralC[∂J ]-modules, via
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Lemma 4.4). Its solutions are also solutions ofD/HA(Iρ,J , β) because

HA(Iρ,J , β) = D · 〈Iρ,J ,Z{E
J − β}〉 ⊆ D · 〈Iρ,J ,Z{Ê − β̂}〉 = HÂ(Iρ,J , β̂).

On the other hand, for any pair of distinct liftŝβ 6= β̂ ′, the linear span ofZ{Ê − β̂} together
with Z{Ê − β̂ ′} contains a nonzero scalar. It follows that the solutions toD/HÂ(Iρ,J , β̂)

for varying β̂ are linearly independent. The direct sum of these (local) solution spaces is
therefore an uncountable-dimensional subspace of the (local) solutions toH0(E − β;R) =
D/HA(Iρ,J , β). �

Summarizing the above results, let us emphasize the dichotomy between toral and Andean
modules by recording the Andean analogue of Theorem 4.5.

Corollary 5.7. The following are equivalent for an AndeanC[∂]-moduleV andβ ∈ Cd.

0. H0(E − β;V ) has countable-dimensional local solution space.
1. H0(E − β;V ) has finite-dimensional local solution space.
2. H0(E − β;V ) = 0.
3. Hi(E − β;V ) = 0 for all i ≥ 0.
4. −β 6∈ qdeg(V ). �

6. BINOMIAL D-MODULES

Using the functoriality of Euler-Koszul homology, we now deduce the holonomicity, regular-
ity, and other structural properties of arbitrary binomialD-modules, including the binomial
Horn systems which motivated and presaged the developmentshere. Our first principal result
is the specification, for anyA-graded binomial idealI, of an arrangement of finitely many
affine subspaces ofCd such that the binomialD-moduleD/HA(I, β) is holonomic precisely
when−β lies outside of it (Theorem 6.3). Moreover, holonomicity occurs if and only if the
vector space of local solutions toHA(I, β) has finite dimension. The subspace arrangement
arises from the primary decomposition ofI into its toral and Andean components. When
D/HA(I, β) is holonomic, it is also regular holonomic if and only ifI is Z-graded in the
standard sense. Finally, we construct another finite affine subspace arrangement inCd such
that for−β outside of it, the binomialD-module splits as a direct sum of primary toral
binomialD-modules (Theorem 6.8).

For the duration of this section, fix anA-graded binomial idealI ⊆ C[∂1, . . . , ∂n] and fix
an irredundant primary decomposition as in Theorem 3.2. Thus, as in Lemma 3.4, some of
the quotientsC[∂]/Cρ,J are toral and some are Andean. Much of what we do is independent
of the particular primary decomposition, since the data we typically need come from the
quasidegrees of certain related modules. For example, the holonomicity in Theorem 6.3 is
clearly independent of the primary decomposition.

Definition 6.1. The Andean arrangementZAndean(I) is the union of the quasidegree sets
qdeg(C[∂]/Cρ,J ) for the Andean primary componentsCρ,J of I.

Lemma 6.2. The Andean arrangementZAndean(I) is a union of finitely many integer trans-
lates of the subspacesCAJ ⊆ Cn for which there is an Andean associated primeIρ,J .
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Proof. Apply Lemma 2.5 to an Andean filtration of each Andean component C[∂]/Cρ,J . �

Theorem 6.3.Given theA-graded binomial idealI ⊆ C[∂], the following are equivalent.

0. The vector space of local solutions toHA(I, β) has countable dimension.
1. The vector space of local solutions toHA(I, β) has finite dimension.
2. The binomialD-moduleD/HA(I, β) is holonomic.
3. The Euler-Koszul homologyHi(E − β; C[∂]/I) is holonomic for alli.
4. −β 6∈ ZAndean(I).

For I standardZ-graded, these are equivalent to regular holonomicity ofHi(E−β; C[∂]/I).
Moreover, the existence of a parameterβ for whichH0(E−β; C[∂]/I) is regular holonomic
implies thatI is Z-graded.

Proof. The last claim follows from the rest by Theorem 4.5 and results in [Hot91, SW08].
Item 1 trivially implies item 0. Item 2 implies item 1 becauseholonomic systems have
finite rank. Item 3 implies item 2 by Definition 1.3 and Example2.2. If −β ∈ ZAndean(I),
then−β ∈ qdeg(C[∂]/Cρ,J ) for some Andean componentCρ,J , so item 0 implies item 4
by Theorem 5.6 for the surjectionC[∂]/I ։ C[∂]/Cρ,J . Finally, item 4 implies item 3 by
Theorem 4.5 and Proposition 6.4, below, given thatC[∂]/

⋂

Iρ,J toralCρ,J is a submodule of
⊕

Iρ,J toral C[∂]/Cρ,J and is hence toral. �

Proposition 6.4. Let Itoral =
⋂

Iρ,J toralCρ,J be the intersection of the toral primary compo-
nents ofI. If −β lies outside of the Andean arrangement ofI, then the natural surjection
C[∂]/I ։ C[∂]/Itoral induces an isomorphism in Euler-Koszul homology:

Hi(E − β; C[∂]/I) ∼= Hi(E − β; C[∂]/Itoral) for all i when−β /∈ ZAndean(I).

Proof. If IAndean is the intersection of the Andean primary components ofI, then

Itoral

I
=

Itoral

Itoral ∩ IAndean

∼=
Itoral + IAndean

IAndean

is a submodule ofC[∂]/IAndean, which in turn is a submodule of
⊕

Iρ,J AndeanC[∂]/Cρ,J . Since
ZAndean(I) is the quasidegree set of this Andean direct sum, the exact sequence

0→
Itoral

I
→

C[∂]

I
→

C[∂]

Itoral
→ 0

yields isomorphismsHi(E−β; C[∂]/I) ∼= Hi(E−β; C[∂]/Itoral) of Euler-Koszul homology
for all i, by Lemma 5.4 forItoral/I. �

Now we move on to the question of whenD/HA(I, β) splits into a direct sum.

Definition 6.5. Theprimary cokernel modulePI is defined by the exact sequence

0→
C[∂]

I
→

⊕

Iρ,J∈Ass(I)

C[∂]

Cρ,J

→ PI → 0.

