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a b s t r a c t

In 1853, Sylvester introduced a family of double sum expressions
for two finite sets of indeterminates and showed that some
members of the family are essentially the polynomial subresultants
of the monic polynomials associated with these sets. In 2009, in
a joint work with C. D’Andrea and H. Hong we gave the complete
description of all the members of the family as expressions in the
coefficients of these polynomials. More recently, M.-F. Roy and
A. Szpirglas presented a new and natural inductive proof for the
cases considered by Sylvester. Here we show how induction also
allows to obtain the full description of Sylvester’s double-sums.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let A and B be non-empty finite lists (ordered sets) of distinct indeterminates over a field k. In
Sylvester (1853), Sylvester introduced for each 0 ≤ p ≤ |A| and 0 ≤ q ≤ |B| the following univariate
polynomial in the variable x and coefficients in the field k(α, β; α ∈ A, β ∈ B), of degree ≤ p + q,
called the double sum expression in A and B:

Sylvp,q(A, B) :=


A′

⊂ A, B′
⊂ B

|A′
| = p, |B′

| = q

R(x, A′) R(x, B′)
R(A′, B′) R(A − A′, B − B′)

R(A′, A − A′) R(B′, B − B′)
,

E-mail addresses: krick@dm.uba.ar (T. Krick), aszanto@ncsu.edu (A. Szanto).
URLs: http://mate.dm.uba.ar/∼krick (T. Krick), http://www4.ncsu.edu/∼aszanto (A. Szanto).

1 Tel.: +54 11 4576 3335; fax: +54 11 4576 3335.

0747-7171/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2012.01.003

http://dx.doi.org/10.1016/j.jsc.2012.01.003
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:krick@dm.uba.ar
mailto:aszanto@ncsu.edu
http://mate.dm.uba.ar/~krick
http://mate.dm.uba.ar/~krick
http://mate.dm.uba.ar/~krick
http://mate.dm.uba.ar/~krick
http://mate.dm.uba.ar/~krick
http://mate.dm.uba.ar/~krick
http://www4.ncsu.edu/~aszanto
http://www4.ncsu.edu/~aszanto
http://www4.ncsu.edu/~aszanto
http://www4.ncsu.edu/~aszanto
http://www4.ncsu.edu/~aszanto
http://dx.doi.org/10.1016/j.jsc.2012.01.003


T. Krick, A. Szanto / Journal of Symbolic Computation 47 (2012) 942–953 943

where for sets Y , Z of indeterminates,

R(Y , Z) :=


y∈Y ,z∈Z

(y − z), R(y, Z) :=


z∈Z

(y − z)

and by convention R(Y , ∅) = 1.

Let now f , g be the monic univariate polynomials in k(α, β; α ∈ A, β ∈ B), defined as

f =


α∈A

(x − α) = xm + am−1xm−1
+ · · · + a0 and

g =


β∈B

(x − β) = xn + bn−1xn−1
+ · · · + b0,

wherem := |A| ≥ 1 and n := |B| ≥ 1. The k-th subresultant of the polynomials f and g is defined, for
0 ≤ k < min{m, n} or k = min{m, n} when m ≠ n, as the polynomial

Sresk(f , g) := det

m+n−2k

am · · · · · · ak+1−(n−k−1) xn−k−1f (x)
. . .

...
... n−k

am · · · ak+1 x0f (x)
bn · · · · · · bk+1−(m−k−1) xm−k−1g(x)

. . .
...

... m−k

bn · · · bk+1 x0g(x)

(1)

with aℓ = bℓ = 0 for ℓ < 0. Subresultant polynomials were also introduced by Sylvester in Sylvester
(1853). They became an important tool in polynomial computer algebra after G. Collins revisited them
inCollins (1967), and someof their properties are stillmysterious. See for instanceGeddes et al. (1992),
von zur Gathen and Gerhard (2003) or Apéry and Jouanolou (2005) formore references on the subject.

