
Copy and Remove as Dynamic Operators

Carlos Arecesa, Hans van Ditmarschb, Raul Fervaria, Bastien Maubertc and
François Schwarzentruberd

aCONICET & FAMAF, Universidad Nacional de Córdoba, Argentina;
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ABSTRACT
In this article we present a modal logic that extends the basic modal logic ML with
two dynamic operators: copy (cp), which replicates the current model, labelling each
copy with a different propositional symbol and respecting accessibility relations even
between distinct copies; and remove (rm), which deletes paths in the model that
satify certain intermediate conditions. We call the resulting logic ML(cp, rm). We
study its computational complexity, and its relative expressivity with respect to
(static) modal logics ML and ML(�−), and the dynamic epistemic Action Model
Logic, AML.
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1. Introduction

Modal logic [16, 17] is a family of languages conceived to reason about different modes
of truth. The most popular semantics of these logics is usually given in terms of
relational models [34], as many modes of truth can be represented in this setting. Some
examples are: necessity, obligation, knowledge, belief and temporality, just to name a
few. Thus, the evolution or change in those concepts can be seen as transformations
in the underlying relational model.

Over the last decades, several approaches appeared in which modalities are inter-
preted by a transformation of the model. In these logics, the semantics of such dynamic
modality is given in terms of a binary relation between pointed relational models, where
the second argument of the relation is the transformed model. Some examples of this
kind of logics are the so-called sabotage logic [45], wherein states or arrows are deleted
from a model; dynamic epistemic logics [50] that focus on such model changing oper-
ators in view of modelling change of knowledge or belief (the standard interpretation
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for the basic modalities in that setting); graph modifiers [10], gathering different kinds
of modifications on the model; or the family of memory/hybrid logics [39, 7], in which
the dynamic operators change the valuation of the model. In [2, 3, 23, 4] a new line of
contributions to model-update logics, motivated by van Benthem’s sabotage logic, is
developed. Therein, three kinds of updates on the accessibility relation are considered:
deleting an edge (such as in sabotage), adding an edge, and swapping around an edge.
These modifications are studied both globally (anywhere in the model) and locally
(from the evaluation point), giving rise to the so-called relation-changing logics. Our
contributions in this article advance this last line of work.

In, e.g., [4], it is pointed out that, when dealing with relation-changing operators,
there is a trade-off between expressive power and computational complexity. More
precisely, all the concrete logics studied therein are very expressive (for instance, they
lack the tree model property and can enforce infinite models). As a downside, the
model checking problem for these logics is PSpace-complete, whereas their satisfi-
ability problem is undecidable [6, 5]. Another example of very expressive relation-
changing logics with untractable reasoning tasks is the modal separation logic family
from [19, 20, 21, 22]. Separating connectives are, in essence, relation-changing op-
erators. In the aforementioned works, it is shown that even interpreted over weakly
functional models (the most common models in separation logics), these logics are very
expressive and their reasoning tasks become untractable very quickly. Over arbitrary
models they are easily shown untractable, since the separating conjunction ∗ com-
bined with the emptiness test emp is able to express the undecidable global sabotage
operator from [2, 4].

From the literature discussed in the last paragraph, we can extrapolate that rea-
soning with relation-changing operators is computationally expensive. This is a fair
conclusion, since the above-mentioned papers explore thoroughly the properties of a
wide range of logics. However, there are more specific instances of relation-changing
logics which are more tractable. Arrow update logic [32], a dynamic framework in dox-
astic logic, is a relation-changing logic that can be embedded, via reduction axioms,
into the basic modal logic ML. Even though such embedding might involve an expo-
nential blow-up on the size of the formula, the satisfiability problem can be solved,
at worst, in ExpSpace. In [24, 25], a family of relation-changing operators that rep-
resent epistemic steps of inference is presented. In particular, the operators model
the fact that an agent gains introspective information. These logics are also effec-
tively embedded into decidable logics (e.g., the propositional dynamic logic PDL [30]);
therefore their satisfiability problem is decidable. The particularity in both approaches
is that they were designed in order to represent very specific phenomena. Also, up-
dates are performed under certain conditions that can be expressed syntactically in
the languages, which makes them more controlled. By following these, by no mean
exhaustive, examples of updates, in this paper we focus on the design of a dynamic
logic with good expressivity and computational properties. Moreover, we will see how
different fragments of this logic are related to action model logic [13].

Our Contributions. In this article, we extend the modal logic ML(cp, rm) from [8,
9], which is obtained from ML with the addition of two primitive operators called
copy and remove. The ‘remove’ primitive is a relation-changing operator that deletes
paths in a model, according to intermediate conditions defined syntactically. This
operation generalises the ‘weaker remove’ from [8, 9], which only allows sequential
removal, one at a time. Herein, we extend this feature with the simultaneous deletion
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according to a set of path descriptions. Moreover, in such descriptions, intermediate
tests are formulas from the full language ML(cp, rm), whereas in [8, 9] the remove
operator uses only propositional tests. The ‘copy’ primitive is a domain, relation and
valuation changing operator; it replicates the original model, labels each copy with
a new propositional symbol, and adds new edges between the worlds of each copy,
emulating the original accessibility relation. We study model theoretic properties of
this logic and its complexity.

As an example of what one can do with this logic, we show an embedding of action
model logic (AML) into ML(cp, rm): we show that every action model can be simulated
by a combination of the copy and remove operators. This is in line with the previously
known result that, on the class of finite models, action model execution corresponds
to model restriction (‘remove’) on a bisimilar copy (‘copy’) of the initial model [46].
The ‘remove’ operator we propose is akin to the generalised arrow updates of [33],
continuing the work started in [32]. Their approach is also known to have equal ex-
pressivity with action model logic. But the copy and remove operators we propose are
more procedural (whereas the operators in [33] are more of declarative nature). We
also provide a translation from ML(cp, rm) to AML extended with the inverse operator
�−, and where actions in action models have postconditions (also called effects). These
results combined give us a way to, from any formula in action model logic, obtain an
equivalent formula in action model logics such that action models are in a normal
form, in the sense of the action emulation relation of [52]. Moreover, action models
in the obtained formula are of size at most four. It is worthwhile to notice that the
generalisation of the remove operator to handle simultaneous deletions from a given
set of path descriptions, and tests from the full language, is crucial at this point. As
we will see later on the paper, both new features are key for establishing a relation
between ML(cp, rm) and AML, making a fair expressivity comparison.

Interestingly, ML(cp, rm) falls between the basic modal logic ML and ML extended
with �−, in terms of expressive power, but it is exponentially more succinct. The
picture below illustrates these results.

ML(cp, rm1)

ML

ML(cp, rm)

ML(�−)

AMLE(�−)

PSPACE-complete SAT problem:

NEXPTIME-complete SAT problem:

ML(cp, rm1) is the fragment of ML(cp, rm) restricted to deletions of length 1.
AMLE(�−) is the extension of AML with effects and the converse modality �−. From
left to right, expressivity increases: arrows represent strictly more expressive than,
two-sided arrows represent equally expressive as. From bottom to top, succinctness
increases.

A version of ML(cp, rm) was first introduced in [8, 9]. In this article, we extend
previous results and present some new. Our contributions are summarised below:

• We present the modal logic of copy and remove, denoted ML(cp, rm). This logic
extends the one presented in [8, 9] by allowing: simultaneous deletions; and path
expressions defined with test formulas of the full language.
• We introduce the notion of path bisimulation and prove that ML(cp, rm) is in-

variant under such notion.
• We prove that the expressivity of ML(cp, rm) lies strictly between the basic modal

logic ML and the modal logic with inverse ML(�−).
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• We provide a translation from the action model logic AML into ML(cp, rm1).
• Conversely, ML(cp, rm) formulas can be translated into AMLE(�−).
• By composing the two aforementioned translations, any AML formula can be

translated into an AMLE formula with action models of size at most 4.
• We establish the computational complexity of ML(cp, rm) and some of its frag-

ments. We also establish the complexity of AMLE(�−) and provide a tableaux
calculus for this logic.

Outline. In Section 2, we introduce the main definitions to tackle the rest of the
paper. Section 3 is devoted to introduce ML(cp, rm), generalising and reviewing the
work in [8, 9]. In Section 4 we introduce AML and intuitively show its relation with
ML(cp, rm). Sections 5 and 6 investigate translations between AML into ML(cp, rm).
Section 7 discusses our complexity results. Finally, Section 8 positions our work with
respect to related results, whereas Section 9 provides final remarks.

2. Technical Preliminaries

In this section we introduce central definitions concerning models, bisimulations and
the syntax and semantics of the basic modal logic ML and its extension with the con-
verse modality �−. In the rest of the paper, let Prop be a countable set of propositional
symbols and Mod be a finite set of modal symbols.

We start by introducing the structures in which we interpret formulas of any of the
logics we consider.

Definition 2.1 (Relational Models). A relational model (or model) is a tuple M =
〈W,R, V 〉, where: W is a non-empty set of states or worlds; R ⊆ Mod ×W ×W is
the accessibility relation; and V : Prop → 2W is the valuation function. For R ⊆
Mod×W ×W , we will denote Ra = {(w,w′) | (a,w,w′) ∈ R}.

Let w ∈W ; we call (M, w) a pointed model, with parentheses usually dropped.

Syntax of ML and ML(�−) is defined as follows:

Definition 2.2 (Syntax). The set of formulas of ML(�−) is defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �aϕ | �−a ϕ,

where p ∈ Prop and a ∈ Mod.
Let ♦aϕ be a shorthand for ¬�a¬ϕ, and ♦−a ϕ for ¬�−a ¬ϕ. Other Boolean operators

are defined in the usual way. ML is the fragment of ML(�−) where �−a does not appear.
Also, for any formula ϕ we define Mod(ϕ) := {a ∈ Mod | �a or �−a appears in ϕ}.
Similarly, Prop(ϕ) := {p ∈ Prop | p appears in ϕ}.

We now present the semantics.

Definition 2.3 (Semantics). Let M = 〈W,R, V 〉 be a relational model with w ∈W ;
the satisfaction relation |= between models and ML(�−) formulas is inductively defined

4



as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= �aϕ iff for all v ∈W,wRav implies M, v |= ϕ
M, w |= �−a ϕ iff for all v ∈W, vRaw implies M, v |= ϕ.

We say that a formula ϕ is satisfiable if there is a pointed model M, w such that
M, w |= ϕ, and it is valid (notation: |= ϕ) if ϕ holds in every pointed model.

We will be interested in investigating and comparing the expressive power of the dif-
ferent languages we will introduce. Hence, suitable notions of bisimulation are crucial.
A bisimulation is a relation between models that share similar structural properties.
The main goal is to characterise the exact structural properties that a logic can cap-
ture. Now, we introduce the basic notion of bisimulation [41], together with some of
its variants (see., e.g. [40]).

Definition 2.4 (Bisimulations). Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two
relational models; a non-empty relation Z ⊆ W ×W ′ is a bisimulation between M
and M if wZw′ implies:

(atom) w ∈ V (p) if and only if w′ ∈ V ′(p), for all p ∈ Prop;
(zig) if wRav then there is v′ ∈W ′ such that w′R′av

′ and vZv′;
(zag) if w′R′av

′ then there is v ∈W such that wRav and vZv′.

We writeM, w -M′, w′ if there is a bisimulation Z betweenM andM′ with wZw′.

Definition 2.5 (Two-way bisimulations). LetM = 〈W,R, V 〉 andM′ = 〈W ′, R′, V ′〉
be two relational models; a non-empty relation Z ⊆W ×W ′ is a two-way bisimulation
between M and M if wZw′ implies that all conditions in Definition 2.4 hold, and:

(zig−) if vRaw then there is v′ ∈W ′ such that v′R′aw
′ and vZv′;

(zag−) if v′R′aw
′ then there is v ∈W such that vRaw and vZv′.

We write M, w -− M′, w′ if there is a two-way bisimulation Z between M and M′
with wZw′.

Definition 2.6 (P -bisimulations and P -two-way bisimulations). Let M = 〈W,R, V 〉
and M′ = 〈W ′, R′, V ′〉 be two relational models, and let P ⊆ Prop; a non-empty
relation Z ⊆ W ×W ′ is a P -bisimulation (resp., a P -two-way bisimulation) between
M and M′ if Z is as in Definition 2.4 (resp., as in Definition 2.5), with the (atom)
condition restricted to propositional symbols in P .

We write M, w -P M′, w′ (resp., M, w -−P M′, w′) if there is a P -bisimulation
(resp., a P -two-way bisimulation) Z between M and M′ with wZw′.

The following proposition states the correspondence between the different notions
of bisimulation and formula equivalence (see e.g., [16, 17, 40]).