Theprimary arrangementisZprimary(I) = qdeg(PI) ∪ ZAndean(I).
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FIGURE 1. Primary arrangementZprimary(I) of the binomial idealI in Example 6.7

Proposition 6.6. The primary arrangementZprimary(I) is a union of finitely many integer
translates of subspacesCAJ ⊆ Cn. If there existsβ ∈ Cd such that the local solution space
ofHA(I, β) has finite dimension, thenZprimary(I) is a proper Zariski-closed subset ofCd.

Proof. The first sentence is by Lemma 2.5. For the second sentence, let (PI)toral be the image
in PI of the direct sum

⊕

toral C[∂]/Cρ,J . A point in qdeg(PI) that does not lie inZAndean(I)
must necessarily be a quasidegree of(PI)toral; that is

(6.1) Zprimary(I) = qdeg
(

(PI)toral

)

∪ ZAndean(I).

The existence of ourβ immediately implies thatZAndean(I) is a proper Zariski-closed subset
of Cn, so by (6.1) we need only prove the same thing forqdeg((PI)toral). The module(PI)toral

is supported on the union of the toric subvarietiesTρ,J = Spec(C[∂]/Iρ,J ) for the toral associ-
ated primes ofI; this much is by definition. However, the mapC[∂]/I →

⊕

Ass(I) C[∂]/Cρ,J

is an isomorphism locally at a pointx wheneverx lies in only one of the associated vari-
etiesTρ,J (toral or otherwise). Therefore(PI)toral is supported on the union of the pairwise
intersections of the toral toric varietiesTρ,J associated toI. Hence it is enough to show that if
R is the coordinate ring of the intersectionTρ,J∩Tρ′,J ′ of any two distinct toral varieties, then
qdeg(R) is a proper Zariski-closed subset ofCd. This is a consequence of Lemma 4.7.�

Example 6.7. In Examples 2.6, 3.1, and 3.5, the primary arrangementZprimary(I) consists
of the five bold lines in Figure 1. The diagonal line through−

[

1
1

]

is the Andean arrange-
mentZAndean(I) by Examples 2.6 and 3.1. On the other hand, the pairwise intersections of the
toral components ofI all equal〈bc, ad, b2, ac, c2, bd, b−e〉, which has primary decomposition

〈bc, ad, b2, ac, c2, bd, b− e〉 = 〈b2, c, d, b− e〉 ∩ 〈a, b, c2, b− e〉.

The set of true degrees ofPI that lie outside ofZAndean(I) coincides with the true degree set
tdeg(C[a, b, c, d, e]/〈bc, ad, b2, ac, c2, bd, b− e〉), which consists simply of theA-degrees of
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the monomials ina, b, c, andd that are nonzero in this quotient. The exponent vectors of
these monomials are those of the form









α
0
0
0









,









α
1
0
0









,









0
0
0
δ









, or









0
0
1
δ









for α ∈ N andδ ∈ N, sotdeg(PI) rZAndean(I) consists of the lattice points having the form
[

−α
0

]

,

[

−α − 1
−1

]

,

[

−δ
−3δ

]

, or

[

−δ − 1
−3δ − 2

]

,

keeping in mind that the degrees of the variables are the negatives of the columns ofA. These
true degrees are plotted as black dots in Figure 1. The pair ofhorizontal lines comes from
〈b2, c, d, b− e〉, while the pair of steep diagonal lines comes from〈b, c2, d, b− e〉.

Theorem 6.8.Assume that−β lies outside of the primary arrangementZprimary(I). Then

Hi(E − β; C[∂]/I) ∼=
⊕

Iρ,J toral

Hi(E − β; C[∂]/Cρ,J)

for all i, the sum being over all toral associated primes ofI from Theorem 3.2. In particular,

D/HA(I, β) ∼=
⊕

Iρ,J toral

D/HA(Cρ,J , β).

Proof. Assume that−β /∈ Zprimary(I). Resuming the notation from the proof of Propo-
sition 6.6, we have an exact sequence0 → (PI)toral → PI → PI/(PI)toral → 0. The
direct sum

⊕

AndeanC[∂]/Cρ,J over the Andean components ofI surjects ontoPI/(PI)toral.
Hence, by Lemma 5.4, we deduce thatHi(E − β;PI/(PI)toral) = 0 for all i. Consequently,
Hi(E − β;PI) ∼= Hi(E − β; (PI)toral) for all i. But the latter is zero for alli by Theorem 4.5
because−β /∈ qdeg(PI) ⊇ qdeg((PI)toral). Therefore, applying Euler-Koszul homology to
the exact sequence in Definition 6.5, and using Lemma 5.4 to note that this kills the Andean
summands, we have proved the first display. The second is simply the i = 0 case. �

Here is our final arrangement, outside of which the holonomicrank ofHA(I, β) is minimal.

Definition 6.9. Given anA-graded binomialI, thejump arrangementof I is the union

Zjump(I) = ZAndean(I) ∪

d−1
⋃

i=0

qdeg
(

H i
m
(C[∂]/Itoral)

)

of the Andean arrangement ofI with the quasidegrees of the local cohomology ofC[∂]/Itoral

in cohomological degrees at mostd− 1.

Once the holonomic rank of a binomialD-module is minimal, we can quantify it exactly.
Let µρ,J be multiplicity of Iρ,J in I (or equivalently, in the primary componentCρ,J of I).
Denote byvol(AJ) the volume of the convex hull ofAJ and the origin, normalized so that a
lattice simplex in the groupZAJ generated by the columns ofAJ has volume1.
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Theorem 6.10. If ZAndean(I) 6= Cd, thenHA(I, β) has minimal rank atβ if and only if−β
lies outside of the jump arrangementZjump(I), and this minimal rank is

rank
(

D/HA(I, β)
)

=
∑

Iρ,J toral of dim.d

µρ,J · vol(AJ).

