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Abstract An explicit lattice point realization is provided for the primary components of
an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a char-
acteristic-free combinatorial description of certain primary components of binomial ideals
in affine semigroup rings, namely those that are associated to faces of the semigroup. These
results are intimately connected to hypergeometric differential equations in several variables.
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1 Introduction

A binomial is a polynomial with at most two terms; a binomial ideal is an ideal generated
by binomials. Binomial ideals abound as the defining ideals of classical algebraic varieties,
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746 A. Dickenstein et al.

particularly because equivariantly embedded affine or projective toric varieties correspond
to prime binomial ideals.

In fact, the zero set of any binomial ideal is a union of (translated) toric varieties. Thus,
binomial ideals are “easy” in geometric terms, and one may hope that their algebra is simple
as well. This is indeed the case: the associated primes of a binomial ideal are essentially toric
ideals, and their corresponding primary components can be chosen binomial as well. These
results, due to Eisenbud and Sturmfels [5], are concrete when it comes to specifying associ-
ated primes, but less so when it comes to primary components themselves, in part because
of difficulty in identifying the monomials therein.

The main goal of this article is to provide explicit lattice-point combinatorial realizations
of the primary components of an arbitrary binomial ideal in a polynomial ring over an alge-
braically closed field of characteristic zero; this is achieved in Theorems 3.2 and 4.13. These
are proved by way of our other core result, Theorem 2.15, which combinatorially charac-
terizes, in the setting of an affine semigroup ring over an arbitrary field (not required to
be algebraically closed or of characteristic zero), primary binomial ideals whose associated
prime comes from a face of the semigroup.

The hypotheses on the field k are forced upon us, when they occur. Consider the univar-
iate case: in the polynomial ring k[x], primary decomposition is equivalent to factorization
of polynomials. Factorization into binomials in this setting is the fundamental theorem of
algebra, which requires k to be algebraically closed. On the other hand, k must have char-
acteristic zero because of the slightly different behavior of binomial primary decomposition
in positive characteristic [5]: in characteristic zero, every primary binomial ideal contains all
of the non-monomial (i.e., two-term binomial) generators of its associated prime, but this is
false in positive characteristic.

The motivation and inspiration for this work came from the theory of hypergeomet-
ric differential equations, and the results here are used heavily in the companion article
[3] (see Sect. 5 for an overview of these applications). In fact, these two projects began
with a conjectural expression for the non fully supported solutions of a Horn hypergeo-
metric system; its proof reduced quickly to the statement of Corollary 4.14, which directed
all of the developments here. Our consequent use of M-subgraphs (Definition 2.6), and
more generally the application of commutative monoid congruences toward the primary
decomposition of binomial ideals, serves as an advertisement for hypergeometric intuition
as inspiration for developments of independent interest in combinatorics and commutative
algebra.

The explicit lattice-point binomial primary decompositions in Sects. 3 and 4 have potential
applications beyond hypergeometric systems. Consider the special case of monomial ideals:
certain constructions at the interface between commutative algebra and algebraic geometry,
such as integral closure and multiplier ideals, admit concrete convex polyhedral descriptions.
The path is now open to attempt analogous constructions for binomial ideals.

1.1 Overview of results

The central combinatorial idea behind binomial primary decomposition is elementary and
concrete, so we describe it geometrically here. The notation below is meant to be intuitive,
but in any case it coincides with the notation formally defined later.

Fix an arbitrary binomial ideal I in a polynomial ring, or more generally in any affine
semigroup ring k[Q]. Then I determines an equivalence relation (congruence) on k[Q] in
which two elements u, v ∈ Q are congruent, written u ∼ v, if tu − λtv ∈ I for some λ �= 0.
If one makes a graph with vertex set Q by drawing an edge from u to v when u ∼ v, then
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the congruence classes of ∼ are the connected components of this graph. For example, for
an integer matrix A with n columns, the toric ideal

IA = 〈tu − tv | u, v ∈ N
n and Au = Av〉 ⊆ C[t1, . . . , tn] = C[t] = C[Nn]

determines the congruence in which the class of u ∈ N
n consists of the set (u +ker(A))∩N

n

of lattice points in the polyhedron {α ∈ R
n | Aα = Au and α ≥ 0}.

The set of congruence classes for IA can be thought of as a periodically spaced archipelago
whose islands have roughly similar shape (but steadily grow in size as the class moves interior
to N

n). With this picture in mind, the congruence classes for any binomial ideal I come in
a finite family of such archipelagos, but instead of each island coming with a shape predict-
able from its archipelago, its boundary becomes fragmented into a number of surrounding
skerries. The extent to which a binomial ideal deviates from primality is measured by which
bridges must be built—and in which directions—to join the islands to their skerries.

When Q = N
n is an orthant as in the previous example, each prime binomial ideal in

C[Q] = C[Nn] equals the sum p + mJ of a prime binomial ideal p containing no monomials
and a prime monomial ideal mJ generated by the variables whose indices lie outside of a
subset J ⊆ {1, . . . , n}. The ideal p is a toric ideal after rescaling the variables, so its congru-
ence classes are parallel to a sublattice L = Lp ⊆ Z

J ; in the notation above, L = ker(A).
Now suppose that p + mJ is associated to our binomial ideal I . Joining the aforementioned
skerries to their islands is accomplished by considering congruences defined by I + p: a
bridge is built from u to v whenever u − v ∈ L .

To be more accurate, just as I +p determines a congruence on N
n , it determines one—after

inverting the variables outside of mJ —on Z
J × N

J , where Z
J = span

Z
{e j | j ∈ J }, and

N
J is defined analogously for the index subset J complementary to J . Each resulting class

in Z
J × N

J is acted upon by L and hence is a union of cosets of L . The key observation
is that, when p + mJ is an associated prime of I , some of these classes consist of finitely
many cosets of L; let us call these L-bounded classes. The presence of L-bounded classes
signals that L is “sufficiently parallel” to the congruence determined by I , and this is how
we visualize the manner in which p + mJ is associated to I .

Intersecting the L-bounded Z
J × N

J congruence classes with N
n yields L-bounded clas-

ses in N
n ; again, these are constructed more or less by building bridges in directions from L

to join the classes defined by I . When the prime p + mJ is minimal over I , there are only
finitely many L-bounded classes in N

n , up to translation by N
J . In this case, the primary

component Cp+mJ of I is well-defined, as reflected in its combinatorics: the congruence
defined on N

n by Cp+mJ has one huge class consisting of the lattice points in N
n lying in no

L-bounded class, and each of its remaining classes is L-bounded in N
n ; this is the content of

Theorem 3.2.1. The only difference for a nonminimal associated prime of I is that the huge
class is inflated by swallowing all but a sufficiently large finite number of the orbits under
translation by N

J of L-bounded classes; this is the content of the remaining parts of Theo-
rem 3.2. Here, “sufficiently large” means that every swallowed L-bounded class contains a
lattice point u with tu lying in a fixed high power of mJ .