Proposition 2.7 (Invariance). Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two
relational models, with w ∈W and w′ ∈W ′, and let P ⊆ Prop; then,

• M, w -M′, w′ implies M, w |= ϕ iff M′, w′ |= ϕ, for all ϕ ∈ ML;
• M, w -−M′, w′ implies M, w |= ϕ iff M′, w′ |= ϕ, for all ϕ ∈ ML(�−);
• M, w -P M′, w′ implies M, w |= ϕ iff M′, w′ |= ϕ, for all ϕ ∈ ML with
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Prop(ϕ) ⊆ P ;
• M, w -−P M′, w′ implies M, w |= ϕ iff M′, w′ |= ϕ, for all ϕ ∈ ML(�−) with

Prop(ϕ) ⊆ P .

We now define how to compare the expressive power of two logics.

Definition 2.8 (L1 � L2). Let L1 and L2 be two logical languages. We say that L1 is
at most as expressive as L2, denoted L1 � L2, if for every L1 formula ϕ there exists an
L2 formula ϕ′ such that for every model M, w,

M, w |= ϕ if and only if M, w |= ϕ′.

M, w is seen as a model of L1 on the left and as a model of L2 on the right, and we use
in each case the appropriate semantic relation. The existence of the formula ϕ′ above
will be usually proved by defining a function t : L1 → L2 such that t(ϕ) = ϕ′.

We say that L1 is strictly less expressive than L2 (notation L1 ≺ L2) if L1 � L2 but
L2 6� L1; and L1 and L2 are equally expressive (L1 ≈ L2) if L1 � L2 and L2 � L1.

Finally, we define the size of formulas. While this notion is usually defined as the size
of a syntactic tree representing the formula, we will use instead a notion of size based
on a more compact representation of formulas, namely where identical subformulas
are merged. The syntactic tree thus becomes a directed acyclic graph (DAG).

Definition 2.9 (DAG size). The DAG size of a formula ϕ is the number of distinct
subformulas of ϕ. For ML(�−), the set Sub(ϕ) of subformulas of a formula ϕ is induc-
tively defined as follows:

Sub(p) = {p}
Sub(¬ϕ) = Sub(ϕ) ∪ {¬ϕ}

Sub(ϕ ∧ ψ) = Sub(ϕ) ∪ Sub(ψ) ∪ {ϕ ∧ ψ}
Sub(�aϕ) = Sub(ϕ) ∪ {�aϕ}
Sub(�−a ϕ) = Sub(ϕ) ∪ {�−a ϕ}.

The size of an ML(�−) formula ϕ is then defined as ‖ϕ‖ = |Sub(ϕ)|.

3. The Modal Logic of Copy and Remove

In this section we introduce ML(cp, rm), which is the basic modal logic ML extended
with two operators, cp and rm. These operators are able to perform changes on the
model in which they are evaluated: the cp operator creates copies of the model, whereas
the rm operator removes edges in the model. The logic follows the lines of other
model-update logics like sabotage [45, 12], graph modifiers [10], arrow updates [32]
and relation-changing logics [2, 4]. Moreover, as we will discuss in detail later, it has
connections with model updates used in dynamic epistemic logics [50].

3.1. Syntax and Semantics

The syntax of ML(cp, rm) formulas and of path expressions are defined by mutual
induction. Path expressions are used in the rm operator to define what edges of a
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model should be removed. For defining path expressions we borrow ideas from PDL-
programs [30] and path expressions in query languages such as XPath (see e.g., [43]).

Definition 3.1 (Syntax). The set of path expressions and formulas are defined by
mutual induction in the non-terminal symbols π and ϕ, respectively, as follows:

π ::= a | ϕ | π;π,
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �aϕ | rm(Π)ϕ | cp(Q, q)ϕ,

where: p ∈ Prop; a ∈ Mod; Π is a finite set of path expressions; Q is a finite set of
propositional symbols; and q ∈ Q. Other operators are defined as usual. Sometimes
we write rm(π) and cp(q, q), when Π = {π} and Q = {q}.

The set of all formulas is denoted by ML(cp, rm). ML(cp) (resp., ML(rm)) is the frag-
ment of ML(cp, rm) that does not use the remove (resp., copy) operator. ML(cp, rm1), is
the fragment of ML(cp, rm) that only involves path expressions of the shape ϕ1; a;ϕ2,
i.e., that only removes paths of length one (see the semantics of the rm operator below).
Finally, ML(rm1) is the fragment of ML(cp, rm1) that does not use the copy operator.

Intuitively, a path expression of the form a refers to all a-edges in a given model;
one of the form ϕ refers to all worlds that verify ϕ, a world being a path of length 0;
and an expression of the form π;π′ denotes all the paths which are concatenations of
a path denoted by π with a path denoted by π′.

The intuitive meaning of the operation rm(Π)ϕ is that ϕ holds after having deleted
(simultaneously) all edges that appear in paths matching some path expression in Π.
The operator cp(Q, q)ϕ means that after creating one copy of the initial model for
each proposition p ∈ Q, ϕ is true in the copy associated with q.

Below we introduce the notion of path in a model. Intuitively, a path is a sequence
of alternations of worlds and modal symbols from Mod. This definition is crucial in
the semantics of our remove operator.

Definition 3.2. (Path) Let M = 〈W,R, V 〉 be a model; a path in M is a sequence
w0a1w1 . . . anwn ∈ W × (Mod ×W )∗ such that, for all 0 ≤ i < n, (wi, wi+1) ∈ Rai+1

.
Given two paths σ = w0a1 . . . anwn and σ′ = w′0a

′
1 . . . a

′
mw
′
m such that wn = w′0,

we define their concatenation σ;σ′ = w0a1 . . . anwna
′
1 . . . a

′
mw
′
m. Finally, we define

edges(σ) = {(ai, wi−1, wi) | 1 ≤ i ≤ n}, i.e., edges(σ) is the set of edges in σ.

We now define the interpretation of path expressions in a model.

Definition 3.3 (Semantics of path expressions). LetM = 〈W,R, V 〉 be a model and
π a path expression. We define the set of paths PM(π) by induction on π as follows:

PM(a) = {wau | (w, u) ∈ Ra}
PM(ϕ) = {w | M, w |= ϕ}
PM(π;π′) = {σ;σ′ | σ ∈ PM(π), σ′ ∈ PM(π′) and σ;σ′ is defined}.

Given a set Π of path expressions, PM(Π) is defined as follows:

PM(Π) =
⋃
π∈Π

PM(π).

We define how the two dynamic operators cp and rm modify a model.
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Definition 3.4 (Updated Models). Let M = 〈W,R, V 〉 be a model and Q ⊆ Prop;
we define the updated model Mcp(Q) as:

Mcp(Q) = 〈Wcp(Q), Rcp(Q), Vcp(Q)〉, where
Wcp(Q) = W ×Q
Rcp(Q) = {(a, (w, q), (w′, q′)) | (a,w,w′) ∈ R}
Vcp(Q)(p) = {(w, q) | w ∈ V (p)} for p ∈ Prop \Q
Vcp(Q)(q) = {(w, q) | w ∈W} for q ∈ Q.

Let Π be a set of path expressions, we define the updated model Mrm(Π) as:

Mrm(Π) = 〈W,Rrm(Π), V 〉, where
Rrm(Π) = R \

⋃
σ∈PM(Π) edges(σ).

We can now define the semantics of ML(cp, rm).

Definition 3.5 (Semantics). Let M = 〈W,R, V 〉 be a relational model, and w ∈ W ;
the satisfiability relation |= between models and ML(cp, rm) formulas is inductively
defined as follows. We only provide the semantics for the new operators, the others
remain as before.

M, w |= rm(Π)ϕ iff Mrm(Π), w |= ϕ
M, w |= cp(Q, q)ϕ iff Mcp(Q), (w, q) |= ϕ.

We discuss some examples to illustrate the behaviour of the new operators.

Example 3.6. Let us consider the following model M:

p q q qa a b
w

Evaluating the formula cp({p1, p2}, p1)♦a♦a♦b>, we first get the following model, in
which we have two copies of the original one: one satisfying p1 and one satisfying p2:

p, p1 q, p1 q, p1 q, p1
a a b

p, p2 q, p2 q, p2 q, p2
a a b

(w, p1)

(w, p2)

a a ba a b

Next we have to evaluate ♦a♦a♦b> at (w, p1), since the copy labelled by p1 is the
one designated as the ‘current copy’. Notice that this formula is satisfied at w in the
original model. Notice also that cp({p1, p2}, p1) does not introduce new information
about successors: each copy of a successor in the original model is also a successor in
the new model. It means that modal information remains unchanged, hence ♦a♦a♦b>
holds at (w, p1) in the new model.

Now, let us see some properties of rm. The example shows the non-commutativity
of the operator. Moreover, we illustrate the difference between sequential and simul-
taneous deletion.

Example 3.7. Let us consider the following model M:
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a b c
w

Changing the order in which deletions are performed changes the effects of the dele-
tions. Consider rm(b; c)rm(a; b)♦a>. After evaluating rm(b; c), we get the model

a
w

When we evaluate rm(a; b), no deletions are done (the current model has no a-
edges followed by b-edges), then ♦a> holds at w. On the other hand, if we consider
rm(a; b)rm(b; c)♦a>, after evaluating rm(a; b) we get:

c
w

The operation rm(b; c) does not remove edges, and the formula ♦a> does not hold at
w. Finally, with the formula rm({a; b, b; c}), we remove all the edges in M. It is clear
that the effect of sequential deletions with a single path expression inside of modalities
can be captured by the logics from [8, 9]. However, the simultaneous deletion w.r.t.
a set of path expressions cannot be captured in that setting. Thus, the logic in this
paper is more expressive than the one in [8, 9].

To define the DAG size of a ML(cp, rm) formula, in addition to the number of
different subformulas, we also have to take into account the size of sets Q in copy
operators, and the length of path expressions in remove operators.

Definition 3.8 (DAG size in ML(cp, rm)). For ML(cp, rm), Sub(ϕ) is inductively de-
fined as for ML(�−) together with the following clauses:

Sub(rm(Π)ϕ) = Sub(ϕ) ∪
⋃
π∈Π

⋃
ϕ′∈π

Sub(ϕ′) ∪ {rm(Π)ϕ}

Sub(cp(Q, q)ϕ) = Sub(ϕ) ∪ {cp(Q, q)ϕ}.

The length |π| of a path expression reflects the length of paths it denotes, and is
defined as the number of modal symbols that appear in it:

|a| = 1

|ϕ| = 0

|π;π′| = |π|+ |π′|.

The size of an ML(cp, rm) formula ϕ is then defined as ‖ϕ‖ = |Sub(ϕ)|+ maxπ∈ϕ |π|.

3.2. Bisimulations and Expressive Power

We start with a lemma that states that a model resulting from cp(Q) is bisimilar to
the original model if we ignore propositional symbols in Q.

Lemma 3.9. Let M, w be a pointed model, Q ⊆ Prop and P = Prop \ Q. It holds
that, for every q ∈ Q, M, w -P Mcp(Q), (w, q).
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Proof. The lemma follows from Definition 3.4. Define the relation Z = {(w, (w, q)) |
w ∈W and q ∈ Q}. We prove that Z is a P -bisimulation. Let (w, (w, q)) ∈ Z.

(P -atom) For p ∈ P , w ∈ V (p) if, and only if, (w, q) ∈ Vcp(Q)(p).
(zig) If there is w′ such that wRaw

′, then (w, q)Ra(w
′, q), and w′Z(w′, q).

(zag) If there is (w′, q′) such that (w, q)Rcp(Q)a
(w′, q′), then wRaw

′, and w′Z(w′, q′).

This proves the lemma.

The expressive power of several modal logics with model-update operators has been
extensively studied in [2, 3, 23, 4]. In general, adding relation-changing operators to
ML increases the expressive power.

Proposition 3.10. ML ≺ ML(rm) � ML(cp, rm).

Proof. Since ML is a fragment of ML(rm) it is trivial than ML � ML(rm) (also that
ML(rm) � ML(cp, rm)). To prove that it is strictly less expressive, consider the follow-
ing models.

w

a a
M

w′

a
M′

According to Definition 2.4,M, w -M′, w′, and thus no formula of ML can distinguish
the two. However, M, w 6|= rm(a; a)♦a> while M′, w′ |= rm(a; a)♦a>.

The question of whether ML(cp, rm) is strictly more expressive than ML(rm) is still
unanswered. We conjecture that this is actually the case.

As our goal is to show bisimulation invariance for our logic, we need to introduce a
suitable notion of bisimulation for ML(cp, rm), which we name path-bisimulations.

Definition 3.11 (Path bisimulations). LetM = 〈W,R, V 〉 andM′ = 〈W ′, R′, V ′〉 be
two models; a non-empty relation Z ⊆ (W × 2Mod×W×W ) × (W ′ × 2Mod×W ′×W ′) is a
path bisimulation between M and M′, if (w, S)Z(w′, S′) implies:

(atom) w ∈ V (p) if and only if w′ ∈ V ′(p), for all p ∈ Prop;
(zig) if wSav then there is v′ ∈W ′ such that w′S′av

′ and (v, S)Z(v′, S′);
(zag) if w′S′av

′ then there is v ∈W such that wSav and (v, S)Z(v′, S′);
(path) for all Π ⊆ Path, (w, T )Z(w′, T ′)

where T = S\
⋃
σ∈P〈W,S,V 〉(Π) edges(σ) and T ′ = S\

⋃
σ∈P〈W ′,S′,V ′〉(Π) edges(σ).