Proof. Assume thatZAndean(I) 6= Cd, and denote byX the complement of−ZAndean(I)
in Cd. The global Euler-Koszul homologyH0(E− b; C[∂]/I) determines a sheaf onCd, and
hence a sheafF onX by restriction. We claim thatF is a holonomic family [MMW05, Def-
inition 2.1] overX. In fact, we claim thatF is the restriction toX of the family determined
byH0(E − b; C[∂]/Itoral), which is a holonomic family on all ofCd by Theorem 4.8. Our
claim is immediate from the sheaf (i.e., global Euler-Koszul) version Proposition 6.4, which
says that for alli, if β ∈ X thenHi(E − b; C[∂]/I) ∼= Hi(E − b; C[∂]/Itoral) in a neighbor-
hood ofβ. This follows by the same proof as Proposition 6.4 itself, given the global version
of Lemma 5.4. This global version, in turn, follows from the same proof as Lemma 5.4 itself
with βi replaced bybi for all i, the point being thatbi = (bi − βi) + βi is a unit locally inCd

nearβ, sincebi − βi lies in the maximal ideal atβ.

The statement about minimality of rank is now a consequence of Theorem 4.9 forV =
C[∂]/Itoral, noting that the rank is infinite forβ /∈ X by Theorem 6.3. To compute this min-
imal rank, we may assume thatβ is as generic as we like. In particular, we assume that−β
lies outside of the primary arrangement, and also (by Lemma 4.7) outside ofqdeg(C[∂]/Cρ,J )
for the components of dimension less thand. Using Theorem 6.8, we will be done once we
show thatHA(Cρ,J , β) has rankµρ,J · vol(AJ) for genericβ.

To do this, take a toral filtration ofC[∂]/Cρ,J . We are guaranteed that the number of suc-
cessive quotients of dimensiond is precisely the multiplicity ofIρ,J in Cρ,J , and that all of
the dimensiond successive quotients are actuallyZd-translates ofC[∂]/Iρ,J itself. There-
fore, choosingβ to miss the quasidegree sets of the other successive quotients, we find that
the rank ofHA(Cρ,J , β) equals the multiplicityµρ,J times the generic rank ofHA(Iρ,J , β) =
HAJ

(Iρ,J , β), which isvol(AJ) by [Ado94]. �

Remark 6.11. If I = I(B) is a lattice basis ideal (Example 3.3), then the sum in Theo-
rem 6.10 can be simplified by gathering the termsµρ,J ·vol(AJ) for which the domain ofρ is
a fixed toral saturated sublatticeL ⊆ ZJ . The single term that results isµ(L, J) · vol(AJ) =
|L/ZB∩ZJ | ·µρ,J ·vol(AJ), whereρ : L→ C∗ is any partial character that is trivial onZB.
Indeed, the number of choices forρ is |L/ZB ∩ ZJ |, and onceIρ,J is associated toI(B),
the same is true for any other choice ofρ; this is because rescaling the variables by a partial
character that is trivial onZB induces an automorphism of the polynomial ring fixing the
lattice basis idealI(B). For the same reason, the multiplicities of the various choices ofIρ,J

in I(B) are all equal. See Section 1.7 for the relevance of this simplification.

Remark 6.12. The arrangement that we should require−β to avoid forβ to be called truly
genericis the union of the jump arrangementZjump(I) and thetop arrangementZtop(I) =
qdeg

(
⊕

toral<d C[∂]/Cρ,J

)

, where the direct sum is over all toral components ofI with
dim(C[∂]/Iρ,J) ≤ d−1. For−β /∈ Zjump(I)∪Ztop(I), the moduleD/HA(I, β) has minimal
holonomic rank and decomposes as a direct sum over the dimension d toral components.



BINOMIAL D-MODULES 27

Corollary 6.13. If I is standardZ-graded without any Andean components, andC[∂]/I has
Krull dimensiond, then the generic rank ofHA(I, β) equals theZ-graded degree ofI. �

We close this section by illustrating a particular case of a Mellin system [Mel21, DS07]. Such
systems arise when showing that algebraic functions satisfy hypergeometric equations. The
goal of the example is to give an instance when the local solution space of the binomialD-
moduleD/HA(I, β) for some nonzero parameterβ fails to split as a direct sum of the local
solution spaces to binomialD-modules arising from components. Note thatβ = 0 always
lies in the primary arrangement: the residue fieldC = C[∂]/m is a quotient of every primary
componentC[∂]/Cρ,J because theA-grading is positive (i.e.,NA is a pointed semigroup).

Example 6.14.Let

A =

[

1 1 1 1
3 2 1 0

]

and B =









−2 −1
3 0
0 3
−1 −2









.

In this case we have

IZB = I(B) = 〈∂2
1∂4 − ∂

3
2 , ∂1∂

2
4 − ∂

3
3〉 ⊆ C[∂1, ∂2, ∂3, ∂4].

That is, the lattice basis idealI(B) coincides with the lattice idealIZB. The primary decom-
position ofIZB is obtained from that of the idealI in Examples 2.6 and 6.7 by omitting the
Andean component〈a, c, d〉 and erasing all occurrences ofb− e. Thus the primary arrange-
ment ofIZB consists of the four lines in Figure 1 corresponding to toralcomponents.

Let β = −
[

0
1

]

. The solutions of the systemHA

(

IZB,−
[

0
1

])

are as follows. Forx =
(x1, x2), let z1(t), z2(t) andz3(t) be the local roots in a neighborhood of(0, 0) of

z3 + x1z
2 + x2z + 1 = 0.

By [Stu00], a local basis of solutions of theA-hypergeometric systemHA

(

−
[

0
1

])

=

HA

(

IA,−
[

0
1

])

for the toric idealIA (1.3) is given by the three roots of the homogeneous
equation

x0z
3 + x1z

2 + x2z + x3 = 0,

and the solutions for the other two components are the roots of

x0z
3 + x1z

2 + ωx2z + x3 = 0 and x0z
3 + x1z

2 + ω2x2z + x3 = 0,

whereω is a primitive cube root of1. The systemHA

(

IZB,−
[

0
1

])

has nine algebraic solu-
tions coming from the rootsz = z(x0, x1, x2, x3) of the above equations.

This looks good: the quotientC[∂]/IZB is Cohen-Macaulay, soH0(E − β,C[∂]/IZB) has
holonomic rank that is constant as a function ofβ ∈ C2, by the rank minimality in Theo-
rem 6.10, and equal to9 becausevol(A) = 3.