In applications, binomial ideals often arise in the presence of multigradings. (One reason
for this is that binomial structures are closely related to algebraic tori, whose actions on vari-
eties induce multigradings on coordinate rings.) In this context, the matrix A above induces
the grading in which two monomials tu and tv have equal degree if and only if Au = Av.
Theorem 4.13 expounds on the observation that if L = ker(A)∩Z

J , then a congruence class
for I + p in Z

J × N
J is L-bounded if and only if its image in N

J is finite. This simplifies
the description of the primary components because, to describe the set of monomials in a
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primary component, it suffices to refer to lattice point geometry in N
J , without mentioning

Z
J × N

J .
When it comes to proofs, the crucial insight is that the geometry of L-bounded classes for

the congruence determined by I + p gives rise to simpler algebra when Z
J × N

J is reduced
modulo the action of L . Equivalently, instead of considering the associated prime p + mJ

of an arbitrary binomial ideal I in C[t1, . . . , tn], consider the prime image of the monomial
ideal mJ associated to the image of I in C[Q] = C[t]/p, where Q = N

n/L . Since mono-
mial primes in an affine semigroup ring C[Q] correspond to faces of Q, the lattice point
geometry is clearer in this setting, and the algebra is sufficiently uncomplicated that it works
over an arbitrary field in place of C. If � is a face of an arbitrary affine semigroup Q whose
corresponding prime p� is minimal over a binomial ideal I in k[Q], then I determines a
congruence on the semigroup Q + Z� obtained from Q by allowing negatives for �. The
main result in this context, Theorem 2.15, says that the monomials tu in the p�-primary com-
ponent of I are precisely those corresponding to lattice points u ∈ Q not lying in any finite
congruence class of Q + Z�. This, in turn, is proved by translating lattice point geometry
and combinatorics into semigroup-graded commutative algebra in Proposition 2.13.

2 Binomial ideals in affine semigroup rings

Our eventual goal is to analyze the primary components of binomial ideals in polynomial
rings over the complex numbers C or any algebraically closed field of characteristic zero.
Our principal result along these lines (Theorem 3.2) is little more than a rephrasing of a state-
ment (Theorem 2.15) about binomial ideals in arbitrary affine semigroup rings in which the
associated prime comes from a face, combined with results of Eisenbud and Sturmfels [5].
The developments here stem from the observation that quotients by binomial ideals are
naturally graded by noetherian commutative monoids. Our source for such monoids is Gil-
mer’s excellent book [9]. For the special case of affine semigroups, by which we mean
finitely generated submonoids of free abelian groups, see [14, Chapter 7]. We work in
this section over an arbitrary field k, so it might be neither algebraically closed nor of
characteristic zero.

Definition 2.1 A congruence on a commutative monoid Q is an equivalence relation ∼ with

u ∼ v 	⇒ u+w ∼ v+w for all w ∈ Q.

The quotient monoid Q/∼ is the set of equivalence classes under addition.

Definition 2.2 The semigroup algebra k[Q] is the direct sum
⊕

u∈Q k · tu , with multiplica-
tion tutv = tu+v . Any congruence ∼ on Q induces a (Q/∼)-grading on k[Q] in which the
monomial tu has degree � ∈ Q/∼ whenever u ∈ �. A binomial ideal I ⊆ k[Q] is an ideal
generated by binomials tu − λtv , where λ ∈ k is a scalar, possibly equal to zero.

Example 2.3 A pure difference binomial ideal is generated by differences of monic mono-
mials. Given an integer matrix M with q rows, we call I (M) ⊆ k[t1, . . . , tq ] = k[Nq ] the
pure difference binomial ideal

I (M) = 〈tu − tv | u − v is a column of M, u, v ∈ N
q〉

= 〈tw+ − tw− | w = w+ − w− is a column of M〉. (2.1)
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Combinatorics of binomial primary decomposition 749

Here and in the remainder of this article we adopt the convention that, for an integer vector
w ∈ Z

q , the vector w+ has i th coordinate wi if wi ≥ 0 and 0 otherwise. The vector w− ∈ N
q

is defined by w+ −w− = w, or equivalently, w− = (−w)+. If the columns of M are linearly
independent, the ideal I (M) is called a lattice basis ideal (cf. Example 4.10). An ideal of
k[t1, . . . , tq ] has the form described in (2.1) if and only if it is generated by differences of
monomials with disjoint support.

The equality of the two definitions in (2.1) is easy to see: the ideal in the first line of
the display contains the ideal in the second line by definition; and the disjointness of the
supports of w+ and w− implies that whenever u − v = w is a column of M , and denoting
by α := u − w+ = u − w−, we have that the corresponding generator of the first ideal
tu − tv = tα(tw+ − tw−), lies in the second ideal.

Proposition 2.4 A binomial ideal I ⊆ k[Q] determines a congruence ∼I under which

u ∼I v if tu − λtv ∈ I for some scalar λ �= 0.

The ideal I is graded by the quotient monoid QI = Q/ ∼I , and k[Q]/I has QI -graded
Hilbert function 1 on every congruence class except the class {u ∈ Q | tu ∈ I } of monomials.

Proof That ∼I is an equivalence relation is because tu − λtv ∈ I and tv − λ′tw ∈ I implies
tu − λλ′tw ∈ I . It is a congruence because tu − λtv ∈ I implies that tu+w − λtv+w ∈ I .
The rest is similarly straightforward. �
Example 2.5 In the case of a pure difference binomial ideal I (M) as in Example 2.3, the
congruence classes under ∼I (M) from Proposition 2.4 are the M-subgraphs in the following
definition, which—aside from being a good way to visualize congruence classes—will be
useful later on (see Example 2.12 and Corollary 4.14, as well as Sect. 5).

Definition 2.6 Any integer matrix M with q rows defines an undirected graph �(M) having
vertex set N

q and an edge from u to v if u −v or v−u is a column of M . An M-path from u to
v is a path in �(M) from u to v. A subset of N

q is M-connected if every pair of vertices therein
is joined by an M-path passing only through vertices in the subset. An M-subgraph of N

q is
a maximal M-connected subset of N

q (a connected component of �(M)). An M-subgraph
is bounded if it has finitely many vertices, and unbounded otherwise. (See Example 5.4 for
a concrete computation and an illustrative figure).

These M-subgraphs bear a marked resemblance to the concept of fiber in [18, Chapter 4].
The interested reader will note, however, that even if these two notions have the same fla-
vor, their definitions have mutually exclusive assumptions, since for a square matrix M , the
corresponding matrix A in [18] is empty.

Definition 2.7 Let Q be an affine semigroup in Z
n and let H ⊂ R

n be a hyperplane. If Q
is contained in one of the two (closed) half-spaces determined by H , then � = Q ∩ H is
called a face of Q. A subset S ⊆ Q is an ideal if Q + S ⊆ S. In that case, we have that

span
k

S = 〈tu | u ∈ S〉
is the monomial ideal in k[Q] having S as its k-basis.