For k = 0, Sres0(f , g) coincides with the resultant:

Res(f , g) =


α∈A

g(α) = (−1)mn

β∈B

f (β). (2)

Also, for instance,

Sresm(f , g) = f for m < n and Sresn(f , g) = g for n < m. (3)

Relating Sylvester’s double sums with the polynomials f and g , it is immediate that

Sylv0,0(A, B) = R(A, B) = Res(f , g), (4)
Sylvm,0(A, B) = R(x, A) = f and Sylv0,n(A, B) = R(x, B) = g, (5)
Sylvm,n(A, B) = R(x, A) R(x, B) R(A, B) = Res(f , g) f g. (6)

More generally, for every 0 ≤ p ≤ m and 0 ≤ q ≤ n, the polynomial Sylvp,q(A, B), which is
symmetric in the α’s and in the β ’s, can be expressed as a polynomial in x whose coefficients are
rational functions in the ai’s and the bj’s. Sylvester in Sylvester (1853) gave this rational expression
for the following values of (p, q):
(1) If 0 ≤ k := p + q < m ≤ n or if k = m < n, then Sylvester (1853, Art. 21):

Sylvp,q(A, B) = (−1)p(m−k)

k
p


Sresk(f , g).

(2) If p + q = m = n, then Sylvester (1853, Art. 22):

Sylvp,q(A, B) =


m − 1

q


f +


m − 1

p


g.
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(3) Ifm < p + q < n − 1, then Sylvester (1853, Arts. 23 & 24):
Sylvp,q(A, B) = 0.

(4) Ifm < p+ q = n− 1, then Sylvester (1853, Art. 25): Sylvp,q(A, B) is a ‘‘numerical multiplier’’ of f ,
but the ratio is not established.

In Lascoux and Pragacz (2003, Th.0.1 and Prop. 2.9), A. Lascoux and P. Pragacz presented newproofs
for the cases covered by Items (1) and (2). More recently, in a joint workwith C. D’Andrea andH. Hong,
(D’Andrea et al., 2009, Th.2.10), we introduced a unified matrix formulation that allowed us to give
an explicit formula for all possible values of (p, q), i.e. for 0 ≤ p ≤ m, 0 ≤ q ≤ n. The proofs there
were elementary though cumbersome. In their recent work, M.-F. Roy and A. Szpirglas, were able to
produce in Roy and Szpirglas (2011, Main theorem) a new and natural inductive proof also for the
cases covered by Item (1) and (2). The aim of this note is to give, inspired by Roy and Szpirglas (2011),
a new elementary inductive proof for all the cases. We furthermore show how the cases (3) and (4),
when p+q > m, which seem somehow less natural since there is no known counterpart in Computer
Algebra associated to them yet, immediately yield other known crucial cases, as for instance the cases
p + q = m < n and p + q = m = n.

All these identities, and the ones proved in this paper, behave well when the different
indeterminates in A and B are specialized to elements in k, provided that the denominators in the
double sum expressions do not vanish. In particular they specialize well when the indeterminates in
A are specialized to distinct elements in k, as well as those in B. In other words, the same identities
hold for polynomials f , g ∈ k[x] with simple roots. In the case of repeated elements (or polynomials
with multiple roots), there is not even a right notion of how the double sum expressions should be
defined. Themainmotivation of our investigation is to explore the applicability of the inductive proof
method techniques. The ultimate goal of this investigation is to tackle the important open problem
concerning the extension of the definition of Sylvester’s double sums to the case of multiple roots
and their connection to subresultants, which is an ongoing project of the authors. Expressions of
subresultants in terms of Sylvester’s single and double sums have applications for example in rational
Cauchy interpolation (see Ilyuta (2005)), and extensions of these results to the multiple roots case
would be a significant development. Inductive proofs have been successfully used for example in Kós
and Rónyai (2011) in extending Alon’s Nullstellensatz to the multiset case.

