
ARTICLE

Enhanced energy harvesting near exceptional
points in systems with (pseudo-)PT-symmetry
Lucas J. Fernández-Alcázar 1, Rodion Kononchuk 1 & Tsampikos Kottos 1✉

Exceptional point degeneracies, occurring in non-Hermitian systems, have challenged many

well established concepts and led to the development of remarkable technologies. Here, we

propose a family of autonomous motors whose operational principle relies on exceptional

points via the opportune implementation of a (pseudo-)PT-symmetry and its spontaneous or

explicit violation. These motors demonstrate a parameter domain of coexisting high efficiency

and maximum work. In the photonic framework, they can be propelled by thermal radiation

from the ambient thermal reservoirs and utilized as autonomous self-powered microrobots,

or as micro-pumps for microfluidics in biological environments. The same designs can be also

implemented with electromechanical elements for harvesting ambient mechanical (e.g.,

vibrational) noise for powering a variety of auxiliary systems. We expect that our proposal

will contribute to the research agenda of energy harvesting by introducing concepts from

mathematical and non-Hermitian wave physics.
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The objective of energy harvesting is to supply power to a
variety of systems ranging from structural health mon-
itoring systems to the billions of autonomous wireless

sensors associated with the Internet of everything and to self-
powered micro-/nanorobots and micropumps for microfluidics in
biological environments. In particular, the manipulation of
microscopic objects via currents, for example, has become an
indispensable tool in many disciplines of science and technology,
revolutionizing a variety of applications in areas as diverse as
microengineering and microrobotics, to biology and
medicine1–10. Recently, for example, the use of a photon-driven
micropump was reported to control the flow of fluid in the
vicinity of a neuron, thus affecting its growth10. Depending on the
application, the source of these currents varies from thermal
radiation and vibrations to electrical and chemical energy
extracted in biological processes. On the fundamental level, such
applications require the development of design principles that will
allow us to realize powerful and efficient engines that operate
between two reservoirs at different effective temperatures (or
chemical potentials) and produce useful work with maximum
efficiency. The situation is even more complex when one aban-
dons the convenience of macroscopic frameworks (where recipes
from traditional thermodynamics are available) and delves into
the challenges of modern nanodevices, where wave interferences
and thermal fluctuations dominate their performance11–14. In this
realm, the management of wave interferences via the imple-
mentation of appropriate symmetries in composite structures can
be proven crucial for the design of high-performance engines.

Along these lines, the development of engineering schemes that
manipulate dynamical symmetries in order to enhance
wave–matter interaction has been extremely fruitful over the last
few years. A prominent example is parity-time (PT) symmetric
wave physics15–17, which has initiated a paradigm shift and
triggered increasing attention to non-Hermitian wave transport.
During the last 10 years, this activity has led to a number of
surprises with immediate technological ramifications18–20. Many
of these concepts are directly related to the notion (and sub-
sequent manipulation) of non-Hermitian spectral degeneracies
known as exceptional points (EP)20,21. As opposed to traditional
(diabolic) degeneracies occurring in the spectrum of Hermitian
systems, the EP degeneracy is characterized by coalescence of
both eigenfrequencies and the corresponding eigenvectors22,23.
This collapse of the eigenbasis has many important consequences
in the transport properties of a system and can lead to a plethora
of fascinating phenomena like unidirectional invisibility24,
hypersensitive sensing25,26, loss-induced transparency27, and EP
lasers28,29. At the heart of many of these phenomena is the fact
that, in the proximity of an EP degeneracy, the wave–matter
interaction is enhanced. Recently, however, there was raising
concern about the efficiency of EP design schemes under the
influence of ambient noise sources30,31. This viewpoint is con-
sistent with the general physics/engineering guidelines that con-
sider noise as an anathema—an undesirable, but unavoidable,
contribution of nature that tends to mitigate physical processes.
Here, we will advocate for exactly the opposite viewpoint, aiming
to change this narrative and highlight the coexistence of noise,
with an opportunely designed EP, as an alternative spectral
engineering paradigm for efficient energy harvesting from
ambient noise sources.

Here, we show that the near-field thermal radiation, emitted
from a hot reservoir toward a cold reservoir, can be harvested by
an optomechanical circuit as a nonconservative (wind-)force.
Under its influence, a (slow) mechanical degree of freedom
(MDF) undergoes a closed path periodic motion. We show that
for a long—but finite—driving period of the MDF, these circuits
act as autonomous radiative motors. Their extracted power and

efficiency are maximized when they are designed to operate in a
domain of their parameter space that is in the vicinity of an EP
degeneracy. The origin of this enhancement is traced to the
coalescence of the corresponding eigenmodes, which maximizes
the spectral power density in the vicinity of the EP. Such EP
appears in the spectrum of the effective non-Hermitian Hamil-
tonian that describes the coupling of these motors with the
thermal reservoirs. We have engineered such EPs by enforcing a
(pseudo)-PT symmetry via an opportunely arranged coupling
with the reservoirs, which leads to a differential loss between
modes of the system. In this case, the effective non-Hermitian
Hamiltonian is PT-symmetric invariant, after performing a
renormalization with respect to the average losses. We have
exploited the influence of the EP in the motor performance
enhancement, by appropriately violating (spontaneously or
explicitly) the designed (pseudo)-PT symmetry and by manip-
ulating the thermal emissivity of the attached reservoirs. Our
predictions can guide the design toward optimal operational
conditions of autonomous motors. Their applicability extends
beyond the photonic framework to other platforms like electro-
mechanical circuits for harvesting mechanical (e.g., vibrational)
ambient noise for the power supply of a variety of auxiliary
systems32–37.