Notice how, in the (path) condition, once (w, S) and (w′, S′) are related by Z, w
and w′ should also enter the bisimulation with any possible update of S and S′ by an
arbitrary path deletion on the models where the accessibility relations are S and S′.

Given M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉, we write M, w -pathM′, w′ if there
is a path bisimulation Z between M and M′ where (w,R)Z(w′, R′).

The following lemma states that cp preserves path bisimulations.

Lemma 3.12. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two models, w ∈W and
w′ ∈W ′. Then, M, w -pathM′, w′ implies Mcp(Q), (w, q) -pathM′cp(Q), (w

′, q).

Proof. We have to define a bisimulation Z betweenMcp(Q) andM′cp(Q). Because we
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have M, w -pathM′, w′, there exists Z such that (w,R)Z(w′, R′). We define:

Z ′ = {(((v, q), Scp(Q)), ((v
′, q), S′cp(Q))) | (v, S)Z(v′, S′)}.

Take (v, q), (v′, q), S and S′ such that ((v, q), Scp(Q))Z
′((v′, q), S′cp(Q)). By def-

inition, (v, S)Z(v′, S′). The condition (atom) holds for Z ′ because it holds for
Z, and (v, q) and (v′, q) are both labelled by the symbol q. For (zig), assume
((v, q), Scp(Q))Z

′((v′, q), S′cp(Q)) and ((v, q), (u, r)) ∈ (Scp(Q))a. Then we know (v, u) ∈
Sa. Because (v, S)Z(v′, S′), by (zig) there is some u′ such that (v′, u′) ∈ S′a.
Hence, we have ((v′, q), (u′, r)) ∈ (S′cp(Q))a such that ((u, q), Scp(Q))Z

′((u′, q), S′cp(Q)).
The proof for (zag) is analogous to the one for (zig). For (path), notice that for
all Π ⊆ Form, (v, S\

⋃
σ∈P〈W,S,V 〉(Π) edges(σ))Z(v′, S′\

⋃
σ∈P〈W ′,S′,V ′〉(Π) edges(σ)). For

Scp(Q) and S′cp(Q), we need to consider also path expressions π involving propo-
sitional symbols in Q. It is easy to see that by definition of Z ′, we also have
((v, q), S\

⋃
σ∈P〈W,S,V 〉(Π) edges(σ))Z ′((v′, q), S′\

⋃
σ∈P〈W ′,S′,V ′〉(Π) edges(σ)).

Therefore, we can conclude that Mcp(Q), (w, q) -pathM′cp(Q), (w
′, q).

Now, the intended property:

Proposition 3.13 (ML(cp, rm) invariance for -path). Let M, w and M′, v be two
pointed models. Then,M, w -pathM′, v implies that, for all ϕ ∈ ML(cp, rm), M, w |=
ϕ if and only if M′, v |= ϕ.

Proof. The inductive hypothesis needs to be generalised as follows. Let M =
〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two relational models, with w ∈ W , w′ ∈ W ′.
Let Q1, . . . , Qn be any enumeration of finite subsets of Prop. For i < n, we define Wi

inductively as: W0 := W and Wi+1 := Wi×Qi+1 (W ′i is defined analogously). For sim-
plicity, sometimes for ((w, p1), . . . , pi) ∈ Wi, we will write wp1, . . . , pi. The valuation
Vi is defined as follows (V ′i is analogous):

Vi(p) := {wα | α ∈ (Q1 × . . .×Qi) and (w ∈ V (p) or p appears in α)}.

We will show that for all i ∈ N, Si ⊆ W 2
i , S′i ⊆ W ′2i and ϕ ∈ ML(cp, rm), if

〈Wi, Si, Vi〉, wi -path 〈W ′i , S′i, V ′i , 〉, w′i then

〈Wi, Si, Vi〉, wi |= ϕ if and only if 〈W ′i , S′i, V ′i , 〉, w′i |= ϕ.

The proof is by induction on the structure of ϕ. The cases for p ∈ Prop and Boolean
connectives are straightforward. Also, for ϕ = ♦aψ, it is as for ML but using (zig),
(zag) and (Si)a and (S′i)a as accessibility relations. Let us consider cp and rm.

[ϕ = cp(Q, q)ψ]: Suppose 〈Wi, Si, Vi〉, wi |= cp(Qi+1, qi+1)ψ. Then, by |= for cp,

〈Wi, Si, Vi〉cp(Qi+1), (wi, qi+1) |= ψ. Since 〈Wi, Si, Vi〉, wi -path
P 〈W ′i , S′i, V ′i 〉, w′i, by

Lemma 3.12, 〈Wi, Si, Vi〉cp(Qi+1), (wi, qi+1) -path 〈W ′i , S′i, V ′i 〉cp(Qi+1), (w
′
i, qi+1),

then by IH we get 〈W ′i , S′i, V ′i 〉cp(Qi+1), (w
′
i, qi+1) |= ψ. Hence, 〈W ′i , S′i, V ′i 〉, w′i |=

cp(Qi+1, qi+1)ψ.
[ϕ = rm(Π)ψ]: Suppose 〈Wi, Si, Vi〉, wi |= rm(Π). Then, by |= for rm, we have

〈Wi, Si\
⋃
σ∈P〈Wi,Si,Vi〉(Π) edges(σ), Vi〉, wi |= ψ.

By (path), (wi, Si\
⋃
σ∈P〈Wi,Si,Vi〉(Π) edges(σ))Z(w′i, Si\

⋃
σ∈P〈W ′i ,S′i,V ′i 〉(Π)

edges(σ)).

11



Hence, by IH, 〈W ′i , S′i\
⋃
σ∈P〈W ′i ,S′i,V ′i 〉(Π)

edges(σ), V ′i 〉, w′i |= ψ. As a consequence,

〈W ′i , S′i, V ′i 〉, w′i |= rm(Π).

This concludes the proof.

The clause (path) in the definition of path bisimulations is ‘syntactic’, since it
explicitly mentions a set of path expressions Π. For model theoretical purposes, a
purely semantic condition would be nicer. Moreover, the condition makes it difficult
to check path bisimilarity. However, it serves our purpose: to characterise the rel-
ative expressive power of ML(cp, rm) with respect to ML and ML(�−). In order to
show ML(cp, rm) ≺ ML(�−), we need to show that that ML(cp, rm) � ML(�−) and
that ML(�−) 6� ML(cp, rm). To show that ML(cp, rm) � ML(�−) we need to provide
an equivalence preserving translation from ML(cp, rm) into ML(�−). This translation
exists, and it will be proved later on the paper. At this stage we only show that
ML(�−) 6� ML(cp, rm).

Proposition 3.14. ML(�−) 6� ML(cp, rm).

Proof. In order to show the proposition, we need to show that there are two path
bisimilar models that can be distinguished in ML(�−). Consider the following models:

w

a

M

w′

a

a

M′

To check that M, w -pathM′, w′, notice that any path on one model can be mim-
icked in the other. Removing paths of any size, leads to the empty relation in both
models. Thus, (zig) and (zag) are satisfied both before and after every possible removal.
But the models are distinguishable in ML(�−):M, w |= ♦−>, butM′, w′ 6|= ♦−>.

4. Action Model Logic

Action model logic (AML) [13] is a well-known dynamic epistemic logic, originally de-
signed to model information updates. It is an extension of the basic epistemic logic
with a dynamic operator 〈E , e〉 for the execution of actions. This operator is param-
eterised by a pointed action (or event) model (E , e). Formally, an action model is a
multi-graph, where nodes can be decorated with formulas that act as pre and post-
conditions (the latter are also called effects). An action model usually represents a
multi-agent information changing scenario, and they are treated as syntactic objects
in modal operators.

It is known that this modality can be eliminated into an exponentially larger formula
in the basic epistemic language. As a consequence, deciding model checking for AML
is PSpace-complete, while deciding satisfiability is NExpTime-complete [11].

4.1. Syntax and Semantics

In this section we present the main ingredients of action model logic. For simplicity,
we present definitions of action models and formulas that are mutually dependent,
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but formal definitions by double induction can be found in [50, p.149]. Notice that
we consider as the base language an extended version of AML, and then we define
fragments. The full language is denoted AMLE(�−).

Definition 4.1 (Action Models). An action model E is a tuple E = 〈E,→, pre, eff〉,
where: E is a non-empty finite set of action points; → is a set of relations →a⊆ E×E,
with a ∈ Mod; pre : E → AMLE(�−) is a precondition function; and eff : E → Prop→
AMLE(�−) is an effect function (also known as the postcondition function), such that
for every e ∈ E, eff(e) is the identity function on all but a finite set of propositional
symbols, that we write dom(eff(e)).

If E = 〈E,→, pre, eff〉 is an action model and F ⊆ E a subset of action points, (E , F )
is a multi-pointed action model. When F = {e} is a singleton we simply write (E , e)
and say pointed action model. We will also often drop parentheses. If for every e ∈ E
eff(e) is the identity function, then E is called a purely informative action model. This
means that it does not change the worlds in which it occurs, but only modifies the
accessibility relations. We may therefore omit the effect function in the description of
such action models.

Finally, for an action model E = 〈E,→, pre, eff〉 we define its set of modal and
propositional symbols:

Mod(E) =
⋃

→a∈→
{a} Prop(E) =

⋃
e∈E
{Prop(pre(e))} ∪

⋃
e∈E,p∈Prop

{Prop(eff(e)(p))},

and let its size be the number of action points: |E| = |E|.

We can now define the language of action model logic.

Definition 4.2 (Syntax). The set of formulas of action model logic is defined by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �aϕ | �−a ϕ | [E , F ]ϕ,

where p ∈ Prop, a ∈ Mod and (E , F ) is a multi-pointed action model.
As usual, 〈α〉ϕ is a shorthand for ¬[α]¬ϕ, ♦−a ϕ for ¬�−a ¬ϕ, and other operators are

defined in the usual way.
The set of formulas generated by the non-terminal ϕ above is denoted by AMLE(�−).

Notice, in particular, that there is no restriction on how complex action models can
be in an expression for the form [E , F ]ϕ.

We are also interested in the following fragments. AMLE is the fragment of
AMLE(�−) without the �− modality. AML(�−) (resp., AML) is the fragment of
AMLE(�−) (resp., AMLE) where all action models appearing in modalities of the
shape [E , F ] are purely informative.

The definitions of Mod(ϕ) and Prop(ϕ) for ϕ an AMLE(�−) formula are as in
Definition 2.2, except that Mod([E , F ]ϕ) = Mod(E) ∪ Mod(ϕ) and Prop([E , F ]ϕ) =
Prop(E) ∪ Prop(ϕ).

We now define three products between models. The first one represents the update
of a relational model with an action model.

Definition 4.3 (Update product). LetM = 〈W,R, V 〉 be a relational model, and let
E = 〈E,→, pre, eff〉 be an action model; we define their update product as M⊗ E =
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〈W⊗, R⊗, V ⊗〉, where:

W⊗ = {(w, e) ∈W × E | M, w |= pre(e)}
R⊗a = {((w, e), (v, f)) | (w, v) ∈ Ra and e→a f}
V ⊗(p) = {(w, e) | M, w |= eff(e)(p)}.

The second product represents the sequential composition of two action models.

Definition 4.4 (Sequential composition product). The sequential composition prod-
uct of two action models E = 〈E,→, pre, eff〉 and E ′ = 〈E′,→′, pre′, eff ′〉 is defined as
the action model E × E ′ = 〈E×,→×, pre×, eff×〉, where:

E× = E × E′
→×a = {((e, e′), (f, f ′)) | (e, f) ∈ →a and (e′, f ′) ∈ →a}
pre×(e, e′) = pre(e) ∧ [E , e]pre′(e′)

eff×(e, e′)(p) =

{
eff(e)(p) if p /∈ dom(eff ′(e′)),

[E , e]eff ′(e′)(p) otherwise.

The third product represents parallel composition of purely informative events and
will be used in Section 6.

Definition 4.5 (Parallel composition product). The parallel composition product of
two purely informative action models E = 〈E,→, pre〉 and E ′ = 〈E′,→′, pre′〉 is defined

as the action model E‖E ′ = 〈E‖,→‖, pre‖, eff‖〉, where:

E‖ = E × E′

→‖a = {((e, e′), (f, f ′)) | (e, f) ∈ →a and (e′, f ′) ∈ →a}
pre‖(e, e′) = pre(e) ∧ pre′(e′).

Note that the parallel composition of events with effects is more delicate to define,
as the postconditions of two concurrent events may be in conflict on the value to assign
to certain propositions. This question has been investigated in e.g., [49, 53, 38].

We now introduce the semantics of action model logic.