Given a face � of an affine semigroup Q ⊆ Z
�, the localization of Q along � is the

affine semigroup Q +Z� obtained from Q by adjoining negatives of the elements in �. The
algebraic version of this notion is a common tool for affine semigroup rings [14, Chap. 7]:
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for each k[Q]-module V , let V [Z�] denote its homogeneous localization along �, obtained
by inverting tφ for all φ ∈ �. For example, k[Q][Z�] ∼= k[Q + Z�]. Writing

p� = span
k
{tu | u ∈ Q � �} ⊆ k[Q]

for the prime ideal of the face �, so that k[Q]/p� = k[�] is the affine semigroup ring for �,
we find, as a consequence, that p�[Z�] = pZ� ⊆ k[Q + Z�], because

k[Q + Z�]/p�[Z�] = (k[Q]/p�)[Z�] = k[�][Z�] = k[Z�].
(We write equality signs to denote canonical isomorphisms.) For any ideal I ⊆ k[Q], the
localization I [Z�] equals the extension I k[Q + Z�] of I to k[Q + Z�], and we write

(I : t�) = I [Z�] ∩ k[Q], (2.2)

the intersection taking place in k[Q + Z�]. Equivalently, (I : t�) is the usual colon ideal
(I : tφ) for any element φ sufficiently interior to � (for example, take φ to be a high multiple
of the sum of the generators of �); in particular, (I : t�) is a binomial ideal when I is.

For the purpose of investigating p�-primary components, the ideal (I : t�) is as good
as I itself, since this colon operation does not affect such components, or better, since the
natural map from k[Q]/(I : t�) to its homogeneous localization along � is injective. Com-
binatorially, what this means is the following.

Lemma 2.8 A subset �′ ⊆ Q is a congruence class in Q(I :t�) determined by (I : t�) if and
only if �′ = � ∩ Q for some class � ⊆ Q + Z� under the congruence ∼I [Z�].

Lemma 2.9 If a congruence class � ⊆ Q + Z� under ∼I [Z�] has two distinct elements
whose difference lies in Q + Z�, then for all u ∈ � the monomial tu maps to 0 in the (usual
inhomogeneous) localization (k[Q]/I )p� inverting all elements not in p�.

Proof Suppose v �= w ∈ � with w − v ∈ Q + Z�. The images in k[Q]/I of the monomials
tu for u ∈ � are nonzero scalar multiples of each other, so it is enough to show that tv maps
to zero in (k[Q]/I )p� . Since w − v ∈ Q + Z�, we have tw−v ∈ k[Q + Z�]. Therefore
1 − λtw−v lies outside of pZ� for all λ ∈ k, because its image in k[Z�] = k[Q + Z�]/pZ�

is either 1 − λtw−v or 1, according to whether or not w − v ∈ Z�. (The assumption v �= w

was used here: if v = w, then for λ = 1, we have 1 − λtw−v = 0.) Hence 1 − λtw−v maps
to a unit in (k[Q]/I )p� . It follows that tv maps to 0, since (1 − λvwtw−v)tv = tv − λvwtw

maps to 0 in k[Q]/I whenever tv − λvwtw ∈ I . �
Lemma 2.10 A congruence class � ⊆ Q + Z� under ∼I [Z�] is infinite if and only if it
contains two distinct elements whose difference lies in Q + Z�.

Proof Let � ⊆ Q + Z� be a congruence class. If v,w ∈ � and v − w ∈ Q + Z�, then
w + ε(v − w) ∈ � for all positive ε ∈ Z. On the other hand, assume � is infinite. There
are two possibilities: either there are v,w ∈ � with v − w ∈ Z�, or not. If so, then we are
done, so assume not. Let Z

q be the quotient of Z
�/Z� modulo its torsion subgroup. (Here

Z
� is the ambient lattice of Q.) The projection Z

� → Z
q induces a map from � to its image

� that is finite-to-one. More precisely, if �′ is the intersection of � with a coset of Z� in
ker(Z� → Z

q), then �′ maps bijectively to its image �′. There are only finitely many cosets,
so some �′ must be infinite, along with �′. But �′ is a subset of the affine semigroup Q/�,
defined as the image of Q + Z� in Z

q . As Q/� has unit group zero, every infinite subset
contains two points whose difference lies in Q/�, and the corresponding lifts of these to �′
have their difference in Q + Z�. �
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Definition 2.11 Fix a face � of an affine semigroup Q. An ideal S is Z�-closed if S =
Q ∩ (S + Z�). If ∼ is a congruence on Q + Z�, then the unbounded ideal U ⊆ Q is the
(Z�-closed) ideal of elements u ∈ Q with infinite congruence class under ∼ in Q +Z�. We
write B(Q + Z�) for the set of bounded (i.e. finite) congruence classes of Q + Z� under ∼.

Example 2.12 Let M be as in Definition 2.6 and consider the congruence ∼I (M) on Q = N
q .

If � = {0}, then the unbounded ideal U ⊆ N
q is the union of the unbounded M-subgraphs

of N
q , while B(Nq) is the union of the bounded M-subgraphs.

Proposition 2.13 Fix a face � of an affine semigroup Q, a binomial ideal I ⊆ k[Q], and a
Z�-closed ideal S ⊆ Q containing U under the congruence ∼I [Z�]. Write B = B(Q +Z�)

for the bounded classes, J for the binomial ideal (I : t�)+span
k

S, and Q = (Q+Z�)I [Z�].

1. k[Q]/J is graded by Q, and its set of nonzero degrees is contained in B.
2. The group Z� ⊆ Q acts freely on B, and the k[�]-submodule (k[Q]/J )T ⊆ k[Q]/J in

degrees from any orbit T ⊆ B is 0 or finitely generated and torsion-free of rank 1.
3. The quotient Q J /� of the monoid (Q + Z�)J [Z�] by its subgroup Z� is a partially

ordered set if we define ζ � η whenever ζ + ξ = η for some ξ ∈ Q J /�.
4. k[Q]/J is filtered by Q-graded k[Q]-submodules with associated graded module

gr(k[Q]/J ) =
⊕

T ∈B/�

(k[Q]/J )T , where B/� = {Z�-orbits T ⊆ B},

the canonical isomorphism being as B-graded k[�]-modules, although the left-hand side
is naturally a k[Q]-module annihilated by p�.

5. If (k[Q]/J )T �= 0 for only finitely many orbits T ∈ B/�, then J is a p�-primary ideal.

Proof The quotient k[Q]/(I : t�) is automatically Q-graded by Proposition 2.4 applied to
Q+Z� and I [Z�], given (2.2). The further quotient by span

k
S is graded by B because S ⊇ U .

Z� acts freely on B by Lemmas 2.9 and 2.10: if φ ∈ Z� and � is a bounded congruence
class, then the translate φ +� is, as well; and if φ �= 0 then φ +� �= �, because each coset of
Z� intersects � at most once. Combined with the Z�-closedness of S, this shows that k[Q]/J
is a k[�]-submodule of the free k[Z�]-module whose basis consists of the Z�-orbits T ⊆ B.
Hence (k[Q]/J )T is torsion-free (it might be zero, of course, if S happens to contain all of
the monomials corresponding to congruence classes of Q arising from ∼I [Z�] classes in T ).
For item 2, it remains to show that (k[Q]/J )T is finitely generated. Let T = ⋃

�∈T � ∩ Q.
By construction, T is the (finite) union of the intersections Q ∩ (γ + Z�) of Q with cosets
of Z� in Z

� for γ in any fixed � ∈ T . Such an intersection is a finitely generated �-set
(a set closed under addition by �) by [12, Eq. (1) and Lemma 2.2] or [14, Theorem 11.13],
where the k-vector space it spans is identified as the set of monomials annihilated by k[�]
modulo an irreducible monomial ideal of k[Q]. The images in k[Q]/J of the monomials
corresponding to any generators for these �-sets generate (k[Q]/J )T .