Results and discussion
Mathematical formulation. The system consists of two thermal
reservoirs at different temperatures TH > TC, which are brought in
contact via a circuit. The latter is coupled to a MDF from which
we extract work. For simplicity, we will assume that the circuit
incorporates two single-mode resonators whose frequencies ωn

(where n= 1, 2) are modulated by the motion of the MDF. The
temperature gradient between the two reservoirs produces a
thermal current through the circuit that, in turn, exerts a force to
the MDF engaging them in slow periodic motion along a given
closed trajectory C in parameter space. The design is chosen in a
way that the motion along the path C creates out-of-phase var-
iations in ω1,2, thus leading to a violation of spatiotemporal
symmetries of the structure. One possible implementation of the
above setup is in the photonic framework Fig. 1a, while a parallel
proposal in the electromechanical framework is shown in Fig. 1b.
Below, we will mainly use the photonic terminology associated
with Fig. 1a, while we will also have the electromechanical sce-
nario of Fig. 1b in mind.

In typical circumstances, the MDF X= {X1, X2, ... , XM}
describes a change in position or angle of the mechanical element
due to a respective force or torque. For concreteness of our
presentation, we will assume thatM= 2. The coordinate X abides
by the Langevin equation

M€XðtÞ ¼ Γ _XðtÞ þ Fav: þ ξðtÞ; ð1Þ

where M is the generalized inertia tensor, ξ(t) is a fluctuating
force, and Γ is the friction tensor that satisfies a fluctuation-
dissipation relation. In our analysis below, we will assume that the
fluctuating force ξ can be neglected due to the large inertia of the
MDF. Consequently, we can approximate the dynamics of X by
its mean value x ¼ Xh i, where 〈 ⋅ 〉 indicates thermal averaging.
Finally, the mean force Fav., drives the mechanical rotor diverting
energy from the photonic thermal current to produce mechanical
work. In the photonic framework (Fig. 1a), Fav. is analogous to
the radiation pressure associated with the radiation inside the
circuit. In the electromechanical framework of Fig. 1b, Fav. is
associated with a torque acting on the mechanical rotor.

The interaction between the mechanical part and the radiation
is obtained from the variation of the energy inside the photonic
circuit due to displacement x of the MDF. Specifically, the
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thermal averaged force is

Fav: ¼ �_ Ψy ∂H0

∂x
Ψ

� �
¼ �_ ∑

n;n0

∂H0

∂x

� �
nn0

ψnðtÞ
�ψn0 ðtÞ

� �
: ð2Þ

where Ψ ¼ ψ1; ¼ ;ψN

� 	T
, ψn is the field amplitude at the n− th

resonator of the circuit, (ℏωn∣ψn∣2 represents the energy density in
the n− th mode/resonator, and H0(x) is the effective Hamilto-
nian of the circuit that provides a description of the dynamics of
the radiation field in the single-mode resonators. The dynamics of
the open system (circuit coupled with reservoirs) is described in
terms of a temporal coupled-mode theory (CMT)38

i
dΨðtÞ
dt

¼ Heff :ΨðtÞ þ iDTθðþÞðtÞ;

Heff : ¼ H0ðxÞ � i
DTD
2

;

θð�Þ ¼ �θðþÞ þ DΨ;

ð3Þ

where the matrix D, with elements Dn;α ¼
ffiffiffiffiffiffiffi
2γα

p
δn;α, describes

the coupling of the circuit with the thermal baths. The thermal
excitations from (toward) the α-th reservoir are given by the
incoming (outgoing) complex fields θ(+) [θ(−)]. In the frequency
domain (using the Fourier transform f ðtÞ ¼

R1
0 f ðωÞe�iωtdω),

the amplitudes θðþÞ
α ðωÞ satisfy the relation

½θðþÞ
α0 ðω0Þ�

�
θðþÞ
α ðωÞ

D E
¼ 1

2π
~ΘαðωÞδðω� ω0Þδα;α0 ; ð4Þ

where ~ΘðωÞ ¼ ΦðωÞ � ΘðωÞ, with Φ(ω) being a noise filter
function and ΘαðωÞ ¼ exp _ω=ðkBTαÞ½ � � 1f g�1 is the
Bose–Einstein statistics describing the mean number of photons
that are emitted from reservoir α with frequency ω. Finally, Tα is
the temperature of the α-th reservoir.