However, the nine algebraic solutions mentioned above onlyspan a vector space of dimen-
sion7, not9. This means that there are two extra linearly independent local solutions, which
are non-algebraic; see [DS07, Example 4.2, Theorem 4.3, Example 4.4].
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The binomialD-module explanation for this collapsing from dimension9 to dimension7,
and the concomitant extra two logarithmic solutions, is that−β =

[

0
1

]

∈ Zprimary(IZB); again
see Figure 1. Let us be more precise. The exact sequence in Definition 6.5 reads

0→ C[∂]/IZB → R0 ⊕ R1 ⊕R2 → PIZB
→ 0,

whereRi = C[∂1, ∂2, ∂3, ∂4]/〈ω
i∂2∂3 − ∂1∂4, ∂

2
2 − ω

i∂1∂3, ω
2i∂2

3 − ∂2∂4〉. The surjection to
PIZB

factors through the projectionR0 ⊕R1 ⊕R2 → R⊕R⊕R, whereR is the monomial
quotientC[∂]/〈∂2∂3, ∂1∂4, ∂

2
2 , ∂1∂3, ∂

2
3 , ∂2∂4〉, the coordinate ring of the intersection scheme

of any pair of irreducible components of the variety ofIZB. The image ofC[∂]/IZB in this
projection is the diagonal copy ofR, soPIZB

is a direct sumR⊕R of two copies ofR.

On the other hand, each of the ringsRi is also Cohen-Macaulay, so the only nonvanishing
Euler-Koszul homology ofR0 ⊕ R1 ⊕ R2 is the zeroth. Thus we have an exact sequence

0→H1(E − β;PIZB
)→ D/HA(IZB, β)→

2
⊕

i=0

H0(E − β;Ri)→ H0(E − β;PIZB
)→ 0.

In general, for−β lying on precisely one of the four lines inZprimary(IZB) = qdeg(PIZB
), the

leftmost and rightmostD-modules here have rank precisely2, and this is the2 that causes
the dimension collapse and the pair of logarithmic solutions to appear.

Given our choice of parameterβ = −
[

0
1

]

, for instance, theH1 and theH0 in question
are isomorphic to one another, since both are isomorphic to adirect sum of two copies
of H0(E −

(

−
[

0
1

])

; ∂3C[∂]/〈∂1, ∂2, ∂3〉), where the∂3 in front of C[∂] means to take an
appropriateA-graded translate (namely bydeg(∂2) = −

[

1
1

]

); this corresponds to the upper
of the two steep diagonal lines in Figure 1.

7. LOCAL SOLUTIONS OFHORN D-MODULES

We now return to the Horn hypergeometricD-modules—that is, binomialD-modules arising
from lattice basis ideals—that motivated this work. Theorem 7.13, the main result of this
section, provides a combinatorial formula for the generic rank of a binomial Horn system
by explicitly describing a basis for its local solution space. The basis we construct involves
GKZ hypergeometric functions.

Throughout this section, letB andA be integer matrices as in Convention 1.4. Since we
have an explicit description for the components of a latticebasis idealI(B) at toral minimal
primes, namely Example 3.7, we make use of it to compute—justas explicitly—the local
solutions for genericβ ∈ Cd of the corresponding hypergeometric system.

Convention 7.1. Suppose that after permuting the rows and columns ofB, there results a
decomposition ofB as in (3.1), whereM is aq × p matrix of full rankq. Write J = J(M)
for theq rows occupied byM inside ofB (before permuting), and letJ = {1, . . . , n}rJ be
the rows occupied byBJ . Split the variablesx1, . . . , xn and∂1, . . . , ∂n into two blocks each:

xJ = {xj : j ∈ J} and xJ = {xj : j /∈ J}.

∂J = {∂j : j ∈ J} and ∂J = {∂j : j /∈ J}.

As before,AJ is the submatrix ofA with columns{aj : j ∈ J}.



BINOMIAL D-MODULES 29

With the notation above, fix for the remainder of this articlea toral primeIρ,J of I(B). Since
I(B) is generated bym = n− d elements,Iρ,J has dimension at leastd. On the other hand,
toral primes can have dimension at mostd, by Lemma 4.7. Thus we have the following.

Lemma 7.2. All toral primes of the lattice basis idealI(B) have dimension exactlyd and
are minimal primes ofI(B). �

Observation 7.3. Since the dimension ofIρ,J equalsn − p− (m − q) = d + q − p, if Iρ,J

is toral, then the previous lemma implies thatq = p. Thus, from now on, the matrixM is a
q × q mixed invertible matrix (andq is allowed to be0).

Recall from Example 3.7 that for a toral minimal primeIρ,J , the component can be written as
Cρ,J = I(B)+Iρ +UM , whereUM ⊆ C[∂J ] is the idealC-linearly spanned by all monomials
with exponent vectors in the union of the unboundedM-subgraphs ofNJ (Definition 3.6).

In order to construct local solutions ofHA(Cρ,J , β) we need two ingredients: local solutions
of a GKZ-type systemHAJ

(Iρ, β
′) and polynomial solutions of the constant coefficient sys-

tem I(M) = 〈∂u − ∂v : u − v is a column ofM, u, v ∈ Nn〉. As it turns out, solving the
differential equationsI(M) is equivalent to finding theM-subgraphs ofNJ .

Lemma 7.4. LetM be aq × q mixed invertible integer matrix, and assume thatq > 0. Fix
γ ∈ NJ , and denote byΓ theM-subgraph containingγ.

1. The systemI(M) of differential equations has a unique formal power series solution
of the formGγ =

∑

u∈Γ λux
u in whichλγ = 1.

2. The other coefficientsλu ofGγ for u ∈ Γ are all nonzero.

This lemma will be proved together with Proposition 7.6.

Notation 7.5. Given aq×q mixed invertible matrixM , we fix a setS(M) ⊂ NJ of represen-
tatives for the boundedM-sugraphs ofNJ . In particular, the cardinality ofS(M) equals the
number of boundedM-subgraphs, which we denote byµM . If q = 0, we setS(M) = {∅}
and declareµM to be1.

Proposition 7.6. With the notation from Lemma 7.4 and Notation 7.5,

1. The set{Gγ : γ runs over a set of representatives for theM-subgraphs ofNJ} is a
basis for the space of all formal power series solutions ofI(M).