Let us now introduce the necessary notation to formulate our main result.
As in D’Andrea et al. (2009), we split the last column of the matrix in (1) to write Sresk(f , g) as the
sum of two determinants, obtaining an expression

Sresk(f , g) = Fk(f , g) f + Gk(f , g) g (7)
where the polynomials Fk(f , g) and Gk(f , g) in k(α, β; α ∈ A, β ∈ B) are defined for 0 ≤ k <
min{m, n} or k = min{m, n} when m ≠ n as the determinants of the (m + n − 2k)-matrices:

Fk(f , g) := det

am · · · · · · ak+1−(n−k−1) xn−k−1

. . .
...

... n−k

am · · · ak+1 x0

bn · · · · · · bk+1−(m−k−1) 0
. . .

...
... m−k

bn · · · bk+1 0

,

Gk(f .g) := det

am · · · · · · ak+1−(n−k−1) 0
. . .

...
... n−k

am · · · ak+1 0
bn · · · · · · bk+1−(m−k−1) xm−k−1

. . .
...

... m−k

bn · · · bk+1 x0

.
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As recently pointed out to us by D’Andrea, Sylvester himself in Sylvester (1853, Art. 29) already
looked at the factors Fk(f , g) and Gk(f , g) and proposed the formulas we can derive from Lemma 6
(see the remark following it).

We observe that when k < min{m, n}, deg Fk(f , g) ≤ n−k−1 and degGk(f , g) ≤ m−k−1. Also

Fm(f , g) = 1, Gm(f , g) = 0 form < n and Fn(f , g) = 0,
Gn(f , g) = 1 for n < m

(8)

Gm−1(f , g) = 1 form ≤ n and Fn−1(f , g) = (−1)m−n+1 for n ≤ m. (9)

We finally introduce the following notation that wewill keep all along in this text. Givenm, n ∈ N,
p, q ∈ Z such that 0 ≤ p ≤ m, 0 ≤ q ≤ n and k = p + q, we set

p := m − p, q := n − q and k := p + q − 1 = m + n − k − 1.
Sylvester’s double sums, for k ‘‘too big’’ w.r.t. m and n, will be expressed in our result in terms of the
polynomials Fk(f , g) and Gk(f , g), well-defined since the condition n−1 ≤ k ≤ m+n−1 form < n is
equivalent to 0 ≤ k ≤ m, and the conditionm ≤ k ≤ 2m−1 form = n is equivalent to 0 ≤ k ≤ m−1.
Theorem 1 (See also D’Andrea et al. (2009, Th.2.10)). Set 1 ≤ m ≤ n, and let 0 ≤ p ≤ m, 0 ≤ q ≤ n
and k = p + q.
Then, for (p, q) ≠ (m, n):

– when m < n:

Sylvp,q(A, B) =


(−1)p(m−k)

k
p


Sresk(f , g) for 0 ≤ k ≤ m

0 for m + 1 ≤ k ≤ n − 2 when m ≤ n − 3
(−1)c

k
p


Fk(f , g) f −

k
q


Gk(f , g) g


for n − 1 ≤ k ≤ m + n − 1

– when m = n:

Sylvp,q(A, B) =


(−1)p(m−k)

k
p


Sresk(f , g) for 0 ≤ k ≤ m − 1

(−1)c
k

p


Fk(f , g) f −

k
q


Gk(f , g) g


for m ≤ k ≤ 2m − 1,

where c := p q + n − p − 1 + nq;

and for (p, q) = (m, n):
Sylvm,n(A, B) = Res(f , g) f g.

Theorem 1 can be written in amore uniformmanner instead of being split in cases: by Identity (7),
for 0 ≤ k ≤ mwhen m < n and for 0 ≤ k < mwhen m = n,

Sylvp,q(A, B) = (−1)p(m−k)


k
p


Fk(f , g)f +


k
q


Gk(f , g)g


,

or for 0 ≤ k ≤ m whenm < n and for 0 ≤ k < m, when m = n,

Sylvp,q(A, B) = (−1)c


k
p


Sresk(f , g) −


k + 1
q


Gk(f , g) g



= (−1)c


k + 1
p


Fk(f , g) f −


k
q


Sresk(f , g)


. (10)

The cases ‘‘in between’’, for m + 1 ≤ k ≤ n − 2 when m ≤ n − 3, are the cases when neither
0 ≤ k ≤ m nor 0 ≤ k ≤ m, i.e. the cases when the corresponding matrices Fk, Gk and Fk, Gk are not
defined (or could be defined as 0 for uniformity).