Work density in the adiabatic limit. We assume that the
dynamics of the MDF Eq. (1) occurs on timescales much larger
than the ones associated with the field dynamics Eq. (4). Under
this assumption, we can invoke the Born–Oppenheimer
approximation and obtain the work performed by the motor
along the path C as39–45 (see Supplementary Note 1)

W ¼
Z 1

0

dω
2π

∑
α

~ΘαðωÞPαðωÞ;

Pα ¼
_

i

I
C
dx ðSxÞy∂xSx
� �

α;α
¼ _

I
C
Rx∂xα

xdx:
ð5Þ

where SxðωÞ ¼ �INα
þ iDGxðωÞDT is the unitary instantaneous

scattering matrix and Gx ¼ ½ωIN �Heff :ðxÞ��1 is the Green’s
function associated with the effective Hamiltonian Heff. (Im is the
m ×m identity matrix). In Eq. (5), the kernel Pα(ω) indicates the
spectral response of the system at a frequency ω. Since Pα(ω) only
involves a parametric integral along the path C, it is a geometric
quantity46,47. It turns out that for the two-reservoir setup of
Fig. 1, Pα can be written only in terms of the reflectance Rx and
the corresponding reflection phase αx (see the right part of Eq.
(5)). As a matter of convention, a positive W in Eq. (5) indicates
that the dynamics of x follows the positive direction of the path C.

An analytically useful expression of Pα is achieved by
substituting in Eq. (5), the scattering matrix in terms of Green’s
function. We get

Pα ¼
Z Z

A

∂ωp

∂xp

∂ωq

∂xq
Wαdxpdxq; ð6Þ

where we have used that ∂H0
∂xp

 �
n;m

¼ ∂ωn
∂xp

δn;mδn;p, and we have

introduced the work density per unit area as

Wα ¼ lim
A!0

Pα=A ¼ 4γα_Re G�
pαGpqGqα � G�

qαGqpGpα

 �
; ð7Þ

with A ¼
RR

A
∂ωp

∂xp

∂ωq

∂xq
dxpdxq ! 0 (see Supplementary Note 2).

Direct inspection of Eq. (5) allows us to establish the following
two conditions for the implementation of our proposal as a
motor: (a) the force has to be nonconservative, which means that

the ∂x ´ ðSxÞy∂xSx
h i

α;α
≠ 0, and (b) the closed path C must enclose

a nonzero area in the parameter space {x1, x2}. A biproduct of the
last condition is that variations of x1, x2 with a phase difference 0
or π cannot produce work.

Engineering EP degeneracies. In the frequency range near an EP
degeneracy, the resolvent of the effective Hamiltonian Heff. can be
approximated by a 2 × 2 subspace involving only the resonant
modes associated with the EP. We therefore consider a minimal
model consisting of two coupled modes with resonant frequencies
ω1, ω2. Alternatively, one can consider, as a concrete example, the
setup of Fig. 1a. The system consists of two single-mode reso-
nators coupled asymmetrically to two reservoirs at temperatures
Tα=1= TH and Tα=2= TC. The effective Hamiltonian of such a
reduced system reads

Heff : ¼
ω1 � iγ1 κ

κ ω2 � iγ2

� �
; ð8Þ

where κ describes the coupling between the two modes and γ1, γ2
are the (asymmetric) decay rates of the two modes due to their
coupling with the two reservoirs. The spectrum of Heff. is

ω± ¼ ω0 � iγ0 ±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω� iΔγ
� 	2 þ 4κ2

q
, where ω0 ¼ ω1þω2

2 , γ0 ¼
γ1þγ2

2 and Δω= ω1− ω2 and Δγ= γ1− γ2 ≠ 0. The corresponding

Fig. 1 Schematic representations of our thermal motor. a A schematic
photonic circuit connected to two thermal baths at different temperatures,
TH > TC, that is able to divert part of the thermal radiative energy into useful
work in the form of the motion of a mechanical degree of freedom (MDF)
described by a rotor. b An electromechanical motor consisting of two LC
resonators, with grounded inductances L1(2) and capacitances C1(2),
connected via a coupling capacitance Cc. The two thermal baths are
represented via Thevenin equivalent transmission lines, with characteristic
impedance R and grounded voltage sources VL(R), and they are attached to
the circuit via capacitances Ce1(e2). The capacitance plates of the LC
resonators are coupled to pistons whose motion is out-of-phase with one
another, thus exercising a torque to a rotor. When the system operates in
the vicinity of exceptional points (EPs) and violates specific spatiotemporal
symmetries (or the baths are subjected to spectral filtering), the motor
operates at optimal performance.
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(non-normalized) eigenvectors are

u1;2 ¼ 2κ;�Δωþ iΔγ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω� iΔγ
� 	2 þ 4κ2

q� �T

: ð9Þ

It is easy to show that when Δω= ΔωEP= 0 and κ= κEP=
Δγ/2 the system supports an EP degeneracy with ω+= ω−=
ωEP= ω0− iγ0.

In fact, under the condition Δω= ΔωEP, the Hamiltonian Eq.
(8) respects a pseudo-parity-time (PT) symmetry that reveals
itself after renormalizing the losses with respect to their mean
value γ027. Below, we will be discussing in detail two distinct
scenarios involving perturbations around the EP that violate this
pseudo-PT symmetry either spontaneously or explicitly. We will
show that each of these cases affects in a different manner the
characteristic features of the work density Wα.