2. The set{Gγ : γ ∈ S(M)} is a basis for the space of polynomial solutions ofI(M).

Proof of Lemma 7.4 and Proposition 7.6.We begin with the first statement from Lemma 7.4.
If Γ = {γ} thenGγ = xγ . We check that this is a solution ofI(M) working by contradiction.
Letw be a column ofM such that∂w+xγ 6= ∂w−xγ . Then one of these terms is nonzero, say
∂w+xγ, so thatγ − w+ ∈ NJ . But thenγ − w+ + w− = γ − w ∈ NJ , and soγ − w ∈ Γ, a
contradiction, becauseγ − w 6= γ andΓ is a singleton.

Now assume thatΓ is not a singleton, and fixu ∈ Γ such thatu−γ = w is a column ofM . We
want to define the coefficients ofGγ, and we will start withλu. Sinceu−γ = w = w+−w−,
we haveu−w+ = γ−w− ∈ NJ , sinceu andγ both lie inNJ and the supports ofw+ andw−
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are disjoint. Setλu = ∂w−(xγ)/∂w+(xu), and observe that numerator and denominator are
nonzeroconstant multiples ofxu−w+ = xγ−w−. Use this procedure to define the coefficients
corresponding to the neighbors ofγ. Now, if we knowλu and we are given a neighboru′ ∈ Γ
of u, sayu′ − u = w, then setλu′ = ∂w−(xu)/λu∂

w+(xu′

). Propagating this procedure
alongΓ we obtain all of the coefficientsλu. The formal power seriesGγ defined this way is
tailor-made to be a solution ofI(M).

SinceM-subgraphs are disjoint, it is clear that the seriesGγ are linearly independent. Now
letG =

∑

u∈NJ νux
u be a formal power series solution ofI(M). We claim thatG − νγGγ

has coefficient zero on all monomials fromΓ. This follows from the fact thatG− νγGγ has
coefficient zero on the monomialxγ ; indeed, if the difference contained a monomial fromΓ,
it would have to containxγ with a nonzero coefficient, as can be seen by the propagation
argument from before. (The uniqueness ofGγ that we need for Lemma 7.4 also follows from
this argument.) It is now clear that our candidate power series solution basis is a spanning
set, and the statement for polynomial solutions has the sameproof. �

Remark 7.7. The systemI(M) is itself a binomial Horn system; there are no Euler oper-
ators becauseM is invertible. We stress that it is a very special feature of hypergeometric
differential equations that their irreducible (Puiseux) series solutions are determined (up to
a constant multiple) by their supports. In general, this is far from being the case for systems
of differential equations that are not hypergeometric.

We can use this correspondence betweenM-subgraphs and solutions ofI(M) to compute
examples.

Example 7.8.Consider the3× 3 matrix

M =





1 −5 0
−1 1 −1

0 3 1





A basis of solutions (with irreducible supports) ofI(M) is easily computed:
{

1, x+ y + z, (x+ y + z)2, (x+ y + z)3,
∑

n≥4

(x+ y + z)n

n!

}

.

TheM-subgraphs ofN3 are the four slices{(a, b, c) ∈ N3 : a + b + c = n} for n ≤ 3;
for n ≥ 4, two consecutive slices areM-connected by(−5, 1, 3), yielding one unbounded
M-subgraph.

The following definition will allow us to determine a set of parametersβ for which the
systemHA(Cρ,J , β) has the explicit basis of solutions that we construct for Theorem 7.13.

Definition 7.9. A facetof AJ is a subset of its columns that is maximal among those mini-
mizing nonzero linear functionals onZd. For a facetσ of AJ let νσ be itsprimitive support
function, the unique rational linear form satisfying

(1) νσ(ZAJ ) = Z,
(2) νσ(aj) ≥ 0 for all j ∈ J ,
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FIGURE 2. TheM-subgraphs ofN3

(3) νσ(aj) = 0 for all aj ∈ σ.

A parameter vectorβ ∈ Cd isAJ -nonresonantif νσ(β) /∈ Z for all facetsσ of AJ . Note that
if β isAJ -nonresonant, then so isβ + AJ(γ) for anyγ ∈ ZJ .

The reason nonresonant parameters are convenient to work with is the following.

Lemma 7.10. If β is AJ -nonresonant, then for anyγ ∈ NJ , and for all torus translates
Iρ of the toric idealIAJ

, right multiplication by∂γ
J induces aDJ -module isomorphism

DJ/HAJ
(Iρ, β)→ DJ/HAJ

(Iρ, β + AJ(γ)), whose left inverse we denote by∂−γ
J .

Proof. For R = C[∂J ]/Iρ there is an exact sequence0 → R
∂γ

J−→ R → R/∂γ
JR → 0.

Since the multiplication by∂γ
J occurs in the right-hand factor ofDJ ⊗C[∂J ] R, the map on

Euler-Koszul homology overDJ induced by∂γ
J corresponds to right multiplication. But

R/∂γ
JR is toral by Lemma 4.3, and its set of quasidegrees is the Zariski closure of{−AJϑ :

ϑ ∈ NJ , ϑi < γi for somei ∈ J}, which is a finite subspace arrangement contained in the
resonant parameters. Now apply Lemma 2.3 and Theorem 4.5 to complete the proof. �

The following definition characterizes parameter vectors with particularly nice behavior
when it comes to isomorphisms betweenHA(I, β) for varyingβ.

Definition 7.11. A parameter vectorβ ∈ Cd is calledvery genericif β − AJ(γ) is AJ -
nonresonant for everyγ ∈ S(M).

Remark 7.12. Denote bySol(Iρ, β) the space of local holomorphic solutions ofHAJ
(Iρ, β)

near a nonsingular point. Givenα ∈ NJ , theD-module isomorphism in Lemma 7.10 induces
a vector space isomorphism

Sol(Iρ, β)←− Sol(Iρ, β + AJα)
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given by differentiation by∂α
J . If we denote the inverse of this map by∂−α

J , a number of
questions arise: for instance, given a local solutionf ∈ Sol(Iρ, β) whereβ is very generic,
and taking for instanceJ = {1, 2},

• is ∂−(1,0)
{1,2}

(

∂
−(0,1)
{1,2} f

)

equal to∂−(1,1)
{1,2} f?

• is ∂(1,1)
{1,2}

(

∂
−(2,2)
{1,2} f

)

equal to∂−(1,1)
{1,2} f?

Both questions have positive answers; their verification isbased on the fact that the left and
right inverses of a vector space isomorphism are the same. Weconclude that∂−α

J f is well-
defined for anyf ∈ Sol(Iρ, β+AJα), if β is very generic andα is an arbitrary integer vector.