The point of item 3 is that the monoid Q J /� acts sufficiently like an affine semigroup
whose only unit is the trivial one. To prove it, observe that Q J /� consists, by item 1, of the
(possibly empty set of) orbits T ∈ B such that (k[Q]/J )T �= 0 plus one congruence class S
for the monomials in J (if there are any). The proposed partial order has T ≺ S for all orbits
T ∈ Q J /�, and also T ≺ T + v if and only if v ∈ (Q + Z�) � Z�. This relation ≺ a priori
defines a directed graph with vertex set Q J /�, and we need it to have no directed cycles.
The terminal nature of S implies that no cycle can contain S, so suppose that T = T + v.
For some φ ∈ Z� and u ∈ T , the translate u + φ lies in the same congruence class under
∼I [Z�] as u + v. Lemma 2.10 implies that v − φ, and hence v itself, does not lie in Q + Z�.
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For item 4, it suffices to find a total order T0, T1, T2, . . . on B/� such that ⊕ j≥k(k[Q]/J )Tj

is a k[Q]-submodule for all k ∈ N. Use the partial order of B/� via its inclusion in the monoid
Q J /� in item 3 for S = U . Any well-order refining this partial order will do.

Item 5 follows from items 2 and 4 because the associated primes of gr(k[Q]/J ) contain
every associated prime of J for any finite filtration of k[Q]/J by k[Q]-submodules. �

For connections with toral modules (Definition 4.3), we record the following.

Corollary 2.14 Fix notation as in Proposition 2.13. If I is homogeneous for a grading
of k[Q] by a group A via a monoid morphism Q → A, then k[Q]/J and gr(k[Q]/J )

are A-graded via a natural coarsening B → A that restricts to a group homomorphism
Z� → A.

Proof The morphism Q → A induces a morphism πA : Q+Z� → A by the universal prop-
erty of monoid localization. The morphism πA is constant on the non-monomial congruence
classes in QI precisely because I is A-graded. It follows that πA is constant on the non-
monomial congruence classes in (Q+Z�)I [Z�]. In particular, πA is constant on the bounded
classes B(Q + Z�), which therefore map to A to yield the natural coarsening. The group
homomorphism Z� → A is induced by the composite morphism Z� → (Q + Z�) → A,
which identifies the group Z� with the Z�-orbit in B containing (the class of) 0. �

Theorem 2.15 Fix a face � of an affine semigroup Q and a binomial ideal I ⊆ k[Q]. If p�

is minimal over I , then the p�-primary component of I is (I : t�)+ span
k
U, where (I : t�)

is the binomial ideal (2.2) and U ⊆ Q is the unbounded ideal (Definition 2.11) for ∼I [Z�].
Furthermore, the only monomials in (I : t�) + span

k
U are those of the form tu for u ∈ U.

Proof The p�-primary component of I is the kernel of the localization homomorphism
k[Q]→(k[Q]/I )p� . As this factors through the homogeneous localization k[Q+Z�]/I [Z�],
we find that the kernel contains (I : t�). Lemmas 2.9 and 2.10 imply that the kernel contains
span

k
U . But already (I : t�) + span

k
U is p�-primary by Proposition 2.13.5; the finiteness

condition there is satisfied by minimality of p� applied to the filtration in Proposition 2.13.4.
Thus the quotient of k[Q] by (I : t�) + span

k
U maps injectively to its localization at p�.

To prove the last sentence of the theorem, observe that under the Q-grading from Propo-
sition 2.13.1, every monomial tu outside of span

k
U maps to a k-vector space basis for the

(1-dimensional) graded piece corresponding to the bounded congruence class containing u.
�

Example 2.16 One might hope that when p� is an embedded prime of a binomial ideal I ,
the p�-primary components, or even perhaps the irreducible components, would be unique,
if we require that they be finely graded (Hilbert function 0 or 1) as in Proposition 2.13.
However, this fails even in simple examples, such as k[x, y]/〈x2 − xy, xy − y2〉. In this case,
I = 〈x2 − xy, xy − y2〉 = 〈x2, y〉 ∩ 〈x − y〉 = 〈x, y2〉 ∩ 〈x − y〉 and � is the face {0} of
Q = N

2, so that I = (I : t�) by definition. The monoid QI , written multiplicatively, consists
of 1, x , y, and a single element of degree i for each i ≥ 2 representing the congruence class
of the monomials of total degree i . Our two choices 〈x2, y〉 and 〈x, y2〉 for the irreducible
component with associated prime 〈x, y〉 yield quotients of k[x, y] with different QI -graded
Hilbert functions, the first nonzero in degree x and the second nonzero in degree y.
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3 Primary components of binomial ideals

In this section, we express the primary components of binomial ideals in polynomial rings
over the complex numbers as explicit sums of binomial and monomial ideals. We formulate
our main result, Theorem 3.2, after recalling some essential results from [5]. Henceforth, we
work with the complex polynomial ring C[t] in variables t = t1, . . . , tn .

If L ⊆ Z
n is a sublattice, then with notation as in Example 2.3, the lattice ideal of L is

IL = 〈tu+ − tu− | u = u+ − u− ∈ L〉,
More generally, any partial character ρ : L → C

∗ of Z
n , which includes the data of both

its domain lattice L ⊆ Z
n and the map to C

∗, determines a binomial ideal

Iρ = 〈tu+ − ρ(u)tu− | u = u+ − u− ∈ L〉.
(The ideal Iρ is called I+(ρ) in [5].) The ideal Iρ is prime if and only if L is a saturated
sublattice of Z

n , meaning that L equals its saturation, in general defined as

sat(L) = (QL) ∩ Z
n,

where QL = Q ⊗Z L is the rational vector space spanned by L in Q
n . In fact, writing

mJ = 〈t j | j /∈ J 〉 for any J ⊆ {1, . . . , n}, every binomial prime ideal in C[t] has the form

Iρ,J = Iρ + mJ (3.1)

for some saturated partial character ρ (i.e., whose domain is a saturated sublattice) and subset
J such that the binomial generators of Iρ only involve variables t j for j ∈ J (some of which
might actually be absent from the generators of Iρ) [5, Corollary 2.6].

Remark 3.1 A rank m lattice L ⊆ Z
n is saturated if and only if there exists an (n − m) × n

integer matrix A of full rank such that L = kerZ(A). In this case, if ρ is the trivial character,
the ideal Iρ is denoted by IA and called a toric ideal. Note that

IA = 〈tu − tv | Au = Av〉. (3.2)

If ρ is not the trivial character, then Iρ becomes isomorphic to IA when the variables are
rescaled via ti �→ ρ(ei )ti , which induces the rescaling tu �→ ρ(u)tu on general monomials.