Work density in the presence of an EP. We analyze the extracted
work density of the motor when the center of the modulation
cycle is in the proximity of an EP. To this end, we consider a
modulation cycle C associated with changes to the resonant fre-
quencies being ωn ¼ ω0 1þ δ cosðxn þ ϕnÞ

� �� ð�1Þnϵ, where ϵ
describes a resonance detuning that displaces the unmodulated
system Eq. (8) from the EP by violating explicitly its pseudo-PT
symmetry. In order to satisfy the criteria for nonzero work, we
have assumed that the two resonances are modulated out-of-
phase i.e., ϕ1= π/2, ϕ2= 0. For such a modulation scenario, the
associated enclosed area in the parameter space
ω1ðx1Þ;ω2ðx2Þ
� 	

=ω0 is A= πδ2.
Next, we assume a generic perturbation p, which displaces the

center of the modulation cycle with respect to EP. Using Eq. (7),
we have evaluated the work density Wα in terms of Green’s
function Gx. In fact, for the 2 × 2 case, the calculations for Green’s
function can be carried out explicitly for any perturbation, giving

Gx ¼ 1
D

ω� ðω2 � iγ2Þ �κ

�κ ω� ðω1 � iγ1Þ

� �

� A
ΔEP

þ B
Δ2
EP

;

ð10Þ

where D= [ω− (ω2− iγ2)][ω− (ω1− iγ1)]− κ2 and ΔEP= ω−
ωEP. In the above expression, the generic perturbation p is hidden
in the parameters that define Heff., e.g., in the frequencies ω1,2=
ω1,2(p) and/or the coupling κ= κ(p) between the two resonant
modes. When p→ 0, the Green’s function can be approximated
with the last expression, where A and B are frequency-
independent matrices (see Supplementary Note 3). It turns out
that the functional dependence of Wα on ω, in the vicinity of EP,
is affected by the presence of the square Lorentzian term on the
last part of Eq. (10). This unique spectral feature is a consequence
of the degeneracy of the eigenvectors of Heff. at the EP.
Furthermore, a squared Lorentzian lineshape implies a narrower
emission/absorption peak and greater resonant enhancement in
comparison with a nondegenerate resonance at the same complex
frequency. We will show that the competition between the two
terms appearing at the right equality of Eq. (10) determines
the conditions under which Wα acquires its maximum value
(see below).

A more elaborated treatment can extend the above analysis of
Gx, in order to include any number of modes, by using a
degenerate perturbation theory that takes into consideration the
singular nature of EPs. In this case, the standard modal
decomposition of the Green’s function is not applicable since
the biorthogonal eigenvectors of Heff. do not span the Hilbert
space. Instead, one has to complete the eigenvectors of Heff. into a
basis by introducing the associated Jordan vectors48,49. Following

this approach, we can recover the last expression of Gx in Eq.
(10).

Substituting the expression for the Green’s function back in
Eqs. (6), (7)) we get

W1 ¼ 4_γ1γ2Re
�2iκ2D�

jDj4
� �

¼
�8_γ1γ2κ

2 2γ0Δ0 þ ϵΔγ
� 	

Δ2
0 � γ20 � ϵ2 þ c

� �2 þ 2γ0Δ0 þ ϵΔγ
� �2n o2 ;

ð11Þ

where Δ0=ω−ω0, and for the evaluation of the contour integral
in Eq. (6), we have explicitly written ω1,2 in terms of the parameters
ω0 and ϵ that define the position of the path C. The constant
c= (Δγ/2)2− κ2 and/or the detuning ϵ indicate the degree of
deviation from EP.

Let us exploit further Eq. (11) by considering two specific
examples corresponding to perturbations that preserve/violate the
pseudo-PT symmetry of the effective unmodulated Hamiltonian
Heff. In the first case, we displace the system away from the EP by
varying the coupling κ ≠ κEP while keeping ϵ= 0. We find that the
work density takes the form

W1 ¼ � 16_γ1γ2κ
2γ0Δ0

Δ2
0 þ γ20 þ c

� �2 � 4γ20c
n o2 : ð12Þ

In fact, by considering the EP condition c= 0, we are able to
identify in the denominator of W1 above, the signature of the
square-Lorentzian anomaly associated with the collapse of the
eigenvector basis. Equation (12) allows us to conclude that W1 is
nonmonotonic and antisymmetric with respect to the EP
resonance frequency axis ω= ω0 (Δ0= 0) for all κ-values.
Furthermore, W1ðΔ0 ¼ 0Þ ¼ 0 ¼ W1ðΔ0 ! ±1Þ while its
extrema occur in the vicinity of EP (see the gray-filled circle) at

Δ0 ¼ ω� ω0 ¼ ±
ffiffi
1
7

q
γ0, see Fig. 2a.

The situation is different when we choose to perturb the system
away from the EP using a parameter that enforces an explicit
pseudo-PT-symmetry violation of the unmodulated Hamiltonian
Heff.. An example case is when the resonances of the two coupled
modes are detuned by ϵ. In this case, the diagonal elements of
Heff. take the form ω1;2 ¼ ω0 ± ϵþ ω0δ cosðx þ ϕ1;2Þ. Further-
more, the work density does not have a definite symmetry with
respect to (ω− ω0). To be concrete, we consider the particular
case κ= κEP= Δγ/2 for which the work density is

W1 ¼ � 8_γ1γ2
jDj4

Δγ

2

� �2

2γ0Δ0 þ ϵΔγ
� �

; ð13Þ

where now the denominator takes the form

jDj4 ¼ Δ2
0 � γ20 � ϵ2

� �2 þ 2γ0Δ0 þ ϵΔγ
� �2n o2

; ð14Þ

demonstrating the traces of the square-Lorentzian anomaly. The
latter is better appreciated in the limit of ϵ= 0 (EP condition).
For ϵ≪ ω0, we can further expand up to leading order in ϵ the
denominator and get