Definition 4.6 (Semantics). Let M = 〈W,R, V 〉 be a relational model with w ∈W ,
and let (E , F ) be a multi-pointed action model with precondition function pre; the
satisfiability relation is defined as in Definition 3.5 for Boolean operators and �a, and:

M, w |= [E , F ]ϕ iff for all e ∈ F, M, w |= pre(e) implies (M⊗E), (w, e) |= ϕ.

The following example illustrates the effects of performing an update on a relational
model via action models.

Example 4.7. In Figure 1 we show an epistemic model (a relational model), an action
model, and the result of executing that action model in that epistemic model.

Recall that in epistemic logic, labels in the edges (i.e., members of Mod) are inter-
preted as agents, and edges state the uncertainty of an agent (see, e.g., [50] for details).
In the figure, the epistemic model represents that agents a and b are uncertain whether
an atomic proposition p is true (and that they have common knowledge of that uncer-
tainty). The actual world, or designated state, of the model is where p is true (shown
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p ¬pa, b

a, ba, b

w v pre: p

pre: >

b

a, b

a

e1

e2

p

p ¬p

b

a, b

a

b

a, b

a, b

(w, e1)

(w, e2) (v, e2)

Epistemic Model Action Model Updated Model

Figure 1. Agent a privately learns that p.

with a thick circle in the figure). The action model represents that agent a learns that
p is true, whereas agent b (incorrectly) believes that nothing happens—of which a is
aware. In short: a privately learns that p. In action models, nodes are labelled with
preconditions, in this case p and >.

The action model in this example does not have effects. As defined before, action
models update relational models by mean of a restricted modal product, where the
domain is limited to the state-action pairs where the preconditions of the actions hold.
Hence, there are only three (and not four) pairs in the updated model: the pair (v, e1)
is missing as the precondition of e1, the formula p, is not true in state v. The arrows in
the restricted product are updated according to the principle that there is a (labelled)
arrow between two state-action pairs if there was such an arrow linking both the first
arguments and the second arguments, on each respective model. One can now establish
that in the resulting model a knows that p (there is only an a-arrow from w to itself),
whereas b still consider possible that a, b are ignorant about p.

Performing updates with action models is intuitive when we deal with epistemic
scenarios. An action model represents some epistemic information to be incorporated
in the underlying relational model via a product with such action model. However,
if we are interested in making more arbitrary updates, or if we want to understand,
step by step, a transformation of a model into another one, we might want to use
more basic operators. In this direction, [26] presents a language with basic actions to
represent action models updates. As we will discuss later, ML(cp, rm) turns out to be
an alternative to this kind of proposals.

By means of the copy and remove actions ML(cp, rm) can describe the effect of the
action model in Figure 1. This is in Figure 2, from left to right. First, we replicate
the original epistemic model (the leftmost model in the figure) as many times as there
are actions in the action model (in this case, twice). We identify each copy with a
(fresh) propositional variable corresponding to an action in the action model (e.g., pe1
corresponds to e1). Thus we obtain the second model in Figure 2.

Then, we first remove all the edges that point to state-action alternatives wherein
the action cannot be executed in the state. This is depicted in the third model of
Figure 2. Finally, between the remaining state-action pairs we remove all edges that
are ruled out according to the accessibility relation in the action model. Thus we obtain
the ‘updated model’ on the right in Figure 2, which is bisimilar to the one in Figure 1.

Before moving on, we define the DAG size of AMLE(�−) formulas. With respect to
ML(�−), the main addition is that we have to take into account the size of the event
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Epistemic Model Step 1 Step 2 Updated Model

Figure 2. Step by step transformation using copy and remove.

models that appear in a formula, and recursively the size of the preconditions and
postconditions that appear in these models.

Definition 4.8. For AMLE(�−), the set Sub(ϕ) of subformulas of a formula ϕ is
inductively defined as for ML(�−) together with the following clause:

Sub([E , F ]ϕ) = Sub(ϕ) ∪
⋃

e∈E,p∈Prop
Sub(pre(e)) ∪ Sub(eff(e)(p)) ∪ {[E , F ]ϕ}

The DAG size of ϕ is defined as |Sub(ϕ)| +
∑
E∈ϕ |E|, where E ∈ ϕ means that E

appears in a dynamic modality in one of the subformulas of ϕ as defined above, i.e.,
including recursively all pre and postconditions.

4.2. Expressive Power and Completeness

AMLE can be translated into ML (see, e.g., [50]), and it is easy to see that AMLE(�−)
can be translated into ML(�−). This is achieved via reduction axioms as follows. But
first, we introduce a lemma regarding the composition product, whose proof is routine.

Lemma 4.9 ([48]). For every pair of pointed action models (E , e), (E ′, e′) with post-
conditions, it holds that: |= [E , e][E ′, e′]ϕ↔ [(E × E ′), (e, e′)]ϕ.

The following are reduction axioms from AMLE(�−) to ML(�−).

Proposition 4.10 (Completeness). Let A be any sound and complete proof system for
ML(�−) (see e.g., [16]). A complete proof system for AMLE(�−) is obtained by adding
to A the following reduction axioms allowing the elimination of [E , F ] modalities:

[E , F ]ϕ ↔
∧
e∈F [E , e]ϕ

[E , e]p ↔ (pre(e)→ eff(e)(p))

[E , e]¬ϕ ↔ (pre(e)→ ¬[E , e]ϕ)

[E , e](ϕ ∧ ψ) ↔ ([E , e]ϕ ∧ [E , e]ψ)

[E , e]�aϕ ↔ (pre(e)→
∧
{�a[E , f ]ϕ | e→a f})

[E , e]�−a ϕ ↔ (pre(e)→
∧
{�−a [E , f ]ϕ | f →a e})

[E , e][E ′, e′]ϕ ↔ [(E × E ′), (e, e′)]ϕ.
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Proof. We only need to show that the reduction axioms eliminating [E , F ] and [E , e]
modalities are valid. The axiom for [E , F ] is clearly valid by definition of the semantics
(notice that since action models are finite, the conjunction in the axiom is also finite).
For [E , e], we only need to treat the case for�−, since the rest are the classical reduction
axioms for AMLE. In particular, the case [E , e][E ′, e′]ϕ follows by Lemma 4.9.

Suppose thatM, w |= [E , e]�−a ϕ. IfM, w 6|= pre(e), thusM, w |= [E , e]�−a ϕ trivially.
On the other hand, ifM, w |= pre(e), then we have (by |=) (M⊗E), (w, e) |= �−a ϕ. As
a consequence, for all f and v such that e→a f and (v, w) ∈ Ra, (M⊗E), (v, f) |= ϕ.
Again by |=, we getM, v |= [E , f ]ϕ. Moreover, notice that this holds for all v such that
(v, w) ∈ Ra, hence M, w |= �a[E , f ]ϕ, and since it holds for all f such that e →a f ,
therefore M, w |=

∧
{�a[E , f ]ϕ | e→a f}.

The right-to-left direction follows similar steps.

As a corollary, AMLE(�−) and ML(�−) are equally expressive. In the next propo-
sition, we will prove the result stating that ML(cp, rm) is strictly less expressive than
ML(�−). Notice that the proof relies on Theorem 6.14, which will be proved in Sec-
tion 6. However, we introduce the proposition here in order to complete the picture
about expressive power of the languages.

Proposition 4.11. ML(cp, rm) ≺ ML(�−).

Proof. In order to show that ML(cp, rm) � ML(�−) we need to provide an equivalence
preserving translation from ML(cp, rm) into ML(�−). This translation exists, and it
can be proved in two steps. In Section 6 we will introduce Tr3, a translation from
ML(cp, rm) into the logic AMLE(�−), which establishes that ML(cp, rm) � AMLE(�−)
(see Theorem 6.14, page 26). Also, by Proposition 4.10, there exists a translation from
AMLE(�−) into ML(�−), thus AMLE(�−) � ML(�−). By composing both translations
we obtain ML(cp, rm) � ML(�−). From that, together with Proposition 3.14 that states
ML(�−) 6� ML(cp, rm), we obtain the required ML(cp, rm) ≺ ML(�−).

Notice that by Proposition 4.11 we can conclude that ML(cp, rm) is strictly less
expressive than AMLE(�−).

Corollary 4.12. AMLE(�−) ≈ ML(�−) and ML(cp, rm) ≺ AMLE(�−).

We conclude this section by stating an invariance (under bisimulation) result for
AMLE and AMLE(�−). Since ML(�−) is invariant for two-way bisimulations (Propo-
sition 2.7), and by Proposition 4.10 above, the following proposition holds:

Proposition 4.13 (AML invariance for -; AML(�−) invariance for -−). Let M, w
and M′, w′ be two pointed models. Then, M, w - M′, w′ implies that, for all ϕ ∈
AMLE, M, w |= ϕ iff M′, w′ |= ϕ. Also, M, w -− M′, w′ implies that, for all ϕ ∈
AMLE(�−), M, w |= ϕ iff M′, w′ |= ϕ.

5. From AML to ML(cp, rm1)

In [8, 9], we studied the relations between action models and the copy and remove
primitives. In particular, we showed that AML (without effects) can be polynomially
translated into ML(cp, rm1), when preconditions in action models are required to be
Boolean formulas. In this section, we generalise the translation to preconditions in the
full language. This translation is still polynomial for preconditions in ML, but becomes
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exponential for arbitrary AML preconditions if we consider the traditional definition
of formula size where formulas are represented as trees, because of some subformulas
that have to be translated twice. However if we use the DAG size, for which identical
subformulas are only counted once, the translation remains polynomial. Note that this
translation produces formulas in the fragment ML(cp, rm1), i.e., the ability to remove
paths of length one is still enough to simulate AML with arbitrary preconditions.

The translation is a direct adaptation of the one presented in [8, 9]. The main
difference is the use of simultaneous deletion instead of sequential deletion, and the
translation of preconditions. These modifications do not impact the complexity of the
translation if we consider DAG size.

Definition 5.1. Let ϕ ∈ AML be such that the domains of action models in ϕ are
disjoint. The translation Tr1 : AML→ ML(cp, rm1), is defined as follows:

Tr1(p) = p
Tr1(¬ϕ) = ¬Tr1(ϕ)
Tr1(�aϕ) = �aTr1(ϕ)
Tr1(ϕ ∧ ψ) = Tr1(ϕ) ∧ Tr1(ψ)
Tr1([E , F ]ϕ) =

∧
e∈F

Tr1([E , e]ϕ)

Tr1([E , e]ϕ) = Tr1(pre(e))→ cp({pe1 , . . . , pen}, pe)rm(P)rm(Σ)Tr1(ϕ),

where E = 〈E,→, pre〉 is an action model with E = {e1, . . . , en}, pe1 , . . . , pen are fresh
distinct atomic propositions, and

P = {>; a; (pei ∧ ¬Tr1(pre(ei))) | ei ∈ E, a ∈ Mod(E) }
Σ = {pei ; a; pej | ei, ej ∈ E, a ∈ Mod(E), ei 6→a ej}.

The first five cases are trivial, by definition of the semantics. Let us analyse the
case of [E , e]. The antecedent pre(e) reflects the first part of the semantics of [E , e]ϕ.
For the consequent, observe that by evaluating a formula [E , e]ϕ in a relational model
〈W,R, V 〉, we need to simulate the product M⊗ E . For each action ei ∈ E, we use
a fresh propositional symbol pei (which is possible as Prop is infinite). The operation
cp({pe1 , . . . , pen}) replicates the original model n times, where n is the number of
actions in E. Each copy is ‘marked’ with some atomic proposition pei . We call ‘pei-
states’ those states of the form (w, pei), where w is a state from the original model.
This operation simulates the cartesian product W × E. However, there are pairs in
W×E that are not inM⊗E . It is not possible to remove them, but we can make them
unreachable from the evaluation point. In order to do so, we use the operation rm(P).
The set of path expressions P characterises all edges that point to pei-states which do
not satisfy pre(ei); therefore, rm(P) removes all edges pointing to those states, making
them unreachable. Still, by the use of the copy operator, we have too many edges
that need to be removed in order to obtain the accessibility relation of M⊗ E . This
is performed by the rm(Σ) operator. Remember that ((w, ei), (v, ej)) ∈ R⊗a in M⊗ E
if, and only if, (w, v) ∈ Ra and ei →a ej . By the semantics of the cp operator, two
states (w, pei) and (v, pej ) of the ‘cartesian product’ obtained after cp({pe1 , . . . , pen})
are a-related if, and only if, w and v are related in the original model. Thus, it only
remains to delete, for all a ∈ Mod, all the a-edges of the form ((w, pei), (v, pej )) such
that there is no a-edge from ei to ej in E . This is what rm(Σ) achieves. In this way we
obtain a model which is bisimilar to M⊗E .

Now, we proceed with the formal proof of correctness of the translation.
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Theorem 5.2. For every AML formula ϕ and every pointed model M, w

M, w |= ϕ iff M, w |= Tr1(ϕ).

Moreover, Tr1(ϕ) is polynomial in the DAG size of ϕ.

Proof. We will need the following claim.