The characteristic zero part of the main result in [5, Theorem 7.1′], says that an irredundant
primary decomposition of an arbitrary binomial ideal I ⊆ C[t] is given by

I =
⋂

Iρ,J ∈Ass(I )

Hull(I + Iρ + me
J ) (3.3)

for any large integer e, where Hull means to discard the primary components for embedded
(i.e. nonminimal associated) primes, and me

J = 〈t j | j /∈ J 〉e. In other words, Hull(I + Iρ +
me

J ) is the localization of I + Iρ + me
J at Iρ,J . Our goal in this section is to be explicit about

the Hull operation. The salient feature of (3.3) is that I + Iρ + me
J contains Iρ . In contrast,

(3.3) is false in positive characteristic, where Iρ + me
J should be replaced by a Frobenius

power of Iρ,J [5, Theorem 7.1′].
Our notation in the next theorem is as follows. Given a subset J ⊆ {1, . . . , n}, let J =

{1, . . . , n} � J be its complement, and use these sets to index coordinate subspaces of N
n

and Z
n ; in particular, N

n = N
J × N

J . Adjoining additive inverses for the elements in N
J

yields Z
J × N

J , whose semigroup ring we denote by C[t][t−1
J ], with tJ = ∏

j∈J t j . As in
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Definition 2.7, span
C

S is the monomial ideal in C[t] having C-basis S. Finally, for a saturated
sublattice L ⊆ Z

J , we write N
J /L for the image of N

J in the torsion-free group Z
J /L .

Theorem 3.2 Fix a binomial ideal I ⊆ C[t] and an associated prime Iρ,J of I , where
ρ : L → C

∗ for a saturated sublattice L ⊆ Z
J ⊆ Z

n. Set � = N
J /L, and write ∼ for the

congruence on Z
J × N

J determined by the ideal (I + Iρ)[ZJ ] = (I + Iρ)C[t][t−1
J ].

1. If Iρ,J is a minimal prime of I and Ũ is the set of u ∈ N
n whose congruence classes in

(ZJ × N
J )/ ∼ have infinite image in Z�× N

J , then the Iρ,J -primary component of I is

Cρ,J = (
(I + Iρ) : t∞J

) + span
C

Ũ .

Fix a monomial ideal K ⊆ C[t j | j ∈ J ] containing a power of each available variable, and

let ≈ be the congruence on Z
J ×N

J determined by (I + Iρ + K )C[t][t−1
J ]. Write ŨK for the

set of u ∈ N
n whose congruence classes in (ZJ × N

J )/≈ have infinite image in Z� × N
J .

2. The Iρ,J -primary component of 〈I + Iρ +K 〉 ⊆ C[t] is
(
(I + Iρ + K ) : t∞J

)+span
C

ŨK .
3. If K is contained in a sufficiently high power of mJ , then

Cρ,J = ((I + Iρ + K ) : t∞J ) + span
C

ŨK

is a valid choice of Iρ,J -primary component for I .

The only monomials in the above primary components are those in span
C

Ũ or span
C

ŨK .

Proof First suppose Iρ,J is a minimal prime of I . We may, by rescaling the variables t j for
j ∈ J , harmlessly assume that ρ is the trivial character on its lattice L , so that Iρ = IL

is the lattice ideal for L . The quotient C[t]/IL is the affine semigroup ring C[Q] for Q =
(NJ /L) × N

J = � × N
J . Now let us take the whole situation modulo IL . The image of

Iρ,J = IL + mJ is the prime ideal p� ⊆ k[Q] for the face �. The image in C[Q] of the
binomial ideal I is a binomial ideal I ′, and ((I + IL) : t∞J ) has image (I ′ : t�), as defined
in (2.2). Finally, the image of Ũ in Q is the unbounded ideal U ⊆ Q (Definition 2.11) by
construction. Now we can apply Theorem 2.15 to I ′ and obtain a combinatorial description
of the component associated to Iρ,J .

The second and third items follow from the first by replacing I with I + K , given the
primary decomposition in (3.3). �
Remark 3.3 One of the mysteries in [5] is why the primary components C of binomial ideals
turn out to be generated by monomials and binomials. From the perspective of Theorem 3.2
and Proposition 2.13 together, this is because the primary components are finely graded:
under some grading by a free abelian group, namely Z�, the vector space dimensions of the
graded pieces of the quotient modulo the ideal C are all 0 or 1 [5, Proposition 1.11]. In fact,
via Lemma 2.9, fine gradation is the root cause of primaryness.

Remark 3.4 Theorem 3.2 easily generalizes to arbitrary binomial ideals in arbitrary com-
mutative noetherian semigroup rings over C: simply choose a presentation as a quotient of a
polynomial ring modulo a pure difference binomial ideal [9, Theorem 7.11].

Remark 3.5 The methods of Sect. 2 work in arbitrary characteristic—and indeed, over a field
k that can fail to be algebraically closed, and can even be finite—because we assumed that
a prime ideal p� for a face � is associated to our binomial ideal. In contrast, this section
and the next work only over an algebraically closed field of characteristic zero. However, it
might be possible to produce similarly explicit binomial primary decompositions in positive
characteristic by reducing to the situation in Sect. 2; this remains an open problem.
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4 Associated components and multigradings

In this section, we turn our attention to interactions of primary components with various
gradings on C[t]. These played crucial roles already in the proof of Theorem 3.2: taking
the quotient of its statement by the toric ideal Iρ put us in the situation of Proposition 2.13
and Theorem 2.15, which provide excellent control over gradings. The methods here can
be viewed as aids for clarification in examples, as we shall see in the case of lattice basis
ideals (Example 4.10). However, this theory was developed with applications in mind [3];
see Sect. 5.

Generally speaking, given a grading of C[t], there are two kinds of graded modules: those
with bounded Hilbert function (the toral case below) and those without. The main point is
Theorem 4.13: if C[t]/p has bounded Hilbert function for some graded prime p, then the
p-primary component of any graded binomial ideal is easier to describe than usual.

To be consistent with notation, we adopt the following conventions for this section.

Convention 4.1 A = (ai j ) ∈ Z
d×n denotes an integer d ×n matrix of rank d whose columns

a1, . . . , an all lie in a single open linear half-space of R
d ; equivalently, the cone generated

by the columns of A is pointed (contains no lines), and all of the columns ai are nonzero. We
also assume that ZA = Z

d ; that is, the columns of A span Z
d as a lattice.

Convention 4.2 Let B = (b jk) ∈ Z
n×m be an integer matrix of full rank m ≤ n. Assume

that every nonzero element of the column span ZB of B over the integers Z is mixed, meaning
that it has at least one positive and one negative entry; in particular, the columns of B are
mixed. We write b1, . . . , bn for the rows of B. Having chosen B, we set d = n − m and pick
a matrix A ∈ Z

d×n such that AB = 0 and ZA = Z
d .

If d �= 0, the mixedness hypothesis on B is equivalent to the pointedness assumption for
A in Convention 4.1. We do allow d = 0, in which case A is the empty matrix.

The d × n integer matrix A in Convention 4.1 determines a Z
d -grading on C[t] in which

the degree deg(t j ) = a j is defined1 to be the j th column of A. Our conventions imply that
C[t] has finite-dimensional graded pieces, like any finitely generated module [14, Chap. 8].

Definition 4.3 LetV = ⊕
α∈Zd Vα be an A-graded module over the polynomial ring C[t].