W1 � � 8_γ1γ2
jΔEPj

8

Δγ

2

� �2
"
2γ0Δ0

þϵΔγ 1� 16Δ2
0γ

2
0

jΔEPj
4

 !#
;

ð15Þ

where the term associated with the perturbation ϵ is an even
function in Δ0. We conclude, therefore, that the work density Wα
loses the parity as soon as ϵ is turned on, see also Fig. 2b. Below

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00577-5

4 COMMUNICATIONS PHYSICS |            (2021) 4:79 | https://doi.org/10.1038/s42005-021-00577-5 | www.nature.com/commsphys

www.nature.com/commsphys


we will be discussing the consequences of such an effect in the
power extraction of the autonomous motor.

Work in the presence of an EP. We are now ready to exploit the
properties of Wα for the design of autonomous motors with
optimal performance. To this end, we remind that the extracted
work W is essentially the frequency integral of Wα, weighted with
the function ~ΘαðωÞ, see Eq. (5).

Let us first discuss the family of perturbations that preserve the
pseudo-PT symmetry of the unmodulated effective Hamiltonian.
In this case, the antisymmetric form of the work densityWα, with
respect to the ω0− axis, results in a near-zero total work, see
Fig. 2c. The slight deviation from zero (toward positive W > 0) is
due to the fact that Eq. (5) involves a product of Wα with ~ΘðωÞ
which slightly desymmetrizes the integrand toward smaller
frequencies (see the blue solid line). We can revert the situation
by introducing a spectral filtering function Φ(ω), which enhances
the unbalanced contribution of positive and negative work
densities in the integral of Eq. (5). The resulting extracted work,
for the example case of a filter function Φ(ω)=H(ω− ω0), is
reported in Fig. 2c with a black dashed line (H(x) is the Heaviside
function). Our results indicate that such a spectral filtering
approach can lead to an increase in W, which is higher by two
orders of magnitude with respect to the unfiltered case. The same
data indicate that the maximum work occurs in the vicinity of the
EP whereWα acquires its maximum value (gray vertical line) and
where the desymmetrization strategy via spectral filtering is more
impactful.

An alternative way to induce an asymmetric integrand in Eq.
(5) is by deviating the system away from the EP via a perturbation
that will explicitly violate the pseudo-PT symmetry of the
unmodulated effective Hamiltonian. In the previous section, we
have identified one such perturbation being the frequency

detuning ϵ between the two resonators. In this case, the work
density itself becomes asymmetric (see Fig. 2b), leading to a
frequency integral Eq. (5), which is different from zero. In fact,
the maximum W occurring in the proximity of κEP, is again two
orders of magnitude enhanced in comparison to the ϵ= 0 case,
see the blue dashed line in Fig. 2c.

The enhancement of the extracted work W via engineered
perturbations that violate the pseudo-PT symmetry of the motor
is better appreciated in Fig. 2d. Here, we report the extracted
work W (for fixed κ= κEP) for both spectrally unfiltered/filtered
noise versus the perturbation ϵ. For the unfiltered case (red solid
line), we find that in the vicinity of the EP, the total work is
proportional to ϵ, a relation that is a direct consequence of the
expansion Eq. (15) for the work density. Specifically, assuming for
simplicity that Θ1(ω) ≈Θ1(ω0), the integration over ω leads to the
conclusion that W � AΘ1ðω0Þ

R
dω=ð2πÞW1 / ϵ. The same

argument applies also in the case of spectral filtering with Φ
(ω)=H(ω− ω0) (see red dashed line). In both cases, the extreme
work Wmax. occurs at perturbation strengths ϵmax. in the vicinity
of the EP, where the linear approximation Eq. (15) breaks down.
An additional conclusion that we extract from the above analysis
is that the spectral filtering method (combined with perturbations
that violate the pseudo-PT symmetry) leads to a slight (twofold)
increase of the extracted work as compared to the unfiltered case
(see red solid line).

A panorama of the extracted work W versus ϵ and κ is shown
in Fig. 2e. Here, we report only the unfiltered case, i.e., Φ(ω)= 1.
The data demonstrate nicely that the extreme value of the
extracted work occurs in the vicinity of (ϵ, κ)= (0, κEP) where the
EP is located. The case of spectral filtering with a function Φ(ω)
(e.g., Φ(ω)=H(ω− ω0)) shows the same qualitative features
(with the only difference thatW is flat in the negative ϵ semiplane
due to the specific filter function) and therefore is not
reported here.