At the level ofD-modules, however,∂−α
J for γ ∈ ZJ is not necessarily well-defined, because

the right and the left inverses of aD-isomorphism need not coincide.

We resume Notation 7.5. Ifq = 0, then setG∅ = 1. If q > 0 andγ ∈ S(M), then rewrite
the polynomialGγ from Lemma 7.4 as follows:

Gγ = xγ

J

∑

γ+Mv∈Γ

cvx
Mv
J
.

By Proposition 7.6,{Gγ : γ ∈ S(M)} is a basis for the polynomial solution space ofI(M).

Given a local solutionf = f(xJ) of the systemHAJ
(Iρ, β − AJ(γ)) for someγ ∈ S(M),

define

(7.1) Fγ,f = xγ

J

∑

γ+Mv∈Γ

cvx
Mv
J
∂−Nv

J (f),

where∂−Nv
J f is as in Remark 7.12. Note that ifq = 0, we haveF∅,f = f .

The condition of being very generic is open and dense in the standard topology ofCd, so
that the rank ofHA(Cρ,J , β) for such parameters equals the generic rank of this binomial
D-module, in the sense of Theorem 6.10.

Theorem 7.13.Let Cρ,J be a toral component ofI(B) and letβ ∈ Cd be a very generic
parameter vector. Givenγ ∈ S(M), fix a basisBγ of local solutions ofHAJ

(Iρ, β−AJ(γ)).
TheµM · vol(AJ) functions{Fγ,f : γ ∈ S(M), f ∈ Bγ} form a local basis for the solution
space of the binomialD-moduleD/HA(Cρ,J , β).

Before proving Theorem 7.13, let us see the construction (7.1) in some explicit examples.

Example 7.14.Consider the matrices

A =

[

1 1 1 1 1
5 10 0 7 6

]

and B =













0 −1 2
−1 0 −1

0 1 −1
4 5 0
−3 −5 0













.
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We concentrate on the decomposition

M =

[

4 5
−3 −5

]

; N =





0 −1
−1 0

0 1



 ; BJ =





2
−1
−1



 .

Note thatZBJ is saturated, so there is only one associated prime coming from this decom-
position, namelyI[ 1 1 1

5 10 0 ] + 〈∂4, ∂5〉, and this is toral sincedet(M) 6= 0.

The polynomialϕ = 5x4
4x

2
5 + 2x5

4 + 2x5
5 + 40x4x

3
5 is a solution of the constant coefficient

systemI(M). Let f be a local solution of the[ 1 1 1
5 10 0 ]-hypergeometric system that is homo-

geneous of degreeβ − [ 6
40 ]. It can be verified that the following function is a solution of

H(B, β):
5x4

4x
2
5f + 2x5

4∂
1
1∂

−1
2 ∂−1

3 f + 2x5
5∂

−1
2 f + 40x4x

3
5∂1∂

−2
2 ∂−1

3 f.

In this example, the new solution we constructed has1-dimensional support.

Example 7.15.Our procedure for constructing solutions works even whenM is anm ×m
matrix, i.e.,M is a maximal square submatrix ofB. For instance, consider

A =

[

1 1 1 1
1 0 3 2

]

and B =









2 −3
−1 2

0 1
−1 0









.

We concentrate on the component

M =

[

2 −3
−1 2

]

; N =

[

0 1
−1 0

]

; BJ = ∅.

Again, we only have one (toral) component, associated to〈∂1, ∂2〉. Letp = x2
1+2x2. This is a

solution ofI(M) = 〈∂2
1 − ∂2, ∂

3
1 − ∂

2
2〉. SinceBJ is empty, we need only consider solutions

of the homogeneity equations that are functions ofx3 andx4. Sincedet(M) = 1 6= 0,
the complementary minor ofA is also nonzero, and therefore there exists a unique monic
monomial inx3 andx4 of each degree. To make a solution ofI + 〈E−β〉, letxw3

3 xw4

4 be the
unique monic solution of the homogeneity equations with parameterβ −

[

1
0

]

. Then

w4x
2
1x

w3

3 xw4−1
4 + 2x2x

w3

3 xw4

4 = xw3

3 xw4−1
4 (w4x

2
1 + 2x2)

is the desired solution ofH(B, β).

Proof of Theorem 7.13.First note that ifq = 0, all of the statements hold by construction.
Therefore we assume thatq ≥ 2.

It is clear that all of the binomial generators ofIρ annihilateFγ,f . It is also easy to check
thatFγ,f satisfies the desired homogeneity equations. Let then(ν, δ) ∈ ZJ × ZJ be one of
theq columns ofB involvingN andM ; i.e.,(ν, δ) =

[

N
M

]

ek for somek ∈ J . To prove that

(∂
ν+

J ∂
δ+
J
− ∂

ν−
J ∂

δ−
J

)(Fγ,f) = 0, notice that(∂δ+
J
− ∂

δ−
J

)(Gγ) = 0, which implies that for all

v with cv 6= 0, either∂δ+
J

(xγ+Mv) = 0 or there exists another integer vectorw with cw 6= 0
such that

∂
δ+

J
(cvx

γ+Mv)

J
) = ∂

δ−

J
(cwx

γ+Mw

J
).
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In the first case,∂ν+

J ∂
δ+
J

(

cvx
γ+Mv

J
∂

N(−v)
J (f)

)

= 0. In the second case, since the monomials

on the left and right-hand sides of the above equation must have the same exponent vector,
we see thatδ = M(v−w) = M · ek. ButM is invertible by assumption, so thatv−w = ek.
This implies thatν = Nek = N(v − w).

Consequently,∂N(−v)+ν+

J (f) = ∂
N(−w)+ν−
J (f), and thus

∂
δ+
J
∂

ν+

J

(

cvx
γ+Mv

J
∂

N(−v)
J (f)

)

= ∂
δ−
J
∂

ν−
J

(

cwx
γ+Mw

J
∂

N(−w)
J (f)

)

.

Moreover, it is clear that theFγ,f are linearly independent.