The Hilbert function HV : Z
d → N takes the values HV (α) = dimC Vα . If V is finitely

generated, we say that the module V is toral if the Hilbert function HV is bounded above.
A graded prime p is a toral prime if C[t]/p is a toral module. Similarly, a graded primary
component C of an ideal I is a toral component of I if C[t]/C is a toral module.

Example 4.4 The toric ideal IA for the grading matrix A is always an A-graded toral prime,
since the quotient C[t]/IA is always toral: its Hilbert function takes only the values 0 or 1. In
contrast, C[t] itself is not a toral module unless d = n (which forces A to be invertible over
Z, by Convention 4.1).

We will be most interested in the quotients of C[t] by prime and primary binomial ideals.
To begin, here is a connection between the natural gradings from Sect. 2 and the A-grading.

Lemma 4.5 Let I ⊆ C[t] be an A-graded binomial ideal and Cρ,J a primary component,
with ρ : L → C

∗ for L ⊆ Z
J . The image ZAJ of the homomorphism Z

J /L = Z� → Z
d

induced by Corollary 2.14 (with A = ZA = Z
d ) is generated by the columns a j of A indexed

by j ∈ J , as is the monoid image of � = N
J /L, which we denote by NAJ .

1 In noncommutative settings, such as [3,13], the variables are written ∂1, . . . , ∂n , and the degree of ∂ j is
usually defined to be −a j instead of a j .
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To make things a little more concrete, let us give one more perspective on the homomor-
phism Z� → Z

d . Simply put, the ideal Iρ,J is naturally graded by Z
J /L = Z�, and the

fact that it is also A-graded means that L ⊆ ker(Zn → Z
d), the map to Z

d being given by A.
(The real content of Corollary 2.14 lies with the action on the rest of B).

Example 4.6 Let ρ : L → C
∗ for a saturated sublattice L ⊆ Z

J ⊆ Z
n . If Cρ,J is an

Iρ,J -primary binomial ideal, then C[t]/Cρ,J has a finite filtration whose successive quotients
are torsion-free modules of rank 1 over the affine semigroup ring R = C[t]/Iρ,J . This follows
by applying Proposition 2.13 to Theorem 3.2.1 and its proof. If, in addition, Iρ,J is A-graded,
then some A-graded translate of each successive quotient admits a Z

J /L-grading refining
the A-grading via Z

J /L → Z
d = ZA; this follows by conjointly applying Corollary 2.14.

The next three results provide alternate characterizations of toral primary binomial ideals.
In what follows, AJ is the submatrix of A on the columns indexed by J .

Proposition 4.7 Every A-graded toral prime is binomial. In the situation of Lemma 4.5,
C[t]/Iρ,J and C[t]/Cρ,J are toral if and only if the homomorphism Z� → Z

d is injective.

Proof To prove the first part of the statement, fix a toral primep, and let h ∈ N be the maximum
of the Hilbert function of C[t]/p. It is enough, by [5, Proposition 1.11], to show that h = 1.
Let R be the localization of C[t]/p by inverting all nonzero homogeneous elements. Because
of the homogeneous units in R, all of its graded pieces have the same dimension over C;
and since R is a domain, this dimension is at least h. Thus we need only show that R0 = C.
For any given finite-dimensional subspace of R0, multiplication by a common denominator
maps it injectively to some graded piece of C[t]/p. Therefore every finite-dimensional sub-
space of R0 has dimension at most h. It follows that HR(0) ≤ h, so R0 is artinian. But R0 is
a domain because R0 ⊆ R, so R0 = C.

For the second part, C[t]/Cρ,J has a finite filtration whose associated graded pieces are
A-graded translates of quotients of C[t] by A-graded primes, at least one of which is Iρ,J and
all of which contain it. By additivity of Hilbert functions, C[t]/Cρ,J is toral precisely when all
of these are toral primes. However, if a graded prime p contains a toral prime, then p is itself
a toral prime. Therefore, we need only treat the case of C[t]/Iρ,J . But C[t]/Iρ,J is naturally
graded by Z�, with Hilbert function 0 or 1, so injectivity immediately implies that C[t]/Iρ,J

is toral. On the other hand, if Z� → Z
d is not injective, then NAJ is a proper quotient of the

affine semigroup �, and such a proper quotient has fibers of arbitrary cardinality. �
Corollary 4.8 Let ρ : L → C

∗ for a saturated lattice L ⊆ Z
J ∩ kerZ(A) = kerZ(AJ ). The

quotient C[t]/Iρ,J by an A-graded prime Iρ,J is toral if and only if L = kerZ(AJ ).

Lemma 4.9 Every A-graded binomial prime ideal Iρ,J satisfies

dim(Iρ,J ) ≥ rank(AJ ),

with equality if and only if C[t]/Iρ,J is toral.

Proof Rescale the variables and assume that Iρ,J = IL , the lattice ideal for a saturated lattice
L ⊆ kerZ(AJ ). The rank of L is at most #J − rank(AJ ); thus dim(IL) = #J − rank(L) ≥
rank(AJ ). Equality holds exactly when L = kerZ(A), i.e. when C[t]/Iρ,J is toral. �
Example 4.10 Fix matrices A and B as in Convention 4.2. This identifies Z

d with the quotient
of Z

n/ZB modulo its torsion subgroup. Consider the lattice basis ideal

I (B) = 〈tu+ − tu− | u = u+ − u− is a column of B〉 ⊆ C[t1, . . . , tn]. (4.1)
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The toric ideal IA from (3.2) is an associated prime of I (B), the primary component being IA

itself. More generally, all of the minimal primes of the lattice ideal IZB , one of which is IA,
are minimal over I (B) with multiplicity 1; this follows from [5, Theorem 2.1] by inverting
the variables. That result also implies that the minimal primes of IZB are precisely the ideals
Iρ for partial characters ρ : sat(ZB) → C

∗ of Z
n extending the trivial partial character on

ZB, so the lattice ideal IZB is the intersection of these prime ideals. Hence IZB is a radical
ideal, and every irreducible component of its zero set is isomorphic, as a subvariety of C

n ,
to the variety of IA.

In complete generality, each of the minimal primes of I (B) arises, after row and column
permutations, from a block decomposition of B of the form

[
N BJ

M 0

]

, (4.2)

where M is a mixed submatrix of B of size q × p for some 0 ≤ q ≤ p ≤ m [11]. (Matrices
with q = 0 rows are automatically mixed; matrices with q = 1 row are never mixed.) We
note that not all such decompositions correspond to minimal primes: the matrix M has to
satisfy another condition which Hoşten and Shapiro call irreducibility [11, Definition 2.2 and
Theorem 2.5]. If I (B) is a complete intersection, then only square matrices M will appear
in the block decompositions (4.2), by a result of Fischer and Shapiro [6].

For each partial character ρ : sat(ZBJ ) → C
∗ extending the trivial character on ZBJ , the

prime Iρ,J is associated to I (B), where J = J (M) = {1, . . . , n}�rows(M) indexes the n−q
rows not in M . We reiterate that the symbol ρ here includes the specification of the sublattice
sat(ZBJ ) ⊆ Z

n . The corresponding primary component Cρ,J = Hull
(
I (B) + Iρ + me

J

)
of

the lattice basis ideal I (B) is simply Iρ if q = 0, but will in general be non-radical when
q ≥ 2 (recall that q = 1 is impossible).