We also note that the case k = m = n−1 is covered twice: Sresm(f , g) = f = Fm(f , g)f −Gm(f , g)g
since k = m, Fm = 1 and Gm = 0. Finally the case p = m, q = n is Identity (6).

The proof of Theorem 1 is based, as the proof in Roy and Szpirglas (2011), on specialization
properties.
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2. Specialization properties

In the sequel, given a polynomial h in a single variable x, we denote by ck(h) its coefficient of order
k, i.e. the coefficient corresponding to the monomial xk.

The following specialization properties of Sylvester’s double sums were previously proved in
Lascoux and Pragacz (2003, Lemma 2.8) and in Roy and Szpirglas (2011, Prop.3.1), where they were
used as one of the key ingredients of their inductive proof for the cases k ≤ m < n and k < m = n.
We repeat the proof here for the sake of completeness.

Lemma 2. For any α ∈ A and β ∈ B,

• Sylvp,q(A, B)(α) = (−1)p cp+q

Sylvp,q(A − α, B)


R(α, B) for 0 ≤ p < m and 0 ≤ q ≤ n,

• Sylvp,q(A, B)(β) = (−1)q+p cp+q

Sylvp,q(A, B − β)


R(β, A) for 0 ≤ p ≤ m and 0 ≤ q < n.

Proof.

Sylvp,q(A, B)(α) =


A′

⊂ A − α, B′
⊂ B

|A′
| = p, |B′

| = q

R(α, A′) R(α, B′)
R(A′, B′) R(A − A′, B − B′)

R(A′, A − A′) R(B′, B − B′)

= (−1)p R(α, B)


A′
⊂ A − α, B′

⊂ B
|A′

| = p, |B′
| = q

R(A′, B′) R((A − α) − A′, B − B′)

R(A′, (A − α) − A′) R(B′, B − B′)

= (−1)p cp+q

Sylvp,q(A − α, B)


R(α, B).

The second identity is a consequence of the fact that

Sylvp,q(A, B) = (−1)pq (−1)p q Sylvq,p(B, A). �

Next result replaces the specialization properties of subresultants in Roy and Szpirglas (2011,
Prop. 4.1) by specialization properties of the polynomials Fk(f , g) and Gk(f , g). This will allow a more
uniform and simpler proof of our main theorem, covering all cases of p and q.

Lemma 3. For any root α of f and any root β of g, we have

• Fk(f , g)(β) = − cn−k−1


Fk−1


f ,

g
x − β


for 1 ≤ k ≤ min{m, n} − 1,

• Gk(f , g)(α) = (−1)m−k−1 cm−k−1


Gk−1


f

x − α
, g


for 1 ≤ k ≤ min{m, n} − 1.

Proof. Given a root β of g , we set

g
x − β

:= xn−1
+ b′

n−2x
n−2

+ · · · + b′

0.

The following relationship between the coefficients of g and of g
x−β

is straightforward:

bi = b′

i−1 − βb′

i for 1 ≤ i ≤ n − 1 and b0 = −βb′

0. (11)

(Here bn = b′

n−1 = 1.)



T. Krick, A. Szanto / Journal of Symbolic Computation 47 (2012) 942–953 947

First consider

cn−k−1


Fk−1


f ,

g
x − β


= cn−k−1


det

am · · · · · · ak−(n−k−1) xn−k−1

. . .
.
.
.

.

.

. (n−1)−(k−1)

am · · · ak x0

b′

n−1 · · · · · · b′

k−(m−k) 0
. . .

.

.