Now we need to show that these functions span the local solution space ofHA(Cρ,J , β). Let
F = F (x1, . . . , xn) be a local solution ofHA(Cρ,J , β). Here we use the explicit description
of Cρ,J from Example 3.7. Since the monomials inUM annihilateF , we can write

F =
∑

γ∈S(M)

∑

α∈Γ

xα
J
hα(xJ ),

where the sum runs over the union of the boundedM-subgraphs, that is, the sum runs over
all α such that∂α

J does not belong toUM .

The functionshα are solutions ofHA(Iρ, β −AJ(α)), as is easy to check. Note thathα may
be zero.

Now it is time to use the equationsI(B). First, observe that we may assume that thexJ -
monomials inF belong to a singleM-subgraph ofNJ . This is because the only equations
relating different summands fromF are those fromI(B), which will relate a summand
xα

J
hα(xJ) to a different summandxα′

J
hα′(xJ ) exactly whenα − α′ or α′ − α is a column

of M , thus staying within anM-subgraph.

So fix a boundedM-subgraphΓ corresponding to aγ ∈ S(M), and write

F =
∑

α∈Γ

xα
J
hα(xJ).

Fix α ∈ Γ such thathα 6= 0, recall thatGγ is a polynomial solution ofI(M) whose support is
Γ, and letc be the (nonzero) coefficient ofxα

J
in Gγ. We want to show thatF = (1/c)Fγ,hα.

Since we know thatF − (1/c)Fγ,hα has support contained inΓ and has no summand with
xα, the desired equality will be a consequence of the following.

Claim. With the notation above, ifhα = 0 thenF = 0.

Proof of the Claim.If Γ is a singleton, we are done. Otherwise pickα′ ∈ Γ such thatα′ − α
orα−α′ is a column ofM , sayα−α′ = Mek. The binomial from the corresponding column
of B is ∂

Nek+

J ∂
Mek+

J
− ∂

Nek−

J ∂
Mek−

J
. Since this binomial annihilatesF , andα− (Mek)+ =

α′ − (Mek)−, we have

∂
(Mek)+

J
xα

J
∂

(Nek)+
J hα = ∂

(Mek)−
J xα′

J
∂(Nek)−hα′ ,

so that, ashα = 0,

∂
(Mek)−

J
xα′

J
∂

(Nek)−
J hα′ = 0.
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Now, the first derivative in the previous expression is nonzero, so∂(Nek)−
J hα′ = 0. But then

hα′ = 0, since differentiation in any of thexJ variables is an isomorphism (which is why we
need our parameter to be very generic).

Propagate the previous argument alongΓ to finish the proof of the claim, and with it the
proof of the theorem. �

Remark 7.16. WhenCρ,J is Andean (andβ is generic), the above procedure produces no
nonzero solutions, as expected, since in this case,D/HA(Cρ,J , β) = 0 for genericβ. The
reason that the construction breaks in this situation is that there are no nonzero solutions for
the “toric” part.

Corollary 7.17. Fix B as in Convention 1.4. If there exists a parameterβ for which the
binomial Horn systemH(B, β) has finite rank, then for generic parametersβ, this rank is

rank(H(B, β)) =
∑

Cρ,J toral

µM · vol(AJ) =
∑

B =
“

N BJ

M 0

”

µM · g(BJ) · vol(AJ),

the former sum being over all toral componentsCρ,J of the lattice basis idealI(B), and the
latter sum being over all decompositions ofB as in (3.1) withM invertible. Here,g(BJ) is
the cardinality ofsat(ZBJ )/ZBJ , andµM is the number of boundedM-subgraphs ofNJ .

Proof. The first equality is a direct consequence of Theorem 7.13 andTheorem 6.8. Com-
paring with Theorem 6.10 yields the fact thatµM equals the multiplicityµρ,J of Iρ,J as an
associated prime ofI(B). For the second equality, the number of components arising from
a decomposition (3.1) isg(BJ) [ES96, Corollary 2.5]. �

Remark 7.18.The only sense in which our rank formula for Horn systems is not completely
explicit is that it lacks an expression for the numberµM of boundedM-subgraphs. In the
case thatI(M) (or I(B)) is a complete intersection, Cattani and Dickenstein [CD07] can be
applied to provide an explicit recursive formula forµM = µρ,J . The general case—even just
the toral case—of this computation is an open problem.

Example 7.19.The existence clause forβ in Corollary 7.17 is essential: there exist matri-
cesB for which holonomicity of the Horn systemH(B, β) fails for all parametersβ. Let

A =

[

−3 −1 2 1 0
−1 0 1 1 1

]

and B =













1 1 1
−1 −2 −3

1 0 0
0 1 0
0 0 1













.

Then〈∂1, ∂2〉 is an Andean prime ofI(B). The quasidegree set of the corresponding com-
ponent isC · [ 2 1 0

1 1 1 ] = C2, which means that the Andean arrangement ofI(B) equalsC2,
and thusH(B, β) is non-holonomic for all parametersβ.

A sufficient condition to guarantee holonomicity ofH(B, β) for generic parameters is to
require thatI(B) be a complete intersection. This is automatic form = 2, so the following
result is a direct generalization of [DMS05, Theorem 8.1].
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Proposition 7.20.If I(B) is a complete intersection, then the binomial Horn systemH(B, β)
is holonomic for generic parametersβ.

Proof. If I(B) is a complete intersection, its associated primes all have dimensiond. In
combinatorial terms, we encounter only square matricesM in the primary decomposition
of I(B). The component associated to a decomposition (3.1) is Andean exactly when
det(M) = 0, and in this case, the corresponding quasidegree set isCAJ ( Cd, asAJ

does not have full rank. We conclude that the Andean arrangement ofI(B) is strictly con-
tained inCd. �

WhenI(B) is standardZ-graded and has no Andean components, we can obtain a cleaner
rank formula, by noting that the sum in Corollary 7.17 equalsthe degree ofI(B). This is a
generalization of a result in [Sad02].

Corollary 7.21. Assume thatI(B) is standardZ-graded and has no Andean components.
Letd1, . . . , dm be the degrees of the generators ofI(B). Then

rank(H(B, β)) = d1 · · ·dm for all β ∈ Cd.