The quotient C[t]/Cρ,J is toral if and only if M is square and satisfies either det(M) �= 0
or q = 0. To check this statement, observe that I (B) has m = n − d generators, so the
dimension of any of its associated primes is at least d . But since AJ has rank at most d ,
Lemma 4.9 implies that toral primes of I (B) have dimension exactly d (and are therefore
minimal). If Iρ,J is a toral associated prime of I (B) arising from a decomposition of the
form (4.2), where M is q × p, then the dimension of Iρ,J is n − p − (m − q) = d + q − p,
and from this we conclude that M is square. That M is invertible follows from the fact that
rank(kerZ(AJ )) = d . The same arguments show that if M is not square invertible, then Iρ,J

is not toral.

Example 4.11 A binomial ideal I ⊆ C[t] may be A-graded for different matrices A; in this
case, which of the components of I are toral will change if we alter the grading. For instance,
the prime ideal I = 〈t1t4 − t2t3〉 ⊆ C[t1, . . . , t4] is homogeneous for both the matrix [1 1 1 1]
and the matrix

[
1 1 1 1
0 1 0 1
0 0 1 1

]
. But C[t1, . . . , t4]/I is toral in the

[
1 1 1 1
0 1 0 1
0 0 1 1

]
-grading, while it is not

toral in the [1 1 1 1]-grading.

Example 4.12 Let I = 〈bd −de, bc−ce, ab−ae, c3 −ad2, a2d2 −de3, a2cd −ce3, a3d −
ae3〉 be a binomial ideal in C[t], where we write t = (t1, t2, t3, t4, t5) = (a, b, c, d, e), and
let

A =
[

1 1 1 1 1

0 1 2 3 1

]

and B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2 −1 0

3 0 1

0 3 0

−1 −2 0

0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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One easily verifies that the binomial ideal I is graded by ZA = Z
2. If ω is a primitive cube

root of unity (ω3 = 1), then I , which is a radical ideal, has the prime decomposition

I = 〈a, c, d〉 ∩ 〈bc − ad, b2 − ac, c2 − bd, b − e〉
∩ 〈ωbc − ad, b2 − ωac, ω2c2 − bd, b − e〉
∩ 〈ω2bc − ad, b2 − ω2ac, ωc2 − bd, b − e〉.

The intersectand 〈a, c, d〉 equals the prime ideal Iρ,J for J = {2, 5} and L = {0} ⊆ Z
J . The

homomorphism Z
J → Z

2 is not injective since it maps both basis vectors to
[

1
1

]
; therefore

the prime ideal 〈a, c, d〉 is not a toral component of I . In contrast, the remaining three inter-
sectands are the prime ideals Iρ,J for the three characters ρ that are defined on ker(A) but
trivial on its index 3 sublattice ZB spanned by the columns of B, where J = {1, 2, 3, 4, 5}.
These prime ideals are all toral by Corollary 4.8, with ZAJ = ZA.

Toral components can be described more simply than in Theorem 3.2, as we do not need
to pass to Ũ and can work with U (and fewer variables) instead.

Theorem 4.13 Fix an A-graded binomial ideal I ⊆ C[t] and a toral associated prime Iρ,J

of I . Define the binomial ideal I = I · C[t]/〈t j − 1 | j ∈ J 〉 by setting t j = 1 for j ∈ J .

1. Fix a minimal prime Iρ,J of I . If U ⊆ N
J is the set of elements with infinite congruence

class in N
J
I

(Proposition 2.4), and tJ = ∏
j∈J t j , then I has Iρ,J -primary component

Cρ,J = ((I + Iρ) : t∞J ) + 〈tu | u ∈ U 〉.
Let K ⊆ C[t j | j ∈ J ] be a monomial ideal containing a power of each available variable,

and let UK ⊆ N
J be the set of elements with infinite congruence class in N

J
I+K

.

2. The Iρ,J -primary component of 〈I + Iρ + K 〉 ⊆ C[t] is equal to
(
(I + Iρ + K ) : t∞J

) + 〈tu | u ∈ UK 〉.
3. If K is contained in a sufficiently high power of mJ , then

Cρ,J = ((I + Iρ) : t∞J ) + 〈tu | u ∈ UK 〉
is a valid choice of Iρ,J -primary component for I .

The only monomials in the above primary components are in 〈tu | u ∈ U 〉 or 〈tu | u ∈ UK 〉.
Proof Resume the notation from the statement and proof of Theorem 3.2. As in that proof, it
suffices here to deal with the first item. In fact, the only thing to show is that Ũ in Theorem 3.2
is the same as N

J × U here.
Recall that I ′ ⊆ C[Q] is the image of I modulo Iρ . The congruence classes of Z� × N

J

determined by I ′[Z�] are the projections under Z
J × N

J → Z� × N
J of the ∼ congruence

classes. Further projection of these classes to N
J yields the congruence classes determined

by the ideal I ′′ ⊆ C[NJ ], where I ′′ is obtained from I ′[Z�] by setting tφ = 1 for all
φ ∈ Z�. This ideal I ′′ is just I . Hence we are reduced to showing that a congruence class in
� × N

J determined by I ′[Z�] is infinite if and only if its projection to N
J is infinite. This is

clearly true for the monomial congruence class in Z� × N
J . For any other congruence class

� ⊆ Z�× N
J , the homogeneity of I (and hence that of I ′) under the A-grading implies that

� is contained within a coset of K = ker(Z� × Z
J → Z

d = ZA). This kernel K intersects
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Z� only at 0 because Iρ,J is toral. Therefore the projection of any coset of K to Z
J is bijective

onto its image. In particular, � is infinite if and only if its bijective image in N
J is infinite.

�
Corollary 4.14 Resume the notation of Example 4.10. If Iρ,J is a toral minimal prime of the
lattice basis ideal I (B) given by a decomposition as in (4.2), so J = J (M), then

Cρ,J = I (B) + Iρ,J + UM ,

where UM ⊆ C[t j | j ∈ J ] is the ideal C-linearly spanned by all monomials whose exponent

vectors lie in the union of the unbounded M-subgraphs of N
J , as in Definition 2.6. The only

monomials in Cρ,J belong to UM .

Remark 4.15 Theorem 4.13 need not always be false for a component that is not toral, but
it can certainly fail: there can be congruence classes in Z� × N

J that are infinite only in the
Z� direction, so that their projections to N

J are finite.

5 Applications, examples, and further directions

In this section, we give a brief overview of the connection between binomial primary decom-
position and hypergeometric differential equations, study some examples, and discuss com-
putational issues.

From the point of view of complexity, primary decomposition is hard: even in the case
of zero dimensional binomial complete intersections, counting the number of associated
primes (with or without multiplicity) is a #P-complete problem [2]. However, the primary
decomposition algorithms implemented in Singular [15] or Macaulay2 [10] work very well in
reasonably sized examples, and in fact, they provide the only implemented method for com-
puting bounded congruence classes or M-subgraphs as in Sect. 3. We remind the reader that
[5, Section 8] contains specialized algorithms for binomial primary decomposition, whose
main feature is that they preserve binomiality at each step. These algorithms were improved
and made more explicit by Ojeda and Sánchez [16]. We also mention that the results in the
present article require more development before a combinatorial method for primary decom-
position can be obtained. Even if we bypass the difficulty of computing congruence classes
in monoids, it is an open problem to combinatorially determine the associated primes of a
binomial ideal; see [1] for a study of this question in the special case of circuit ideals.