.
.
.
. m−(k−1)

b′

n−1 · · · b′

k 0



= (−1)m+n det

0 am · · · · · · ak−(n−k−2)

. . .
.
.
. n−1−k

am · · · ak
b′

n−1 · · · · · · · · · b′

k−(m−k)

. . .
.
.
. m−k+1

b′

n−1 · · · b′

k

= (−1)m−k+1 det

am · · · · · · ak−(n−k−2)

. . .
.
.
. n−1−k

am · · · ak
b′

n−1 · · · · · · b′

k−(m−k−1)

. . .
.
.
. m−k

b′

n−1 · · · b′

k

.

We apply elementary column operations on the matrix above, replacing the j-th column Cj by
Cj−βCj−1 starting from the last column Cn+m−2k−1 up to the second column C2, and using the relations
in (11):

cn−k−1


Fk−1


f ,

g
x − β



= (−1)m−k+1 det

am am−1 − βam · · · · · · ak−(n−k−2) − βak+1−(n−k−2)
. . .

.

.

. n−1−k

am am−1 − βam · · · ak − βak+1
bn bn−1 · · · · · · bk+1−(m−k−1)

. . .
.
.
. m−k

bn bn−1 · · · bk+1

.

(12)

Next consider

Fk(f , g)(β) = det

am · · · · · · ak+1−(n−k−1) βn−k−1

. . .
.
.
.

.

.

. n−k

am · · · ak+1 β0

bn · · · · · · bk+1−(m−k−1) 0
. . .

.

.

.
.
.
. m−k

bn · · · bk+1 0

.
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We apply elementary row operations on the matrix above, replacing the i-th row Ri by Ri − βRi+1,
starting from the first row R1 up to row Rn−k−1:

Fk(f , g)(β) = det

am am−1 − βam · · · ak+1−(n−k−1) − βak+2−(n−k−1) 0
. . .

.

.

.
.
.
. n−k

am am−1 − βam · · · ak+2 − βak+1 0

am am−1 · · · ak+1 1

bn · · · · · · bk+1−(m−k−1) 0
. . .

.

.

.
.
.
. m−k

bn · · · bk+1 0

= (−1)m−k det

am am−1 − βam · · · ak+1−(n−k−1) − βak+2−(n−k−1)

. . .
.
.
. n−k−1

am am−1 − βam · · · ak+2 − βak+1

bn · · · · · · bk+1−(m−k−1)

. . .
.
.
. m−k

bn · · · bk+1

.

(13)

We obtain the first identity of the statement by comparing (12) and (13).
For the second identity, we have

Gk(f , g)(α) = (−1)(n−k)(m−k)Fk(g, f )(α)

= (−1)(n−k)(m−k)+1cm−k−1


Fk−1


g,

f
x − α


= (−1)(n−k)(m−k)+1(−1)(m−k)(n−k+1)cm−k−1


Gk−1


f

x − α
, g


= (−1)m−k−1cm−k−1


Gk−1


f

x − α
, g


. �

As an immediate consequence we obtain the following important specialization properties of
subresultants, which seem to have been stated and proved for the first time in Roy and Szpirglas
(2011, Prop. 4.1).
Corollary 4. For any root α of f , any root β of g and any 0 ≤ k < min{m, n}, we have

• Sresk(f , g)(β) = (−1)m−k ck

Sresk


f ,

g
x − β


f (β),

• Sresk(f , g)(α) = ck

Sresk


f

x − α
, g


g(α).

Proof. It is sufficient to prove the first identity, since the second identity is a consequence of
Sresk(g, f ) = (−1)(m−k)(n−k)Sresk(f , g).

By (7) and the previous lemma,

Sresk(f , g)(β) = Fk(f , g)(β) f (β) = − cn−k−1


Fk−1


f ,

g
x − β


f (β).

Now it is immediate to verify by the definition of the principal scalar subresultant of order k that

cn−k−1


Fk−1


f ,

g
x − β


= (−1)m−k−1ck


Sresk


f ,

g
x − β


. �
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3. Proof of Theorem 1

It turns out that the cases of Theorem 1 where k is ‘‘big’’ are easy to prove by induction and will be
used later in the other cases. That is why we start with this case first in the following proposition. The
proof will use a lemma for the extremal cases (p, n) and (m, q), which is given after the proposition.
We recall that p = m − p, q = n − q, and k = m + n − k − 1.