Fig. 2 Work in the proximity of an exceptional point (EP). Work density (color scale) as a function of the frequency ω of the incident radiation and the
coupling constant κ (a) and resonance detuning ϵ (b). Blue and green solid lines are the eigenfrequencies of Heff., which demonstrate an EP degeneracy
(gray dot) at κ= κEP= 0.5Δγ (Δγ is the differential loss) in a (where ϵ= 0) and at ϵ= 0 in b (where κ= κEP). c The work W for ϵ= 0 (ϵ= 0.006ω0) is
indicated with a blue solid (dashed) line. We also report the work in the case where we have introduced spectrally engineered (SE) reservoirs (black short-
dashed line) via the spectral filtering function Φ(ω)=H(ω−ω0) (H(x) is the Heaviside function). d Work with SE reservoirs for ϵ= 0 (red solid line) and
ϵ≈ 0.006ω0 (red dashed line). In (c, d), the vertical dashed gray lines indicate the position of the EP at κ= κEP and ϵ= 0, respectively. e We report the
total work W as a function of κ and ϵ. The EP is indicated with a gray dot (the black dashed line indicates the value of κEP). In the vicinity of EP, the work
becomes extreme (positive or negative). In these calculations, the average resonance frequency is ω0= 200 × 1012 rad s−1, the temperature of the hot
(cold) bath is TH= 109 K (TC= 3 K), and the decay rates of the two modes are γ1= 0.01ω0 and γ2= 0.002ω0. In c–e, T= (TH+ TC)/2 is the average
temperature of the reservoirs, A is the area in the parameter space, and kB is the Boltzmann constant.
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Time-domain simulations and implementation using electro-
mechanical systems. We validate the above proposal by per-
forming time-domain (TD) simulations using COMSOL
software50 with a realistic electromechanical system, see Fig. 1b.
See “Methods” for a detailed description of the circuit setup.

In the simulations, the wheel is given an initial angular velocity
Ω0= 2.5 × 104 rad/s. Its angular velocity is monitored as a
function of time until it saturates at a particular value, Ωs. From
here, we evaluate the work per cycle via the relation

WTD ¼
Z 2π

0
τðxÞdx ¼ 2π � Γ � Ωs; ð16Þ

where τ is the torque produced by the capacitor plates on the
wheel, x is the angular displacement, and Γ is the friction
coefficient. The subindex TD indicates that the evaluated work is
extracted from our time-domain simulations.

In Fig. 3a–c, we show the transient dynamics of the angular
velocity Ω(t) for three typical coupling constants κ, where κ is
such that Cc= 2κC0 and C0 is a median capacitance (see
Methods). Notice that in some cases (e.g., Fig. 3a), the angular
velocity Ω(t) acquires negative values indicating that the wheel
rotates opposite to the direction of the closed path C. We find that
in the long time limit, the MDF reaches a terminal angular
velocity Ωðt ! 1Þ � ΩTD

s which can be used in Eq. (16) for the
numerical evaluation of WTD. In each of the subfigures 3a–c, we
also indicate the theoretical values of the saturation velocity Ωs

(see dashed black line). The latter has been extracted via Eq. (16),
where the work W on the left-hand side has been calculated using
Eq. (5). For the theoretical evaluation of W, we have extracted the
elements of the instantaneous S-matrix of the circuit using a
frequency-domain analysis of COMSOL50 (see “Methods”).

In Fig. 3d, we report a summary of the extracted WTD versus
the coupling constant κ. In the same figure, we also plot the
theoretical predictions for the work W (green line) that have been
derived using Eq. (5) with instantaneous scattering matrix

elements given by the COMSOL frequency analysis of the
electromechanical system. Finally, in the same figure, we are
presenting the predictions of the CMT modeling of Eqs. (4) and
(8). In the latter case, the various parameters (coupling, resonance
frequencies, and linewidths) of the CMT model have been
extracted from the transmission spectrum of the electronic circuit
(see “Methods”). The nice agreement between CMT and TD
simulations confirms the validity of our CMT modeling and
establishes the influence of the EP protocols in extracting
maximum work from thermal autonomous motors.

Efficiency. In the framework of thermal engines, the question of
maximum efficiency has been addressed by the pioneering work
of Carnot that pointed out that the efficiency of a thermal engine
that performs a cycle between two reservoirs with temperatures
TH and TC (TH > TC) is bounded by the so-called Carnot effi-
ciency ηC= 1− TC/TH51,52. Of course, this thermodynamic
bound is of limited practical importance since the corresponding
heat engine must work reversibly, and thus its output power is
zero. A more practical direction is to identify conditions under
which the power of irreversible thermal engines, working under
finite-time Carnot cycles, is optimized while their efficiency is still
high53–58.

For the setup shown in Fig. 1b, the temperature gradient
between the two thermal reservoirs induces a thermal current that
goes through the motor. Part of the associated input power is
dissipated due to friction, resulting in a reduction in the amount
of usable output power44. The latter can be used, e.g., for lifting a
weight or charging a capacitor. The usable output power is

Pout ¼
Ωs

2π
W �Ωs

2π
Γ

Z 2π
Ωs

0
_x2dt � Ωs

2π
W � ΓΩ2

s ; ð17Þ

where we have assumed that the MDF has large inertia, forcing
the rotor to move with terminal velocity _x � Ωs. The optimal
terminal angular velocity that maximizes the usable work is
dictated by the parameters of the setup and can be found from
Eq. (17) to be Ω�

s ¼ W=ð4πΓÞ leading to P�
out ¼ W

4π

� 	2 1
Γ, which is

half of the total frictionless power W
4π

� 	2 2
Γ. For circuit parameters

such that Ωs � Ω�
s , the motor dissipates most of the incident

energy, while in the other limiting case, where Ωs 	 Ω�
s , the

friction can be neglected, but the device does not generate much
power. In both limits, the usable output power is nearly zero.