Claim 1. Let M = 〈W,R, V 〉 be a model, w ∈ W , let E = 〈E,→, pre〉 be a purely
informative action model with E = {e1, . . . , en}, and where for all ei ∈ E, pre(ei) ∈
ML. Let Q = {pe1 , . . . , pen} ⊂ Prop be a set of n distinct proposition symbols not
occurring in the preconditions of any ei ∈ E, and letM′ = ((Mcp(Q))rm(P))rm(Σ), with
P and Σ as in Definition 5.1. Finally, assume that M, w |= pre(e1). It holds that:
M⊗E , (w, e1) -P M′, (w, pe1), where P = Prop \Q.

We prove the claim and Theorem 5.2 by mutual induction, starting with the claim.

Proof of the Claim. LetM⊗E = 〈W⊗, R⊗, V ⊗〉 be the update product ofM and
E . Also, let:

• Mcp(Q) = 〈W 1, R1, V 1〉,
• (Mcp(Q))rm(P) = 〈W 2, R2, V 2〉 and
• M′ = ((Mcp(Q))rm(P))rm(Σ) = 〈W ′, R′, V ′〉.

Define the relation Z = {(w, ei), (w, pei)) | (w, ei) ∈W⊗ and (w, pei) ∈W ′}. We prove
that Z is a P -bisimulation, for P = Prop \Q. Let ((w, ei), (w, pei)) ∈ Z.

• (P -atom). Let p ∈ P = Prop \ Q. By definition of ⊗, we have (w, ei) ∈ V ⊗(p)
if, and only if, w ∈ V (p). Now, by Definition 3.4 and because p ∈ Prop \ Q,
(w, pei) ∈ V 1(p) if and only if w ∈ V (p). Because the remove operator does not
change valuations (see Definition 3.4 again), we obtain that (w, pei) ∈ V ′(p) iff
(w, pei) ∈ V 2(p) iff (w, pei) ∈ V 1(p) iff w ∈ V (p), which we have seen holds if
and only if (w, ei) ∈ V ⊗(p).

• (zig). Suppose there is (v, ej) such that (w, ei)R
⊗
a (v, ej). By definition of ⊗,

we have that (w, v) ∈ Ra and ei →a ej , and because (v, ej)Z(v, pej ) by defini-
tion of Z, it is enough to prove that (w, pei)R

′
a(v, pej ). By Definition 3.4, since

(w, v) ∈ Ra we have that (w, pei)R
1
a(v, pej ). We need to check that this edge is

not removed by rm(P) nor by rm(Σ). The set of path expressions P describes
edges whose end state satisfy some pek but not Tr1(pre(ek)). By assumption,
(w, ei)R

⊗
a (v, ej), so that (v, ej) ∈ W⊗, and thus M, v |= pre(ej) (by defini-

tion of the update product). By Lemma 3.9, M, v -P Mcp(Q), (v, pej ); because
AML is invariant under bisimulation, and by assumption all atomic proposi-
tions occurring in pre(ej) are in P , it follows that Mcp(Q), (v, pej ) |= pre(ej).
By hypothesis of mutual induction, the translation is correct on pre(ej), hence
Mcp(Q), (v, pej ) |= Tr1(pre(ej)). Therefore, rm(P) does not remove the a-edge
between (w, pei) and (v, pej ). On the other hand, we have that ei →a ej , while Σ
describes a-edges of the form ((w, pei), (v, pej )) such that ei 6→a ej . Thus, rm(Σ)
does not remove the edge either. Then we conclude that (w, pei)R

′
a(v, pej ).

• (zag). Suppose there is (v, pej ) such that (w, pei)R
′
a(v, pej ). Because rm only

removes edges, we have that R′a ⊆ R2
a ⊆ R1

a, and therefore (w, pei)R
1
a(v, pej ). By

definition of cp, this implies that wRav. Now, because (w, pei)R
2
a(v, pej ), this edge

is not removed by rm(P), which implies thatMcp(Q), (v, pej ) |= Tr1(pre(ej)), and
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thus Mcp(Q), (v, pej ) |= pre(ej) (by the assumption of the mutual induction that
the translation is correct on pre(ej)). Again, by Lemma 3.9 we have thatM, v -P

Mcp(Q), (v, pej ), and because all proposition symbols occurring in pre(ej) are in

P , we have that M, v |= pre(ej), and therefore (v, ej) ∈ W⊗. Similarly, because
(w, pei)R

′
a(v, pej ) this edge is not removed by rm(Σ), implying that ei →a ej .

We have that (v, ej) ∈W⊗, wRav and ei →a ej . Therefore, (w, ei)R
⊗
a (v, ej). We

conclude by noting that by definition of Z, (v, ej)Z(v, pej ).

We can now prove Theorem 5.2, by induction on ϕ. All cases are trivial, except for
ϕ = [E , e]ϕ′, which we treat now.

Let (M, w) be a pointed model, let E = 〈E,→, pre〉 be an action model, let
e ∈ E and let ϕ′ be an AML formula with preconditions in ML. First, we have
Tr1([E , e]ϕ′) = pre(e) → cp({pe1 , . . . , pen}, pe)rm(P)rm(Σ)Tr1(ϕ′). Then, let us set
M′ = ((Mcp(pe1 ,...pen ))rm(P))rm(Σ), and let P = Prop\{pe1 , . . . , pen}. By the above claim

we have that, ifM, w |= pre(e),M⊗E , (w, e) -P M′, (w, pe). Because pe1 , . . . , pen do
not occur in ϕ′, we thus have that

M⊗E , (w, e) |= ϕ′ if, and only if, M′, (w, pe) |= ϕ′. (1)

We need to prove that M, w |= [E , e]ϕ′ iff M, w |= Tr1([E , e]ϕ′). For the left-
to-right implication, assume that M, w |= [E , e]ϕ′. We separate two cases. Either
M, w 6|= pre(e), or M, w |= pre(e) and (M⊗ E), (w, e) |= ϕ′. In the first case, we
directly obtain that M, w |= pre(e) → cp({pe1 , . . . , pen}, pe)rm(P)rm(Σ)Tr1(ϕ′), i.e.,
M, w |= Tr1([E , e]ϕ′). In the second case, by (1) we get that M′, (w, pe) |= ϕ′. Then,
by induction hypothesis we obtain thatM′, (w, pe) |= Tr1(ϕ′), and by definition of Tr1

it follows that M, w |= Tr1([E , e]ϕ′).
For the right-to-left implication, assume M, w |= Tr1([E , e]ϕ′). Again, we split be-

tween two cases: either M, w 6|= pre(e), in which case it follows that M, w |= [E , e]ϕ′,
or M, w |= pre(e) and M, w |= cp({pe1 , . . . , pen}, pe)rm(P)rm(Σ)Tr1(ϕ′). This implies
that M′, (w, pe) |= Tr1(ϕ′). By induction hypothesis M′, (w, pe) |= ϕ′, and by (1) it
follows thatM⊗E , (w, e) |= ϕ′ (recall that we have assumed thatM, w |= pre(e), and
thus (w, e) ∈W⊗). Therefore, M, w |= [E , e]ϕ′.

Concerning the size of Tr1(ϕ), because the precondition of event e is translated twice
when translating Tr1([E , e]ϕ) (once in the antecedent of the implication and once in P)
this translation is exponential for the usual tree size of formulas. However it remains
polynomial in DAG size.

We see the encoding above applied to a concrete update in Figure 2, obtaining a
model which is bisimilar to the updated model in Figure 1.

6. From ML(cp, rm) to AMLE(�−)

In this section we first provide a translation from ML(cp, rm1) to AMLE which, com-
bined with the one from AML to ML(cp, rm1) described in the previous section, will give
rise to a normal form for AML formulas. Then we consider paths of arbitrary length.
In this case AML seems not to be enough to simulate the remove operator. Instead,
we provide a translation from ML(cp, rm) to AMLE(�−). This entails the decidability
of ML(cp, rm).
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6.1. Translating from ML(cp, rm1) to AMLE

We first show that copy operations can be simulated with action models in AMLE.

Definition 6.1. Given a finite set Q ⊂ Prop, we define the action model Ecp(Q) =
〈Q,→, pre, eff〉, where →a= Q×Q (for all a ∈ Mod), and for all q ∈ Q:

pre(q) = > and eff(q)(p) =


> if p ∈ Q and p = q

⊥ if p ∈ Q and p 6= q

p if p ∈ Prop \Q.

Observe that the only proposition in Q that holds after the occurrence of an event
q ∈ Q, is q; the truth values of all atomic propositions not in Q are unaffected.

Example 6.2. The action model Ecp(q1, q2, q3) for two agents a and b is depicted
below (we do not represent the postconditions for propositions not in {q1, q2, q2}):

pre: >
eff: {q1 := >; q2 := ⊥; q3 := ⊥}

pre: >
eff: {q1 := ⊥; q2 := >; q3 := ⊥}

pre: >
eff: {q1 := ⊥; q2 := ⊥; q3 := >}

a, b

a, b

a, ba, b
a, ba, b a, b

Lemma 6.3. Let Q ⊂ Prop be a finite set of atomic propositions. For every pointed
model (M, w), the models Mcp(Q), (w, q) and M⊗Ecp(Q), (w, q) are isomorphic.

Proof. The mapping f : (u, p) 7→ (u, p) is an isomorphism between Mcp(Q) and
M⊗Ecp(Q).

We now show that remove operations with paths of length one can also be simulated
by application of action models in AMLE.

Definition 6.4. Let π = ϕ; a;ψ be a path expression of length one, and assume that
the translation Tr2 from ML(cp, rm1) to AML is defined on ϕ and ψ. We define the
action model Erm(π) = 〈E,→, pre〉, where

E = {00, 10, 01, 11} pre(00) = ¬Tr2(ϕ) ∧ ¬Tr2(ψ),
→a = (E × E)\{(10, 01), (10, 11), (11, 01), (11, 11)} pre(10) = Tr2(ϕ) ∧ ¬Tr2(ψ),
→b = (E × E) for all b 6= a pre(01) = ¬Tr2(ϕ) ∧ Tr2(ψ),

pre(11) = Tr2(ϕ) ∧ Tr2(ψ).

If Π is a finite set of path expressions of length one, Erm(Π) is the parallel composition
of all the Erm(π), for π ∈ Π, where the precondition of a conjunction of actions simply
is the conjunction of the preconditions of its elements; this product represents the
simultaneous occurrence of several action models. The idea of the definition of the
parallel composition comes from [1], [15] and [38]. On the other hand, the composition
of action models represents the sequential application of action models. Fittingly, the
action model Erm(π) does not have postconditions.

Intuitively, when applied to some model, the action model Erm(ϕ; a;ψ) first marks
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each state with the truth values of ϕ and ψ, and then removes all a-edges (w, v) such
that ϕ holds in w and ψ holds in v.

Example 6.5. Suppose that we have two agents a and b. Then Erm(ϕ; a;ψ) is depicted
below, where ϕ′ = Tr2(ϕ) and ψ′ = Tr2(ψ):

pre: ¬ϕ′ ∧ ¬ψ′

pre: ¬ϕ′ ∧ ψ′

pre: ϕ′ ∧ ¬ψ′

pre: ϕ′ ∧ ψ′

b

b

b b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

a

a

Observe that each world u of M satisfies the precondition of exactly one event eu
in Erm(Π), which is determined by the truth values in M, u of the different formulas
involved in the path expressions in Π. It is then easy to check that the mapping
f : u 7→ (u, eu) is an isomorphism, hence:

Lemma 6.6. If Π is a finite set of path expressions and (M, w) a pointed model,
and if Tr2 is correct on formulas in Π, then Mrm(Π), w and M⊗ Erm(Π), (w, ew) are
isomorphic.

Definition 6.7. The translation Tr2 : ML(cp, rm1)→ AMLE is inductively defined as:

Tr2(p) = p

Tr2(¬ϕ) = ¬Tr2(ϕ)

Tr2(ϕ ∧ ψ) = Tr2(ϕ) ∧ Tr2(ψ)

Tr2(�aϕ) = �aTr2(ϕ)

Tr2(cp(Q, q)ϕ) = [Ecp(Q), q]Tr2(ϕ)

Tr2(rm(Π)ϕ) =
∧
{[Erm(Π), e]Tr2(ϕ) | e ∈ Erm(Π)},

where Ecp(Q) is given in Definition 6.1 and Erm(Π) in Definition 6.4.

Theorem 6.8. For every ML(cp, rm1) formula ϕ and every pointed model M, w

M, w |= ϕ iff M, w |= Tr2(ϕ).

Moreover, Tr2(ϕ) is polynomial in the DAG size of ϕ.

Proof. The Boolean and modal cases are trivial. For the copy operator, the result
follows from Lemma 6.3, the fact that isomorphism implies bisimulation, and the
invariance of AMLE by bisimulation.