Proposition 5. Set 1 ≤ m ≤ n and let 0 ≤ p ≤ m, 0 ≤ q ≤ n and k = p + q be such that
n − 1 ≤ k ≤ m + n − 1, i.e. 0 ≤ k ≤ m, when m < n or m ≤ k ≤ 2m − 1, i.e. 0 ≤ k ≤ m − 1, when
m = n. Then

Sylvp,q(A, B) = (−1)p q+n−p−1+nq


k
p


Fk(f , g) f −


k
q


Gk(f , g) g


.

Proof. By induction on k ≥ 0:
The case k = 0 implies (p, q) = (m − 1, n) or (p, q) = (m, n − 1) and will follow from Lemma 6
below.
Now set k > 0.
– For p = m and q < n or p < m and q = n, also by Lemma 6,

Sylvm,q(A, B) = (−1)n−m−1+nqFq−1(f , g)f and Sylvp,n(A, B) = (−1)pGp−1(f , g)g

accordingly, which matches the statement since in these cases
k
q


or
k
p


equals 0.

– For p < m and q < n, we specialize Sylvp,q(A, B) of degree k ≤ m + n − 2 in them + n elements of
A ∪ B by means of Lemma 2 and the inductive hypothesis:

Sylvp,q(A, B)(α) = (−1)p ck

Sylvp,q(A − α, B)


g(α)

= (−1)c
′
+p ck


k − 1
p − 1


Sresk−1


f

x − α
, g


−


k
q


Gk−1


f

x − α
, g

g


g(α),

by Identity (10). Here c ′
= (p − 1)q + n − p − 1 + nq.

Note that we are looking for the coefficient of degree k of the expression between brackets; the
condition k − 1 ≤ m − 1 < n − 1 ≤ k in case m < n and k − 1 ≤ m − 2 < k in case m = n
imply in both cases that deg(Sresk−1(

f
x−α

, g)) ≤ k − 1 < k. Then

Sylvp,q(A, B)(α) = (−1)c
′
+p ck


−


k
q


Gk−1


f

x − α
, g

g


g(α).

When k − 1 < m − 1, i.e k ≥ n, we apply Lemma 3 and get

Sylvp,q(A, B)(α) = (−1)c
′
+p


−


k
q


ck−n


Gk−1


f

x − α
, g


g(α)



= (−1)c
′
+p+k−n


−


k
q


Gk(f , g)(α)g(α)



= (−1)p q+n−p−1+nq


−


k
q


Gk(f , g)(α)g(α)


.

When k − 1 = m − 1, Gk−1

 f
x−α

, g


= 0 = Gk(f , g) and therefore we also get

Sylvp,q(A, B)(α) = (−1)p q+n−p−1+nq


−


k
q


Gk(f , g)(α)g(α)


.
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Analogously,

Sylvp,q(A, B)(β) = (−1)q+p+c′′ ck


k
p


Fk−1


f ,

g
x − β


f −


k − 1
q − 1


Sresk−1


f ,

g
x − β


f (β)

= (−1)q+p+c′′ ck


k
p


Fk−1


f ,

g
x − β


f


f (β)

= (−1)q+p+c′′

k
p


ck−m


Fk−1


f ,

g
x − β


f (β)

= (−1)q+p+c′′+1

k
p


Fk(f , g)(β) f (β),

where c ′′
= p (q − 1) + n − 1 − p − 1 + (n − 1)q. Therefore,

Sylvp,q(A, B)(β) = (−1)p q+n−p−1+nq

k
p


Fk(f , g)(β) f (β).

This concludes the proof. �

The next lemma covers the cases (p, n) and (m, q) needed in the proof of the previous result.
Observe that

Sylvp,n(A, B) = g


A′⊂A,|A′|=p

R(x, A′)
R(A′, B)

R(A′, A − A′)
for p ≤ m,

Sylvm,q(A, B) = f


B′⊂B,|B′|=q

R(x, B′)
R(A, B′)

R(B′, B − B′)
for q ≤ n.