It is, therefore, useful to quantify the performance of an
autonomous motor by introducing its efficiency η. The latter is
defined as the ratio of the net usable average output power, Pout,
that is extracted from the motor during one period of the cycle
2π=Ω�

s when it operates under optimal conditions (i.e., Ωs ¼ Ω�
s ),

to the total input power Pin delivered to the photonic circuit.
Specifically

η� � P�
out

Pin
; Pin � �Ib þ �Ip; ð18Þ

where for the evaluation of Pin we have also considered the fact
that the slow variation of the photonic network’s parameters
induces a pumping energy current �Ip in addition to the energy
current �Ib due to the temperature bias59. Both currents above are
measured at the hot reservoirs. Since typically �Ip 	 �Ib we can
omit the pumped current from the denominator while we can
substitute in Eq. (18) the maximum usable power as
P�
out 
 W2=Γ. Therefore, η� 
 ðW�Ib Þ

W
Γ , which suggests that the

maximum η� ≤ ηC
2 might be expected in the parameter domain

where W acquires its maximum values, see Figs. 2 and 3.
An efficient way to test the above expectations of the

performance of our EP-influenced motor is by simultaneous
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Fig. 3 Langevin dynamics and work. a–c The dynamics of the angular
velocity Ω(t) for some representative values of the coupling coefficient κ,
whose terminal velocity ΩTD

s determines the work delivered by the photonic
circuit. The black dashed lines indicate the associated theoretical values of
the saturation velocity Ωs, see Eq. (16). d Work performed by the two-
resonator circuit setup versus the coupling parameter κ. The numerical
evaluation for the work from time-domain (TD) simulations (dots with error
bars) is based on the mean value of the terminal angular velocity ΩTD

s , see
Eq. (16). The error bars indicate the range of values for the work per cycle
due to fluctuations of Ω(t) after saturation, see “Methods”. The TD
simulations match nicely with the theoretical predictions for the work
(green line), given by Eq. (5) in terms of the S-matrix. The blue dashed line
reports the work predicted by the coupled-mode theory (CMT) modeling,
see Eqs. (4) and (8) and “Methods”. The vertical red dotted line indicates
the position of the exceptional point (EP).
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evaluation of its efficiency, Eq. (18), together with the
corresponding power P�

out. These quantities are plotted in Fig. 4
as a function of the parameters κ, ϵ associated with the coupling
and the resonance detuning between the two LC resonators of the
electromechanical system of the previous section. For these
calculations, we have used the CMT modeling with parameters
that reproduce the results of the direct TD simulations of
COMSOL for the electromechanical motor (see Fig. 3d).
Furthermore, we have ensured that the angular frequency Ω�

s is
small enough such that the Born–Oppenheimer approximation is
valid. From Fig. 4, we see that both η* and P�

out acquire their
maximum values in the vicinity of the EP—albeit at slightly
different (κ, ϵ)-parameter values. This is because of a natural
trade-off between efficiency and extracted power, which has
triggered a number of recent studies to identify conditions where
this trade-off is optimized46,53,58,60–63. Our proposal identifies, as
an optimal domain for the design of cycle C, the parameter space
in the proximity of an EP.

Conclusion. We have theoretically proposed and numerically
demonstrated a large enhancement of the performance of thermal
motors when they are operating in a parametric domain that is in
the proximity of an EP degeneracy. The latter appears in the
spectrum of the effective non-Hermitian Hamiltonian that
describes the open circuit and is achieved via an opportunely
arranged (differential) coupling of the isolated circuit with the
ambient baths. In the proximity of the EP, the eigenvector basis
collapses (eigenvector degeneracy), leading to an enhanced
spectral work density WðωÞ. In typical circumstances, WðωÞ is
antisymmetric with respect to the position of ωEP, leading to a
near-zero total work W. When, however, the spectral work
densityWðωÞ is desymmetrized, the total extracted power and the
motor efficiency can acquire their maximum values in the
domain of the parameter space that is in the vicinity of the EP.
We have shown that this desymmetrization can occur either via
an explicit PT-symmetry violation of the unperturbed system or
via a spontaneous symmetry where one needs to supplement it
with additional spectral filtering of the radiation of the bath.

Our results pave the way toward the development of a
generation of optimal thermal motors that utilize engineered
non-Hermitian spectral degeneracies. The proposed scheme can
find applications for on-chip photonics (e.g., self-powered
microrobots or micropumps in microfluidics) and electromecha-
nical systems for harvesting ambient noise for powering a variety
of auxiliary systems. It will be interesting to extend our study of
motor efficiency to cases where the closed path in the parameter
space is in the proximity of an EP degeneracy of higher order. It is
plausible that the higher-order divergence of the resolvent will
lead to further enhancement of the total work. Similar questions
emerge in the case where there are more than one EP, hybrid EPs,
and anisotropic EPs, in the proximity of the closed path in the
parameter space64–67. The possibility to extend these design
schemes for the realization of optimal quantum motors39,68 is
also another promising direction. These, and other, questions will
be addressed in a separate publication.