In the case that q = 2, we can study M-subgraphs directly by combinatorial means
[4, Sect. 6]. The relevant result is the following.

Proposition 5.1 Let M be a mixed invertible 2×2 integer matrix. Without loss of generality,

write M =
[

a b
−c −d

]

, where a, b, c, d are positive integers. Then the number of bounded

M-subgraphs is min(ad, bc). Moreover, if

R =
{ {(s, t) ∈ N

2 | s < b and t < c} if ad > bc,
{(s, t) ∈ N

2 | s < a and t < d} if ad < bc,

then every bounded M-subgraph passes through exactly one of the points in R.

If q > 2, a method for computing M-subgraphs may be obtained through a link to differ-
ential equations. To make this evident, we change the notation for the ambient ring.

123



760 A. Dickenstein et al.

Notation 5.2 All binomial ideals in the remainder of this article are ideals in the polynomial
ring C[∂] = C[∂1, . . . , ∂n].

The following result for M-subgraphs can be adapted to fit the more general context of
congruences.

Proposition 5.3 Let M be a q × q mixed invertible integer matrix, and assume that q > 0.
Given γ ∈ N

q , denote by � the M-subgraph containing γ . Think of the ideal I (M) ⊆ C[∂]
as a system of linear partial differential equations with constant coefficients.

1. The system of differential equations I (M) has a unique formal power series solution of
the form Gγ = ∑

u∈� λu xu in which λγ = 1.
2. The other coefficients λu of Gγ for u ∈ � are all nonzero.
3. The set {Gγ | γ runs over a set of representatives for the M-subgraphs of N

q} is a basis
for the space of all formal power series solutions of I (M).

4. The set {Gγ | γ runs over a set of representatives for the bounded M-subgraphs of N
q}

is a basis for the space of polynomial solutions of I (M).

The straightforward proof of this proposition can be found in [3, Sect. 7].
The following example illustrates the correspondence between M-subgraphs and solutions

of I (M).

Example 5.4 Consider the 3 × 3 matrix

M =
⎡

⎢
⎣

1 −5 0

−1 1 −1

0 3 1

⎤

⎥
⎦ .

A basis of solutions (with minimal support under inclusion) of I (M) is easily computed:
⎧
⎨

⎩
1, x + y + z, (x + y + z)2, (x + y + z)3,

∑

n≥4

(x + y + z)n

n!

⎫
⎬

⎭
.

The M-subgraphs of N
3 are the four slices {(a, b, c) ∈ N

3 | a + b + c = n} for n ≤ 3;
for n ≥ 4, two consecutive slices are M-connected by (−5, 1, 3), yielding one unbounded
M-subgraph (see Fig. 1).

A direct combinatorial algorithm for producing the bounded M-subgraphs for q > 2, or
even for finding their number would be interesting and useful, as the number of bounded
M-subgraphs gives the dimension of the polynomial solution space of a hypergeometric
system, and also the multiplicity of an associated prime of a lattice basis ideal. In the case
where I (M) is a zero-dimensional complete intersection, such an algorithm can be produced
from the results in [2]. The combinatorial computation of the number of bounded congruence
classes determined by a binomial ideal in a semigroup ring is open.

The system of differential equations I (M) ⊆ C[∂] is a special case in the class of Horn
hypergeometric systems. That class of systems takes center stage in our companion article [3],
in the more general setting of binomial D-modules that are introduced there. The input data
for these consist of a binomial ideal I and a vector β of complex parameters. The special case
where I is prime corresponds to the A-hypergeometric or GKZ hypergeometric systems, after
Gelfand et al. [7,8]; see also [17]. Binomial primary decomposition is crucial for the study
of Horn systems, and their more general binomial relatives, because the numerics, algebra,
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Fig. 1 The M-subgraphs of N
3

for Example 5.4

b

a

c

and combinatorics of their solutions are directly governed by the corresponding features of
the input binomial ideal. The dichotomy between components that are toral or not, for exam-
ple, distinguishes between the choices of parameters yielding finite- or infinite-dimensional
solution spaces; and in the finite case, the multiplicities of the toral components enter into
simple formulas for the dimension. The use of binomial primary decomposition to extract
invariants and reduce to the A-hypergeometric case underlies the entirety of [3].

We will state two of the main results in that article to illustrate this point, but first we need
a definition.

Definition 5.5 Let A be as in Convention 4.1, and let I ⊆ C[∂] be an A-graded binomial
ideal. We think of C[∂] as a (commutative) subring of the Weyl algebra Dn of linear partial
differential operators (with polynomial coefficients) in x1, . . . , xn , ∂1, . . . , ∂n . For β ∈ C

d ,
consider the left Dn-ideal

HA(I ;β) = I +
〈

n∑

j=1

ai j x j∂ j − βi : i = 1, . . . , d

〉

⊆ Dn .

The quotient Dn/HA(I ;β) is called a binomial D-module.

The importance of binomial primary decomposition in the study of hypergeometric sys-
tems and binomial D-modules is evident in the following result.

Theorem 5.6 [3, Theorem 6.8] Let I be an A-graded binomial ideal, and suppose that
I = ∩Cρ,J is a (binomial) primary decomposition. If β is generic, then

Dn

HA(I ;β)
=

⊕ Dn

HA(Cρ,J ;β)
.

The following theorem showcases the difference between toral and Andean behavior in
the differential setting.

Theorem 5.7 [3, Theorems 4.9 and 6.10, Corollary 5.7] Let C be a primary A-graded bino-
mial ideal, whose radical is Iρ,J .

• If C is toral, then HA(C;β) has a finite dimensional solution space for all β ∈ C
d of

dimension at least µρ,J vol(AJ ), where µρ,J is the multiplicity of Iρ,J as an associated
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prime of C, and vol(AJ ) is the volume of the convex hull of the origin in C
d and the

columns of AJ , normalized so that the unit simplex has volume 1. For generic β, the
dimension of the solution space is exactly µρ,J vol(AJ ).

• If C is Andean, then for generic β, HA(C;β) = Dn, and therefore HA(C;β) has no
nonzero solutions. If HA(C;β) �= Dn, then the solutions of HA(C;β) have uncountable
dimension as a vector space over C.

Remark 5.8 The results in [3] referenced in Theorems 5.6 and 5.7 contain very specific
descriptions of the genericity requirements for the parameters β.

Theorems 5.6 and 5.7 imply that, for generic parameters β, the solution space of a sys-
tem HA(I ;β) splits as the direct sum of the solutions of the systems HA(Cρ,J ;β) where
Cρ,J runs over only the dimension d toral components of I , thereby providing a formula for
the generic dimension of this system. Our detailed information regarding such components
can be utilized to write a basis for the solution space of HA(Cρ,J ;β) in terms of the solu-
tions of the underlying GKZ-type system HAJ (Iρ;β). Since the solutions of GKZ systems
for generic parameters can be explicitly written down, the basis mentioned above is also
very explicit.
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