Lemma 6. Set 1 ≤ m ≤ n. Then

(1) Sylvp,n(A, B) = (−1)pGp−1(f , g) g for 0 ≤ p ≤ m − 1, i.e. 1 ≤ p ≤ m.
(2) Sylvm,q(A, B) = (−1)n−m−1+nqFq−1(f , g) f for n − m − 1 ≤ q ≤ n − 1, i.e. 1 ≤ q ≤ m + 1, when

m < n and for 0 ≤ q ≤ m − 1, i.e. 1 ≤ q ≤ m, when m = n.

Proof. (1) By induction onm ≥ 1.
The casem = 1 is clear from Identities 5 and 9, since in this case p = 0 and p = 1.
Now set m > 1 and let 0 ≤ p ≤ m − 1. Both Sylvp,n(A, B) and Gp−1(f , g) g are polynomials of degree
bounded by p+n < m+n andwe compare them by specializing them into them+n elements α ∈ A
and β ∈ B. Clearly both expressions vanish at every β ∈ B and so we only need to compare them at
α ∈ A.
– For p < m − 1, we apply Lemma 2, the inductive hypothesis and Lemma 3 (and the fact that g is
monic):

Sylvp,n(A, B)(α) = (−1)p cp+n

Sylvp,n(A − α, B)


g(α)

= (−1)2p cp+n


G(m−1)−p−1


f

x − α
, g


g


g(α)

= cp

G(m−1)−p−1


f

x − α
, g


g(α) = (−1)p Gp−1(f , g)(α) g(α).

– For p = m − 1:

Sylvp,n(A, B)(α) = R(α, A − α)
R(A − α, B)
R(A − α, α)

g(α)

= (−1)m−1

α′∈A

g(α′) = (−1)m−1Res(f , g) = (−1)m−1G0(f , g)(α)g(α),
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by Identity (2) and the fact that Res(f , g) = F0(f , g)f + G0(f , g)g has degree 0 in x. Therefore
Sylvp,n(A, B) = (−1)pGp−1(f , g) g .
(2) By induction on n ≥ m.
For n = m, by Item (1) we have that for 0 ≤ q ≤ m − 1,

Sylvm,q(A, B) = (−1)mq Sylvq,m(B, A) = (−1)mq+qGq−1(g, f ) f

= (−1)mq+q(−1)(m−(q−1))(n−(q−1))Fq−1(f , g) f = (−1)nq−1Fq−1(f , g) f .

Now set n ≥ m+1 and let n−m−1 ≤ q ≤ n−1. Both Sylvm,q(A, B) and Fq−1(f , g) f are polynomials
of degree bounded bym+q < m+n andwe compare themby specializing them in them+n elements
α ∈ A and β ∈ B. Clearly both expressions vanish at every α ∈ A and so we only need to compare
them at β ∈ B.
– For q < n − 1, we apply Lemma 2, the inductive hypothesis and Lemma 3:

Sylvm,q(A, B)(β) = (−1)q cm+q

Sylvm,q(A, B − β)


f (β)

= (−1)q+(n−1−m−1)+(n−1)q cm+q


F(n−1)−q−1


f ,

g
x − β


f


f (β)

= (−1)(n+m−2+nq)+1 Fq−1(f , g)(β) f (β).

– For q = n − 1,

Sylvm,n−1(A, B)(β) = f (β) R(β, B − β)
R(A, B − β)

R(B − β, β)

= (−1)n−1+m(n−1)

β ′∈B

f (β ′) = (−1)(mn+n−m−1)+mnRes(f , g)

= (−1)n−m−1F0(f , g)(β)f (β).

Therefore Sylvm,q(A, B) = (−1)n−m−1+nqFq−1(f , g) f as wanted. �

We remark that rewriting this result in terms of Fk(f , g) and Gk(f , g), this gives the expressions
proposed by Sylvester in Sylvester (1853, Art. 29). Namely, for 1 ≤ m ≤ n,

(1) For 0 ≤ k ≤ m, whenm < n and for 0 ≤ k ≤ m − 1, whenm = n,

Fk(f , g) = (−1)n−m−1+nk


B′⊂B,|B′|=n−1−k

R(x, B′)
R(A, B′)

R(B′, B − B′)
.