Methods
Circuit setup and time-domain simulations. The setup consists of a pair of
capacitively coupled resonators with impedance Z0= 70 Ohm tuned at different
frequencies, ω1,2= ω0 ± ϵ, which enforces violation of the pseudo-PT symmetry of
the unmodulated system. In our simulations, we have considered that ω0= 2πf0,
with f0= 1MHz, and ϵ= 0.0488 ⋅ ω0. The capacitors C1,2 are considered as a pair
of conductive plates separated by a median air gap d0 ¼ e0 �A

C0
, where e is the vacuum

permittivity, A= 100 cm2 is the area of the capacitor plates, and C0 ¼ 1
Z0 �ω0

is a

median capacitance. The upper plates of the capacitors are assumed to be attached
to a wheel (the MDF) of radius r= d0/10 in a way that during the wheel rotation
with angular velocity Ω, the plates will undergo a motion described by the dis-
placements d1;2 ¼ d0 þ r � cosðϕ1;2Þ with ϕ1=Ωt and ϕ2= ϕ1+ π/2. The wheel is
assumed to have mass m= 1 g, moment of inertia I= 0.5mr2= 7.5810−15 kg m2,
and experiences friction with the ambient medium with friction coefficient Γ=
2.5 ⋅ 10−13 Nm s rad−1. The coupling capacitance between the two LC resonators is
Cc= 2κ ⋅ C0, where the coupling coefficient κ is a tunable parameter of the simu-
lations. The left/right resonators are coupled to hot/cold baths via capacitors Ce1=
0.1 ⋅ C0 and Ce2= 0.03 ⋅ C0, respectively, which yields the following value for the
critical coupling κEP= 0.001625 (red dotted line on Fig. 3d).

To enhance further the extracted work from the MDF, we have introduced, in
addition to the detuning ϵ, spectral filtering of the thermal baths. Specifically, the
hot bath is producing a noise signal consisting of 200 spectrally uniformly
distributed harmonics vðtÞ ¼ V0 �∑

200
i¼1 sin ~ωi t þ φi

� 	
, where V0= 1 V is the

amplitude of the noise, ~ωi is the frequency of each noise harmonic, and φi is a
random phase shift. The lower frequency of the noise considered in the simulations
is ~ω1 ¼ 2π 0:85 MHz with an upper limit of ~ω200 ¼ 2π 1:1 MHz.

The error bars in Fig. 3d reflect the fluctuations in the numerical evaluation
of ΩTD

s and are extracted from the temporal analysis of Ω(t) as ΩTD
min=max ¼

min=max Ωðt 2 ½t1; tmax�Þð Þ, where t1 is the time during which Ω(t) reaches the
theoretical value of Ωs for the first time for a given value of κ; tmax ¼ 0:13 s is
maximum time used in a TD analysis.

Finally, we point out that the CMT Hamiltonian’s parameters that best fit the
scattering spectrum of the circuit setup (see next section) are γ1 ≈ 3.6 × 10−3, γ2 ≈
3.2 × 10−4, ω1 ≈ 1− κ, and ω2 ≈ 0.94− κ, in units of ω0= 2π × 1MHz. We have
used a detailed CMT modeling associated with the circuit setup69 for both the
calculation of work in Fig. 3d and for our extensive simulations of Fig. 4.

Scattering parameters for the electrical circuit. We consider the circuit setup in
Fig. 1b as a scatterer59 where the voltage on the left (right) node, L (R), connecting
the Thevenin equivalent transmission line to the capacitor Ce1 (Ce2) is driven by

time- dependent voltage sources vsLðRÞðtÞ ¼ Re V s
LðRÞe

iωt
 �

. Both the voltage and

the current measured at the node L(R) can be split as a sum of two contributions

vLðRÞðt;ωÞ ¼ Re ðVþ
LðRÞ þ V�

LðRÞÞeiωt
h i

;

iLðRÞðt;ωÞ ¼ 1
Z0
Re ðVþ

LðRÞ � V�
LðRÞÞeiωt

h i
:

ð19Þ

Here Vþ
L ¼ V s

L=2 (V�
R ¼ V s

R=2) is the complex voltage amplitude of the incoming
wave from the left (right) Thevenin equivalent source, while V�

L (Vþ
R ) is the voltage

amplitude of the outgoing scattered wave. In the particular case where V�
R ¼ 0, V�

L
(Vþ

R ) is the amplitude of the reflected (transmitted) wave and, thus, the reflection

(transmission) coefficient results rL ¼ V�
L

Vþ
L
(tR;L ¼ Vþ

R

Vþ
L
). Similarly, when Vþ

L ¼ 0, the

reflection (transmission) coefficient is rR ¼ Vþ
R

V�
R
(tL;R ¼ V�

L
V�

R
).

Fig. 4 Maximum power and efficiency. Maximum power P�out (z axis) and
efficiency η* normalized with respect to the maximum efficiency ηC/2
(color scale) at operational conditions corresponding to optimal terminal
angular velocity Ω�

s . These quantities are plotted as a function of the
coupling κ and resonance detuning ϵ for a fixed temperature gradient. A
perturbation on κ respects the pseudo-PT-symmetric nature of the
unmodulated system, while a perturbation on ϵ violates this symmetry. In
these extensive simulations, we have used the coupled mode theory
modeling with parameters associated with the circuit setup: decay rates
γ1≈ 3.6 × 10−3, and γ2≈ 3.2 × 10−4, resonance frequencies of each
resonator ω1≈ 1− κ, and ω2≈ 0.94− κ, all measured in units of the natural
frequency ω0= 2π × 1MHz.
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