Now for the case rm(Π)ϕ, take a pointed model M, w. First, observe that, by in-
duction hypothesis, Tr2 is correct on all formulas in Π. By Lemma 6.6, we have that
M⊗Erm(Π), (w, ew) is isomorphic (and thus bisimilar) to Mrm(Π), w. Because Tr2(ϕ)
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is an AMLE formula, it is invariant by bisimulation, and therefore,

M⊗Erm(Π), (w, ew) |= Tr2(ϕ) iff Mrm(Π), w |= Tr2(ϕ). (2)

By definition, M⊗ Erm(Π), (w, ew) |= Tr2(ϕ) iff M |= [Erm(Π), ew]Tr2(ϕ). Now, for
every e ∈ Erm(Π) such that e 6= ew, it holds that M, w 6|= pre(e), and therefore
M, w |= [Erm(Π), e]Tr2(ϕ). It follows thatM, w |=

∧
e∈Erm(Π)

[Erm(Π), e]Tr2(ϕ) if and only

if M, w |= [Erm(Π), ew]Tr2(ϕ), and thus

M, w |= Tr2(rm(Π)ϕ) iff M⊗Erm(Π), (w, ew) |= Tr2(ϕ). (3)

By induction hypothesis, Mrm(Π), w |= Tr2(ϕ) iff Mrm(Π), w |= ϕ, i.e.,

Mrm(Π), w |= Tr2(ϕ) iff M, w |= rm(Π)ϕ. (4)

Combining equations 2, 3 and 4 provides the desired conclusion.

It is easy to verify that the size of Tr2(ϕ) is polynomial w.r.t. the DAG size of ϕ.

6.2. Translating from ML(cp, rm) to AMLE(�−)

We now show that the full logic with copy and remove with paths of arbitrary length
can be translated to AMLE with past modalities (AMLE(�−)). Together with the result
of the previous section, this establishes that the satisfiability problem for the full logic
ML(cp, rm) is decidable in ExpSpace. We will refine this bound in the next section.

The translation Tr3 : ML(cp, rm)→ AMLE(�−) is the same as that for ML(cp, rm1),
only the action models that simulate remove operations are more intricate.

First, observe that all path expressions are equivalent to an expression of the form
ϕ0; a1;ϕ1; . . . ; an;ϕn, by taking the conjunction of all formulas that are not separated
by a modal symbol, and inserting a > between any two consecutive modal symbols.
We say that path expressions of this form are in normal form, and in this section, we
consider that all path expressions are in normal form.

Definition 6.9 (Positional formulas). Let π = ϕ0; a1;ϕ1; . . . ; an;ϕn be a path expres-
sion. For every 0 ≤ i ≤ n, we define posπi = 〈i〉− ∧ ϕi ∧ 〈i〉, where

〈i〉−=

{
♦−ai

(ϕi−1 ∧ 〈i− 1〉−) if i > 0,

> otherwise.
〈i〉=

{
♦ai+1

(ϕi+1 ∧ 〈i+ 1〉) if i < n,

> otherwise.

Informally, posπi means “the current state is at position i in some path that matches
π”. For example, for π = ϕ0; a1;ϕ1; . . . ; an;ϕn, we have (omitting useless >):

posπ0 = ϕ0 ∧♦a1
(ϕ1 ∧ ♦a2

(ϕ2 . . . ∧ ♦an−1
(ϕn−1 ∧♦an

ϕn) . . .))
posπ1 = ♦−a1

ϕ0 ∧ ϕ1 ∧ ♦a2
(ϕ2 . . . ∧ ♦an−1

(ϕn−1 ∧ ♦an
ϕn) . . .)

. . .
posπn−1 = ♦−an−1

(. . .♦−a1
(ϕ0)∧ ϕ1 )∧ ϕ2 ) . . .) ∧ ϕn−1 ∧ ♦an

ϕn
posπn = ♦−an

(. . .♦−a1
(ϕ0) ∧ ϕ1) ∧ ϕ2) ∧ . . . ϕn−1) ∧ ϕn.

The following lemma formalises the intuition about positional formulas.
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Lemma 6.10. Let π=ϕ0; a1;ϕ1; . . . ; an;ϕn be a path expression, and let (M, w) be a
pointed model. For every i such that 0 ≤ i ≤ n,

M, w |= posπi iff there exists P = w0a1w1 . . . anwn ∈ PMπ s.t. wi = w.

Proof. The proof is by induction on the length of π:

π = ϕ0: Simply observe that posϕ0

0 = ϕ0, and PMϕ0
= {v | M, v |= ϕ0}.

π = ϕ0; a1;ϕ1; . . . ; an;ϕn: Suppose that M, w |= posπi , for some 0 ≤ i ≤ n. By
definition of posπi , we have M, w |= 〈i〉− ∧ ϕi ∧ 〈i〉. Now, we know:
1. M, w |= ϕi.
2. M, w |= 〈i〉−. By definition of 〈i〉−, M, w |= ♦−ai

(ϕi−1 ∧ 〈i − 1〉−) and thus
there is some v ∈ W such that (v, w) ∈ Rai

and M, v |= ϕi−1 ∧ 〈i − 1〉−. Let
us define π1 = ϕ0; a1;ϕ1; . . . ; ai−1;ϕi−1. By definition, posπ1

i−1 = 〈i− 1〉− ∧ ϕi−1,

henceM, v |= posπ1

i−1, and by induction hypothesis, there exists a path σ1 ∈ PMπ1

such that σ1 = w0a1 . . . ai−1wi−1 and wi−1 = v.
3. M, w |= 〈i〉. By a symmetric argument, there exists a state t ∈ W such
that (w, t) ∈ Rai+1

, and letting π2 = ϕi+1; ai+2; . . . ; an;ϕn, there exists a path
σ2 ∈ PMπ2

such that σ2 = wi+1ai+2 . . . anwn and wi+1 = t.
Notice that π = π1; ai;ϕi; ai+1;π2. It is now easy to check that

σ=σ1aiwiai+1σ2 is in PMπ , which concludes the proof.

We can now define action models associated to general remove operations. The
following definition generalises Definition 6.4.

Definition 6.11. Let π = ϕ0; a1;ϕ1; . . . ; an;ϕn be a path expression. Assume that
the translation Tr3 is defined on ϕi, for 0 ≤ i ≤ n. For each 0 ≤ i ≤ n we define the
AMLE(�−) formula ψπi = posπi [ϕj 7→ Tr3(ϕj)], i.e. the formula posπi where for every j,
ϕj is replaced with its translation Tr3(ϕj). We define the action model Erm(π) = 〈E,→
, pre〉, where

• E = {0, 1}n+1;
• for (b0 . . . bn) ∈ E, pre(b0 . . . bn) =

∧
i|bi=0

¬ψπi ∧
∧

i|bi=1

ψπi ;

• for every a ∈ Mod, →a= (E × E)\{(b0 . . . bn, b′0 . . . b′n) | ∃i, 0 ≤ i < n, bi =
1, b′i+1 = 1 and ai+1 = a}.

If Π is a finite set of path expressions, Erm(Π) is the synchronous product of all the
Erm(π), for π ∈ Π.

First observe that, like in the previous section, given a finite set of path expressions
Π and a pointel model M, w, there is a unique action point e ∈ Erm(Π) such that
M, w |= pre(e). This action point is defined by the truth value of each ϕi in each
π ∈ Π (assuming that Tr3 is correct on these formula), and we write it ew. We now
establish a lemma which shows that the remove operator rm(Π) and the action model
Erm(Π) essentially have the same effect.

Lemma 6.12. If Π is a finite set of path expressions,M, w a pointed model, and if Tr3

is correct on formulas in Π, then Mrm(Π), w and M⊗Erm(Π), (w, ew) are isomorphic.

Proof. We first consider the case where Π = {π} and π = ϕ0; a1;ϕ1; . . . ; an;ϕn.
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Let M = 〈W,R, V 〉. First, recall that Mrm(π) = 〈W,Rrm(π), V 〉, where Rrm(π) =
R \

⋃
σ∈PM(π) edges(σ). Let us note W ⊗ Erm(π) = 〈W ′, R′, V ′〉.

As already observed, for every w ∈ M, there is a unique ew ∈ Erm(π) such that
M, w |= pre(ew). We thus have W ′ = {(w, ew) | w ∈ W}, and the mapping f : w 7→
(w, ew) is therefore a bijection between W and W ′. We now show that f is also an
isomorphism between the structures Mrm(π) and M⊗Erm(π).

First, concerning valuations, observe that because Erm(π) has trivial postconditions,
we have that for all (w, ew) ∈ W ′ and p ∈ Prop, p ∈ V ′(w, ew) iff p ∈ V (w). Now,
because (w, ew) = f(w), we get that p ∈ V (w) iff p ∈ V ′(f(w)).

Concerning binary relations, we first observe that by Lemma 6.10, we have that
for each 0 ≤ i ≤ n and each w ∈ W , M, w |= posπi iff there is a path σ =
w0a1w1 . . . anwn ∈ PM(π) such that wi = w. Like in Definition 6.11, for 0 ≤ i ≤ n,
we let ψπi = posπi [ϕj 7→ Tr3(ϕj)]. Because we have assumed that the translation is
correct on formulas in π, we have that M, w |= posπi iff M, w |= ψπi . It follows that
for e = b0 . . . bn ∈ Erm(π),M, w |= pre(e) iff for every 0 ≤ i ≤ n such that bi = 1, there
is a path in PM(π) with w at position i, and for every 0 ≤ i ≤ n such that bi = 0,
there is no path in PM(π) with w at position i. Let a ∈ Mod, we prove that for every
w,w′ ∈ W , (a,w,w′) ∈ Rrm(π) if, and only if, (a, f(w), f(w′)) ∈ R′, which concludes
the proof.

For the right-to-left implication, assume that (a,w,w′) /∈ Rrm(π). There are two
possibilities. First, (a,w,w′) /∈ R, in which case (a, f(w), f(w′)) /∈ Rrm(π) by definition
of the update product (recall that f(w) = (w, ew) and f(w′) = (w′, ew′)), and we are
done. Second, (a,w,w′) ∈ R but this edge has been erased in Mrm(π). This implies

that there is a path σ = w0a1w1 . . . anwn ∈ PM(π) and 0 ≤ i < n such that wi = w,
wi+1 = w′ and ai+1 = a. Therefore, M, w |= ψπi and M, w′ |= ψπi+1. Noting ew =
b0 . . . bn and ew′ = b′0 . . . b

′
n, we have that b′i = 1 and b′i+1 = 1, and by definition of

E(rm(Π)), ew 6→a ew′ , and thus ((w, ew), (w′, ew′)) /∈ R′a, i.e. (a, f(w), f(w′)) /∈ R′.
For the left-to-right implication, assume that (a, f(w), f(w′)) /∈ R′, and recall that

f(w) = (w, ew) and f(w′) = (w′, ew′). Again, either (a,w,w′) /∈ R, in which case
(a,w,w′) /∈ Rrm(π) and we are done, or (a,w,w′) ∈ R but ew 6→a ew′ . By definition
of →a, noting ew = b0 . . . bn and ew′ = b′0 . . . b

′
n, we have that there is 0 ≤ i < n such

that bi = 1, b′i+1 = 1, and ai+1 = a. This implies that M, w |= ψπi and M, w′ |= ψπi+1,

so there exist paths σ = w0a1 . . . anwn and σ′ = w′0a1 . . . anw
′
n in PM(π) such that

wi = w and w′i+1 = w′. Consider the path σ′′ = w0a1 . . . wiai+1w
′
i+1 . . . an+1w

′
n+1 that

combines σ and σ′. First, this indeed is a path inM as, by assumption, (a,w,w′) ∈ R
and a = ai+1. Also, σ′′ is clearly a path in PM(π). Therefore (a,w,w′) ∈ edges(σ)
for some σ ∈ PM(π), and thus, by definition of Rrm(π), (a,w,w′) /∈ Rrm(π), which
concludes the proof.

We now treat the general case informally, by considering Π = {π, π′}. Recall that
Erm(Π) is the cartesian product Erm(π) × Erm(π′). Given a model M and two worlds
w, u ∈ M such that (w, u) ∈ Ra, this edge is removed in M⊗ Erm(Π) if, and only if,
there is no a-edge between (ew, e

′
w) and (eu, e

′
u). By definition of the cartesian product

this is possible if, and only if, there is no a-edge between ew and eu in Erm(π), or there
is no a-edge between e′w and e′u in Erm(π′) which, according to the definition of Erm(π)
and Erm(π′), means that (a,w, u) is an edge either in a path that matches π or in a
path that matches π′.

Finally, define the translation Tr3 : ML(cp, rm)→ AMLE(�−) as follows.
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Definition 6.13. Tr3 : ML(cp, rm)→ AMLE(�−) is defined by induction as:

Tr3(p) = p

Tr3(¬ϕ) = ¬Tr3(ϕ)

Tr3(ϕ ∧ ψ) = Tr3(ϕ) ∧ Tr3(ψ)

Tr3(�aϕ) = �aTr3(ϕ)

Tr3(cp(Q, q)ϕ) = [Ecp(Q), q]Tr3(ϕ)

Tr3(rm(Π)ϕ) =
∧
{[Erm(Π), e]Tr3(ϕ) | e ∈ Erm(Π)},

where Ecp(Q) is given in Definition 6.1 and Erm(Π) in Definition 6.11.