(2) For 0 ≤ k ≤ m − 1,

Gk(f , g) = (−1)m−1−k


A′⊂A,|A′|=m−1−k

R(x, A′)
R(A′, B)

R(A′, A − A′)
.

As a particular case of Proposition 5, using Identities (8) and (9), we obtain Case (2) and a particular
case of Case (4) of the introduction:

Corollary 7.

(1) Set 1 ≤ m = n and let 0 ≤ p, 0 ≤ q be such that p + q = m. Then

Sylvp,q(A, B) =


m − 1

q


f +


m − 1

p


g.

(2) Set 1 ≤ m = n − 2 and let 0 ≤ p ≤ m, 0 ≤ q be such that p + q = n − 1. Then

Sylvp,q(A, B) = (−1)p+1

m
p


f .
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This immediately yields a simple proof for the particular cases when p + q = m < n, see also
Lascoux and Pragacz (2003), D’Andrea et al. (2007) and Roy and Szpirglas (2011).

Proposition 8. Set 1 ≤ m ≤ n − 1 and let p ≥ 0, q ≥ 0 be such that 1 ≤ p + q = m. Then

Sylvp,q(A, B) =


m
p


f .

Proof. By induction on n ≥ m + 1, comparing the two expressions at the n > m elements of B.
For n = m + 1, by Lemma 2 and Corollary 7(1),

Sylvp,q(A, B)(β) = cm

Sylvp,q(A, B − β)


f (β)

= cm


m − 1
q


f +


m − 1

p


g

x − β


f (β)

=


m − 1

q


+


m − 1

p


f (β) =


m
p


f (β).

Now set n > m + 1,

Sylvp,q(A, B)(β) = cm

Sylvp,q(A, B − β)


f (β) = cm


m
p


f


f (β) =


m
p


f (β). �

We finish the proof of Theorem 1 by splitting it into the two remaining cases to be proven. The first
case is the inductive proof of Roy and Szpirglas (2011) thatwe repeat here for the sake of completeness.

Proposition 9. Set 1 ≤ m ≤ n and let p ≥ 0, q ≥ 0 and k = p+ q be such that k ≤ mwhen m < n and
k < mwhen m = n. Then

Sylvp,q(A, B) = (−1)p(m−k)

k
p


Sresk(f , g).

Proof. By induction onm ≥ 1:
The casem = 1 is completely covered by Identities (4), (5), (3) and Proposition 8.
Now setm > 1 and let 0 ≤ k = p + q ≤ m ifm < n and 0 ≤ k = p + q < m ifm = n. We have
– For 0 ≤ k ≤ m − 1, we compare Sylvp,q(A, B) and Sresk(f , g), which are both of degree k < m,
by specializing them into the m elements α ∈ A by means of Lemma 2, the inductive hypothesis and
Corollary 4:

Sylvp,q(A, B)(α) = (−1)p ck

Sylvp,q(A − α, B)


g(α)

= (−1)p(−1)p(m−1−k)

k
p


ck

Sresk


f

x − α
, g


g(α)

= (−1)p(m−k)

k
p


Sresk(f , g)(α).

– For k = m < n, it is Proposition 8. �

Proposition 10. Set 1 ≤ m ≤ n−3 and let 0 ≤ p ≤ m, 0 ≤ q ≤ n be such that m+1 ≤ p+ q ≤ n−2.
Then

Sylvp,q(A, B) = 0.

Proof. By induction on n ≥ m + 3, specializing the expression in the n > m + 1 = k elements of B
by Lemma 2.
For n = m + 3, by Corollary 7(2):

Sylvp,q(A, B)(β) = − f (β)cm+1

Sylvp,q(A, B − β)


= − f (β)cm+1


(−1)p+1


m
p


f


= 0,

since deg(f ) = m < m + 1.
The case n > m + 3 follows immediately. �
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