Proof. SinceI(B) has no Andean components,C[∂]/I(B) is toral. Moreover,C[∂]/I(B) is
Cohen-Macaulay, asI(B) is a complete intersection by Lemma 7.2. Theorem 4.9 implies
that the holonomic rank ofH(B, β) is constant. Now apply Corollary 6.13. �

In the standardZ-graded case, binomialD-modules are regular holonomic. The method of
canonical series solutions [SST00] then produces expansions for their solutions into power
series with logarithms. This method applies to any regular holonomicD-ideal, not just
those of the formHA(I, β) for Z-gradedI. However, in the binomialD-module case, for
very generic parameters thesupportsof the series solutions (i.e., the sets of exponents of
the monomials appearing with nonzero coefficients in the series) can be very explicitly de-
scribed, owing to the fact that such combinatorial descriptions exist for GKZ functions (see
[GKZ89] or [SST00]).

Definition 7.22. LetL ⊆ Zn be a rankm lattice andα ∈ Cn. A formal seriesxα
∑

u∈L cux
u

is fully supportedon α + L if there exists anm-dimensional polyhedral coneC ⊆ Rn,
a vectorλ ∈ L, and a sublatticeL′ ⊆ L of full rank m such that every termcuxα+u for
u ∈ (λ+ C) ∩ L′ has nonzero coefficientcu.

In our case, the latticeL comes from a toral componentCρ,J of a Z-graded lattice basis
idealI(B) corresponding to a decomposition (3.1), and sublatticesL′ are necessary because
L is often the saturation of some other given lattice (such asZB). Recall thatρ : L→ C∗ is
a partial character, where the latticeL ⊆ ZJ ⊆ Zn is the saturation of the integer span of the
columns ofBJ in the notation from (3.1); equivalently,L = kerZ(AJ) by Lemma 3.4.

Corollary 7.23. Fix γ ∈ S(M) as in Notation 7.5, and letΛ ⊆ Nn be aB-subgraph whose
projection to theJ coordinates is the boundedM-subgraph containingγ. If β ∈ Cd is very
generic, then there exists a vectorα ∈ CJ ⊆ Cn, unique moduloL, such thatA(α+Λ) = β.
Thevol(AJ) functions{Fγ,f : f ∈ Bγ} from Theorem 7.13 are fully supported onα+Λ+L.



BINOMIAL D-MODULES 37

Proof. First note thatAΛ is a well defined point inZd, as two elements ofΛ differ by an
element ofZB ⊆ kerZ(A). It follows thatΛ + L = λ+ L for anyλ ∈ Λ, so it makes sense
to be fully supported onα + Λ + L. On the other hand, the linear systemAα = −AΛ + β
has a unique solution modulo (the complex span of)L sinceAJ has full rank; recall that
we are working with a toral component. Now the statement about the supports follows from
Theorem 7.13, since elements ofBγ are expressible as series onα + Λ + L that are fully
supported—either as Gamma series à la [GKZ89] or as canonical series à la [SST00]. �

Remark 7.24. We saw in the Introduction that a solution ofHA(β) (or any of the binomial
D-modules arising from a torus translate ofIA) is essentially a function inm = n − d
variables. In fact, for genericβ, if we choose canonical series expansions as in [SST00],
then their supports are translates cones of dimensionm. This implies that the support of the
series (7.1) has dimensionm−q, since the dimension of the support equals that of any series
expansion off . In fact, this support might not be the set of lattice points in a cone, but in
a polyhedron whose recession cone has the correct dimension. Nonetheless, the only fully
supported solutions ofHA(I(B), β) = H(B, β) arise fromHA(IZB, β). Interestingly, there
can be no solutions with support of dimensionm− 1, because a matrix withq = 1 row is
never mixed. This explains why Erdélyi only found Puiseux polynomial solutions (such as
in Examples 1.9, 1.19, 1.20, and 1.21), as opposed to solutions supported along a line.

Remark 7.25. The ideas above can be used to provide an analogous combinatorial descrip-
tion for the supports of certain solutions ofHA(I, β) whenI is a generalZ-graded bino-
mial ideal. The key observation is that ifCρ,J is a toral primary ideal, and the parameter
β ∈ Cd is very generic insideqdeg(C[∂]/Cρ,J ), then the solutions ofHA(Cρ,J , β) are sup-
ported on translates of theL-bounded components, whereL ⊆ ZJ is the underlying lattice
of ρ. WhenCρ,J is a primary component ofI, this allows us to assert a lower bound on the
number of series solutions ofHA(I, β) with the desired support. Care must be taken because
qdeg(C[∂]/Cρ,J ) could be partially or entirely contained in the jump arrangement (Defini-
tion 6.9), orIρ,J could be an embedded prime, in which case the rank atβ need not equal a
sum of multiplicities times volumes.
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[Erd50] Arthur Erdélyi,Hypergeometric functions of two variables, Acta Math.83 (1950), 131–164.
[ES96] David Eisenbud and Bernd Sturmfels,Binomial ideals, Duke Math. J.84 (1996), no. 1, 1–45.
[FS96] Klaus G. Fischer and Jay Shapiro,Mixed matrices and binomial ideals, J. Pure Appl. Algebra113

(1996), no. 1, 39–54.
[Ful93] William Fulton,Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton

University Press, Princeton, NJ, 1993.
[GGR92] I. M. Gel′fand, M. I. Graev, and V. S. Retakh,General hypergeometric systems of equations and

series of hypergeometric type, Uspekhi Mat. Nauk47 (1992), no. 4(286), 3–82, 235.
[GGZ87] I. M. Gel′fand, M. I. Graev, and A. V. Zelevinskiı̆,Holonomic systems of equations and series of

hypergeometric type, Dokl. Akad. Nauk SSSR295(1987), no. 1, 14–19.
[GKZ89] I. M. Gel′fand, A. V. Zelevinskiı̆, and M. M. Kapranov,Hypergeometric functions and toric va-

rieties, Funktsional. Anal. i Prilozhen.23 (1989), no. 2, 12–26. Correction in ibid,27 (1993),
no. 4, 91.

[GKZ94] I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky,Discriminants, resultants and multidimen-
sional determinants, Mathematics: Theory & Applications, Brikhäuser Boston Inc., Boston, MA,
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[HS00] Serkan Hoşten and Jay Shapiro,Primary decomposition of lattice basis ideals, J. Symbolic Com-

put.29(2000), no. 4-5, 625–639, Symbolic computation in algebra,analysis, and geometry (Berke-
ley, CA, 1998).
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