Unlike the translation from ML(cp, rm1) into AMLE in Definition 6.7, here the
preconditions in events of Erm(Π) in Tr3(ϕ) contain converse operators (see Defini-
tion 6.11); this is why the image of Tr3 is in AMLE(�−) and not just AMLE. Note that
the translation Tr3(ϕ) is exponential even in the DAG size of ϕ, because the event
model Erm(π) contains exponentially many events.

Theorem 6.14. For every ML(cp, rm) formula ϕ and every pointed model M, w

M, w |= ϕ iff M, w |= Tr3(ϕ).

Proof. The proof is almost exactly the same as for Theorem 6.8. The only differences
are that for the isomorphy between updated models we use Lemma 6.12 instead of
Lemma 6.6, and we use the fact that isomorphy implies two-way bisimulation and that
AMLE(�−) is invariant by two-way bisimulation.

On normal forms for AML. Starting from an arbitrary formula in AML it is possible
to apply the composition of the translations Tr1 and Tr2 to arrive at a formula in AMLE
(�− is not needed in this case) which is at most polynomial in the DAG size of the
original formula. Notice that the actions used in the translation of the one-step remove
operator have at most four action points (see Definition 6.4). Moreover, even though,
for simplicity, we did not restrict the size of action models used for the copy operator
in Definition 6.1, Figure 3 shows how a sequence of models of size at most 2 could
be used instead (the intuitive, simple idea is that each Ei creates one of the required
copies of the original model, with the appropriate labelling).

E1:
pre: >

eff:


q1 := >;
q2 := ⊥;
. . . ;
qn := ⊥



Mod

Ei (for 2 ≤ i ≤ n):
pre: >
eff: {−}

pre: qi−1

eff:



qi := >;
q2 := ⊥;
. . . ;
qi−1 := ⊥;
qi+1 := ⊥;
. . . ;
qn := ⊥


Mod

Mod

Mod

Figure 3. Sequence of action models E1, E2, . . . , En of size ≤ 2 needed to simulate Mcp({q1,...,qn}).

As a result, we can impose the following bound on the size of action models in AML:
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Theorem 6.15. For every AML formula ϕ there exists an AMLE formula ϕ′ of DAG
size at most polynomial in ϕ such that all actions models in ϕ have size at most 4,
and for every pointed model M, w

M, w |= ϕ iff M, w |= ϕ′.

The crucial point in Theorem 6.15 is that the reduction from AML formulas to
AMLE formulas is polynomial. I.e., every AML formula has an equivalent (at most
polynomially larger) formula in AMLE where actions models have size at most 4. We
conjecture that this normal form actually holds for all formulas in AMLE.

7. Complexity of Deciding Satisfiability

It was proved in [8, 9] that the satisfiability problem for ML(cp) and for ML(rm1) with
Boolean tests is PSpace-complete. In this section we show that the latter result still
holds for path expressions of arbitrary length, and with arbitrary test formulas (i.e.,
not only Boolean ones). We also establish the complexity of the full logic ML(cp, rm),
which we prove to be NExpTime-complete.

Notice that, the satisfiability for ML(rm1) with Boolean tests is shown PSpace-
complete in [9] by providing a polynomial translation from this language into ML(�−).
By using the same argument, PSpace-completeness also holds for the logic ML(rm1)
with arbitrary tests from this paper, if we use the DAG size of the formula.

Proposition 7.1. The satisfiability problem for ML(rm1) is PSpace-complete.

Proof. The proof relies on a recursive application of the translation provided in [9].

We now proceed with the rest of the results. To obtain the above-mentioned results
we first design a tableau method to solve the satisfiability problem for AMLE(�−),
showing that this problem is in NExpTime. We then extend this tableau method with
two rules, one for copy and one for remove, which use the corresponding action models
from Definitions 6.1 and 6.11. This provides a tableau method for the satisfiability
problem for ML(cp, rm), and allows us to show that this problem is in NExpTime, and
actually NExpTime-complete. Finally, we show that in the particular case of ML(rm),
the tableau method can be fine-tuned to run in polynomial space, thus establishing
that the satisfiability problem for ML(rm) is PSpace-complete, but using the usual
tree size of a formula.

7.1. Complexity of AMLE(�−)

The satisfiability problem for AML is in NExpTime [11], and similarly for AMLE
[42]. In this section, we adapt the tableau methods given in [11, 42] to handle both
postconditions1 and the converse modality (for this we draw inspiration from [31]).
Notice that the upper bound result still holds when the input AMLE(�−) formula is
represented by a DAG.

Theorem 7.2. The satisfiability problem for AMLE(�−) is in NExpTime.

1Prior to [42], a similar methodology was used in [47] for public announcements with effects.
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Proof. We extend the tableau method in [11]. Let LAB be a countable set of labels
used to represent states of the model M, w we are trying to construct. Our tableau
method manipulates tableau terms of the following kind:

• (σ E1, e1; . . . ; Ei, ei ϕ) where σ ∈ LAB is a symbol (that represents a state in
the initial model) and for all j ∈ {1, . . . , i}, Ej , ej is an action model. This term
means that ϕ is true in the state denoted by σ after the execution of the sequence
E1, e1, . . . , Ei, ei and that the sequence is executable in the state denoted by σ.
• (σ E1, e1; . . . ; Ei, ei X) means that the sequence E1, e1, . . . , Ei, ei is executable in

the state denoted by σ. The symbol X means that the state survives a sequence
of pointed action models.
• (σ E1, e1; . . . ; Ei, ei ⊗) means that the sequence E1, e1, . . . , Ei, ei is not executable

in the state denoted by σ. The symbol ⊗ means that the state does not survive
the sequence of pointed action models.
• (σRaσ1) means that the denotation of σ is Ra-related to the denotation of σ1.
• ⊥ denotes an inconsistency.

A tableau rule is represented by a numerator N above a line and a finite list of
denominators D1, . . . ,Dk below this line, separated by vertical bars. In the following
σ denotes a symbol for states. Σ, Σ′, etc., denote sequences of pointed action models.
λ denotes the empty sequence of pointed action models.

A tableau tree is a finite tree with a set of tableau terms at each node. A rule with
numerator N is applicable to a node carrying a set Γ if Γ contains an instance of N .
If no rule is applicable, Γ is said to be saturated. We call a node σ an end node if the
set of formulas Γ it carries is saturated, or if ⊥ ∈ Γ. The tableau tree is extended as
follows:

(1) Choose a leaf node n carrying Γ where n is not an end node, and choose a rule
ρ applicable to n.

(2) (a) If ρ has one denominator, add the appropriate instantiation to Γ.
(b) If ρ has k denominators with k > 1, create k successor nodes for n, where

each successor i carries the union of Γ with an appropriate instantiation of
denominator Di.

A branch in a tableau tree is a path from the root to an end node. A branch is
closed if its end node contains ⊥, otherwise it is open. A tableau tree is closed if all
its branches are closed, otherwise it is open.

The complete set of tableau rules is given in Figure 4. The tableau method con-
tains the classical Boolean rules (∧) and (¬¬). It also contains the non-deterministic
rule (¬∧) handling disjunction. The rule (⊥) makes the current execution fail. Rule
¬[E , e] expresses that for ¬[E , e]ϕ to hold, the pointed event model (E , e) must be
executable and the resulting state should not satisfy ϕ. For rule [E , e] instead, either
(E , e) is not executable, or it is executable and ϕ holds in the resulting state. Rules
¬[E , {e1, . . . , en}] and [E , {e1, . . . , en}] treat the general case of multi-pointed event
models by applying rule ¬[E , e] and [E , e], respectively, to each event. The rule for
(�a) is applied for all j ∈ {1, . . . i} and all u′j such that w′jR

′
au
′
j . Similarly, the rule

for (¬�a) is applied by choosing non-deterministically for all j ∈ {1, . . . i} some u′j
such that w′jR

′
au
′
j and creating a new fresh label σnew. Rules (X), (⊗), (clashX,⊗) and

(λ⊗) handle preconditions: rule (X) says that if a state survives, then the precondi-
tion should be true. Rule (⊗) involves non-determinism: either a state does not survive
because the current precondition is false or because it did not survive because of a
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(σ Σ ϕ ∧ ψ)

(σ Σ ϕ)
(σ Σ ψ)

(∧) (σ Σ ¬¬ϕ)

(σ Σ ϕ)
(¬¬)

(σ Σ ¬(ϕ ∧ ψ))

(σ Σ ¬ϕ) | (σ Σ ¬ψ)
(¬∧)

(σ Σ p)(σ Σ ¬p)
⊥ (⊥)

(σ Σ ¬[E , e]ϕ)

(σ Σ ; E , e X)
(σ Σ ; E , e ¬ϕ)

(¬[E , e])
(σ Σ [E , e]ϕ)

(σ Σ ; E , e ⊗) (σ Σ ; E , e X)
(σ Σ ; E , e ϕ)

([E , e])

(σ Σ ¬[E , {e1, . . . , en}]ϕ)

. . . (σ Σ ¬[E , ei]ϕ) . . .
(¬[E , {e1, . . . , en}])

(σ Σ [E , {e1, . . . , en}]ϕ)

(σ Σ [E , e1]ϕ)
...

(σ Σ [E , en]ϕ)

([E , {e1, . . . , en}])

(σ Σ ; E , e X)

(σ Σ pre(e))
(σ Σ X)

(X)
(σ Σ ; E , e ⊗)

(σ Σ X)
(σ Σ ¬pre(e))

(σ Σ ⊗)

(⊗)

(σ Σ ; E , e X)

(σ Σ eff(e)(p))
(σ Σ ; E , e p)

(σ Σ ¬eff(e)(p))
(σ Σ ; E , e ¬p)

(post)

(σ E1, e1; . . . ; Ei, ei �aϕ)
(σ Ra σ1)

(σ1 E1, e
′
1; . . . ; Ei, e′i X)

(σ1 E1, e
′
1; . . . ; Ei, e′i ϕ)

(σ1 E1, e
′
1; . . . ; Ei, e′i ⊗)

(�a)
(σ E1, e1; . . . ; Ei, ei ¬�aϕ)

(σ Ra σnew)
(σnew E1, e

′
1; . . . ; Ei, e′i X)

(σnew E1, e
′
1; . . . ; Ei, e′i ¬ϕ)

(¬�a)

(σ E1, e1; . . . ; Ei, ei �−a ϕ)
(σ1 Ra σ)

(σ1 E1, e
′
1; . . . ; Ei, e′i X)

(σ1 E1, e
′
1; . . . ; Ei, e′i ϕ)

(σ1 E1, e
′
1; . . . ; Ei, e′i ⊗)

(�−a )

(σ E1, e1; . . . ; Ei, ei ¬�−a ϕ)

(σnew Ra σ)
(σnew E1, e

′
1; . . . ; Ei, e′i X)

(σnew E1, e
′
1; . . . ; Ei, e′i ¬ϕ)

(¬�−a )

(σ Σ ⊗)(σ Σ X)

⊥ (clashX,⊗)
(σ λ ⊗)

⊥ (λ⊗)

Figure 4. Tableau rules for AMLE(�−).

previous precondition. Rule (clashX,⊗) says that a state can not survive and not sur-
vive at the same time. Rule (λ⊗) says that a state always survives the empty sequence
of pointed action models.

For action models without postconditions, Aucher et al. [11] proposed to bring back
the values of atomic propositions with the following two rules: if Γ contains (σ Σ p)
(resp., (σ Σ ¬p)), then add (σ λ p) (resp., (σ λ ¬p)) to Γ. These rules are no longer
sound in the presence of postconditions, because the valuation may change after the
application of an action model. We propose to replace them by the single rule (post).
This rule is non-deterministic and says that either the postcondition was true and p
is true now, or the postcondition was false and p is false now. This rule is applied for
all atoms p ∈ Sub(ϕ), where ϕ is the formula whose satisfiability is being tested.

The proof of soundness and completeness of the tableau is similar to the proof
in [11]. To test whether ϕ is AMLE-satisfiable, start the tableau with Γ := {(σ λ ϕ)}.
Given a branch Γ, consider the following tree TΓ:

• Nodes are labels σ ∈ LAB appearing in Γ;
• Two nodes σ, σ′ are linked when a term of the form (σ Ra σ′) or (σ′ Ra σ)

appears in Γ. Labels added later in Γ appear deeper in the tree. If σ is a node
and a formula ¬�aψ should hold at σ, we create a successor σ′ with (σ Ra σ′)

29



and we say that ¬ψ holds in σ′. If σ is a node and a formula ¬�−a ψ should hold
at σ, we create a successor σ′ with (σ′ Ra σ) and we say that ¬ψ holds in σ′.

The idea is as follows. At any step of the algorithm, the depth of TΓ is linear in the
size of ϕ (number of nested diamonds, as in the case of ML(�−) [29]). The arity of TΓ

is bounded by an exponential in ϕ since the set of terms of the form (σ Σ ¬�aψ)
and (σ Σ ¬�−a ψ) is at most exponential for a given σ. Thus, the size of set Γ is
bounded by an exponential in ϕ. Since at each step of the algorithm we add at least
a new term in Γ, it takes an exponential amount of time to reach a situation in which
Γ is saturated or a contradiction is found. The resulting tableau method can thus be
turned into a non-deterministic algorithm running in exponential time.

7.2. Complexity of Logics with Copy and Remove

We now establish the complexity of the satisfiability problem for the full logic
ML(cp, rm) and for its fragments ML(cp, rm1) and ML(rm).

Theorem 7.3. The satisfiability problem for ML(cp, rm1) and for ML(cp, rm) is
NExpTime-complete.

Proof. The lower bounds follow from the facts that there is a polynomial translation
from AML with purely informative action models into ML(cp, rm1) that preserves sat-
isfiability (see Definition 5.1 of Tr1 and Theorem 5.2), and the satisfiability problem
for AML is NExpTime-hard [11].

For the upper bounds we extend the tableau method for AMLE(�−) presented in
the previous section to obtain a tableau method for ML(cp, rm). To do so we add two
rules to those in Figure 4, one for the copy operator and one for the remove operator:

(σ Σ cp(Q, q)ϕ)

(σ Σ [Ecp(Q), q]ϕ)
(cp)

(σ Σ rm(Π)ϕ)

(σ Σ [Erm(Π), E]ϕ)
(rm)

for E the set of all events in Erm(Π).
Observe that even if the language of ML(cp, rm) does not contain past modalities,

the preconditions of models Erm(Π) that appear in rule rm introduce such modalities
(see Definitions 6.9 and 6.11), so that we need the rules �−a and ¬�−a .

The correctness of the obtained tableau method follows from Lemmas 6.3 and 6.12,
which show that models Ecp(Q) and Erm(Π) correctly simulate the application of cp(Q)
and rm(Π), respectively.

As for the complexity, this tableau method can also be implemented by a non-
deterministic procedure running in time exponential in the size of the input ML(cp, rm)
formula ϕ: the depth of TΓ at any step of the algorithm is still linear in the size of
ϕ, and the arity of TΓ is still bounded by an exponential in ϕ. Thus, the size of set Γ
is bounded by an exponential in ϕ. The only difference is that now a single term can
be of exponential size, because models Erm(Π) are of size exponential in the length of
path expressions in Π. But an exponential number of terms of exponential size can
still be enumerated in exponential time. Since at each step of the algorithm we add at
least a new term in Γ, it takes an exponential amount of time to reach a situation in
which Γ is saturated or a contradiction is found.

For the following theorem, instead of the DAG size used in the rest of this work, we
consider the traditional notion of formula size, that is, the size of the syntactic tree.
For the DAG size the complexity may be higher, but this remains an open question.
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Theorem 7.4. The satisfiability problem for ML(rm) is PSpace-complete (for the
usual notion of formula size).

Proof. Lower bound follows from the PSpace-hardness of the satisfiability prob-
lem for ML [16]. For the upper bound, our starting point is the tableau method for
ML(cp, rm) given by the rules we introduced above. Since the generated tree is linear
in the modal depth (number of nested diamonds), we are almost there to provide a
depth-first-search procedure that runs in polynomial space. To fill the gap, the rest of
the proof consists in solving these three issues:

(1) in rule (rm), the formula creates the term (σ Σ [Erm(Π), E]ϕ) where Erm(Π) is of
exponential size in |Π|;

(2) rule ([E , {e1, . . . , en}]) explicitly generates an exponential number of terms when
E is Erm(Π) and {e1, . . . , en} is E, as generated by rule (rm);

(3) at each node of the tree, there may be an exponential number of possible terms
because there are an exponential number of sequences of events Σ.

In order to solve (1), we only write Π instead of [Erm(Π), E]. In other words, we
only write the relevant information in the term that is needed for the rules, instead
of writing an explicit representation of Erm(Π) (the set of path expressions Π can be
seen as a symbolic representation of Erm(Π)).

In order to solve (2), let us first explain the solution in the case of a single path
expression Π = {π}. Recall that preconditions of the different events in Erm(π) are
mutually exclusive, and actually exactly one is satisfied in a given world (see Defini-
tion 6.11). Thus, we remark that exactly one event only of Erm(π) is applicable in a
given world, depending on the truth values of the formulas posπk in that world. As a
result, instead of generating all terms (σ Σ [E , ei]ϕ), we can guess which is the only
event ei that can be applied and only generate (σ Σ [E , ei]ϕ). To ensure that we guess
the right event ei, we also add the term (σ Σ pre(ei)) which will check that the truth
values of the different posπk are those that correspond to event ei. For the general case
of a set Π of path expressions, by Definition 6.11 Erm(Π) is the synchronous product of
all the Erm(π), for π ∈ Π. As before, for each π ∈ Π there is a unique event eπ ∈ Erm(π)
that is applicable in a given world. By definition of the synchronous product, there is
therefore also a unique event eΠ in Erm(Π) that is applicable in a given world. This
event is the tuple consisting of all the eπ for π ∈ Π, and it is characterised by the truth
values of the different posπk for π ∈ Π and 0 ≤ k ≤ |π|. We can thus again guess eΠ,
add the term (σ Σ [E , eΠ]ϕ), and check this guess by adding the term (σ Σ pre(eΠ)).

Issue (3) is actually solved by the trick used above to solve issue (2). Sequences
E1, e1; . . . ; Ei, ei appearing in terms of the tableau method come from nested remove
operators in the original formula. The number of sequences of nested remove operators
is linear in the size of the formula, for the usual definition of formula size; and as we
explained above, for each such model we can guess the only event that is applicable
in the current world. Note that if the presentation is in DAG form there might be an
exponential number of sequences of nested remove operators.

The tableau method that we obtain generates a tree of polynomial depth (linear in
the modal depth of the formula). Rules (¬�a) and (¬�−a ) generate at most a polyno-
mial number of new world symbols σnew, at most one for each subformula and each
sequence Σ of nested pointed event models in the original formula; so branching is also
polynomial. By the considerations above, each node also contains a polynomial num-
ber of terms. As a result, a depth-first search implementation of the tableau method
leads to a non-deterministic algorithm that runs in polynomial space. The complexity
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result then follows from Savitch’s theorem.

8. Related work

In [2, 3, 23, 5] a family of logics called relation-changing logics are studied. These
articles consider modalities with the ability of modifying the accessibility relation of a
model while evaluating a formula. Three kinds of updates are considered, performing
both local and global effects: adding, deleting and swapping around edges. All the
obtained logics are very expressive (and all different), and they are computationally
untractable (their satisfiability problem is undecidable). Among these modalities, the
sabotage operator is particularly interesting, and it was also investigated in [37, 36,
45, 27]. In one of its versions, sabotage deletes an arbitrary arrow in the model, and
afterwards, formulas are evaluated in the updated model. In this sense, it is similar
to the edge-removal modality rm studied in this paper. But while sabotage deletes
edges arbitrarily in the model, the effects of rm depend on the satisfiability of certain
formulas that are explicit in the operation. Thus, rm performs more uniform updates,
leading to a decidable logic as we show in this article.

Another example of very expressive relation-changing logics with untractable rea-
soning tasks is the modal separation logic family from [19, 20, 21, 22]. Over arbitrary
models, modal separation logics become undecidable very quicky (or with very high
complexity even on tree models, see [14]). This is a consequence of the second-order
features hidden behind separation operations, not present in rm.

Operators performing more controlled updates have also been introduced in the
literature. In [10] global and local graph modifiers are proposed, where the modifica-
tions can concern both the valuations of propositional variables (also known as ontic
change) and the accessibility relations, as is the case with ML(cp, rm). A global graph
modification a− (ϕ,ψ) [10, page 295] corresponds to our rm1 action (ϕ; a;ψ), whereas
a local graph modification of that kind would amount to a sabotage operator as the
one in [35]. However, the only local graph modifiers considered there are of the on-
tic change kind [10, page 300]. Complexity and expressivity are studied for the logic
combining different modifiers, but not for each of them separately.

The family of arrow update logics [32, 33] shares several features with ML(cp, rm).
Arrow update logic [32] is a dynamic epistemic logic with model changing modalities
called ‘arrow updates’. An arrow for agent a is a pair (w, v) in the respective accessi-
bility relation for a, such that w satisfies a source condition ϕ and v satisfies a target
condition ψ. Thus, an arrow update (ϕ; a;ψ) preserves all such pairs. Using our nota-
tion, an arrow update preserving all arrows (ϕ; a;ψ) corresponds to three simultaneous
rm1 actions (¬ϕ; a;¬ψ), (¬ϕ; a;ψ), and (ϕ; a;¬ψ). Dually, each rm(ϕ; a;ψ) corresponds
to three simultaneous arrow updates (¬ϕ; a;¬ψ), (¬ϕ; a;ψ), and (ϕ; a;¬ψ)). In [32]
the authors do not give complexity results but focus on expressivity and succinctness.
It is well-known that arrow updates cannot ‘simulate’ action models in our sense of a
compositional translation Tr for which Tr([α]ϕ) is equivalent to some expression with
components Tr(α) and Tr(ϕ). In [33] the results of [32] are generalised to so-called
arrow update models. Instead of the aforementioned arrow updates, these structures
consist of a domain of outcomes, thus the arrows (ϕ; a;ψ) are specified between differ-
ent outcomes. In that sense, the arrow update from [33] is a singleton arrow update
model. It is then shown that for this arrow update model logic there is a compositional
translation (in the above sense) between arrow update models and action models and
vice versa. Such a translation is also explicitly given in [51].
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Clearly we achieve a similar effect to that of arrow update models by the interaction
of cp and rm, as each point in an arrow update model generates a copy of the initial
relational model in which it is executed. An elegant correspondence between both
approaches is still missing. First, the arrow preservation and copying process in the
arrow update model is simultaneous, instead of being divided into two primitives such
as cp and rm. Second, edges removal and edge preservation are dual notions. Recall
that expressivity of ML(cp, rm) increases since it allows simultaneous path removal.

Finally, the connections between the modal logic of copy and remove and the various
action model logics that we presented are interesting examples of what is called update
equivalence in [33]. Two dynamic modalities interpreted as model transformers are up-
date equivalent if, whenever executed in a given epistemic model, they always result in
bisimilar epistemic models. Update equivalence is also related to action emulation [52].

9. Conclusion

We proposed the dynamic modal logic ML(cp, rm) which contains copy and remove
operators. We investigated model theoretic properties of ML(cp, rm) such as its relative
expressive power, introducing the notion of path bisimulations. With this notion at
hand, we have been able to show that ML(cp, rm) lies strictly between the basic modal
logic ML and its extension with the inverse modality ML(�−). As a relevant line
for future research one would try to prove whether this notion exactly captures the
expressive power of the language over finite or image-finite models [28], and whether a
van Benthem Characterisation Theorem holds [44]. Moreover, it would be interesting
to reveal whether the cp modality increases the expressivity of ML(rm) or not. We
conjecture that ML(cp, rm) is strictly more expressive than ML(rm).

We showed that the action model logic AML, one of the best-known dynamic epis-
temic logics, can be polynomially embedded in ML(cp, rm1) (the fragment with length-
one path removals). This is in line with the previously known result that, when AML
is evaluated on the class of finite models, action model execution corresponds to model
restriction (‘remove’) on a bisimilar copy (‘copy’) of the initial model [46]. The em-
bedding simulates every finite action model with a combination of copy and remove
operators. The embedding can be done within ML(cp, rm1) as it only requires single-
step removals. We showed that the copy and one-step removal themselves correspond
to particular action models. As a result we obtain a decomposition method for action
models. By decomposing product updates in sequences of copy and remove operators,
it would be possible to characterise syntactic fragments of AML which might lead to
interesting complexity results for the satisfiability problem.

Finally, we show that the complexity of the satisfiability problems of the full lan-
guage ML(cp, rm) and its fragment ML(cp, rm1) are NExpTime-complete; while sat-
isfiability for the fragments ML(cp), ML(rm) and ML(rm1) is PSpace-complete. To
achieve that, we designed a tableau method which handles cp and rm modalites. No-
tice that all results are stated using the DAG size of a formula, except by ML(rm)
in which the usual tree size has been used. These complexity results improve claims
made in [9]2, and they are summarised in Figure 5.

2In [9], the stated NExpTime lower bounds for ML(cp, rm) and ML(cp, rm1) (with Boolean tests) are claimed

to follow from the NExpTime hardness of the satisfiability problem for AML with single-pointed action models.
However the known result of NExpTime hardness holds for AML with multi-pointed action models.

33



ML(cp, rm) NExpTime-complete
ML(cp, rm1) NExpTime-complete
ML(cp) PSpace-complete
ML(rm1) PSpace-complete
ML(rm) PSpace-complete

Figure 5. Complexity of the satisfiability problem for ML(cp, rm) and some of its syntactic fragments. The

last result is for the usual formula size (aka the “tree size”), the others use the DAG-size of formulas.
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