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LARGE TIME BEHAVIOR FOR A NONLOCAL DIFFUSION EQUATION

WITH ABSORPTION AND BOUNDED INITIAL DATA

JOANA TERRA AND NOEMI WOLANSKI

Abstract. We study the large time behavior of nonnegative solutions of the Cauchy problem
ut =

∫
J(x − y)(u(y, t) − u(x, t)) dy − up, u(x, 0) = u0(x) ∈ L∞, where |x|αu0(x) → A > 0 as

|x| → ∞. One of our main goals is the study of the critical case p = 1 + 2/α for 0 < α < N ,

left open in previous articles, for which we prove that tα/2|u(x, t) − U(x, t)| → 0 where U is
the solution of the heat equation with absorption with initial datum U(x, 0) = CA,N |x|−α. Our
proof, involving sequences of rescalings of the solution, allows us to establish also the large time
behavior of solutions having more general nonintegrable initial data u0 in the supercritical case
and also in the critical case (p = 1 + 2/N) for bounded and integrable u0.

1. Introduction

Consider the following nonlocal evolution problem with absorption

(1.1)

{

ut =
∫

J(x− y) (u(y, t)− u(x, t)) dy − up(x, t) in R
N × (0,∞)

u(x, 0) = u0(x) in R
N ,

where J ∈ C∞
0 (RN ) is radially symmetric, J ≥ 0 with

∫

J = 1 and u0 ≥ 0 and bounded.

Equation (1.1) can be seen as a model for the density of a population at a certain point and
given time. In fact, let u represent such density and the kernel J(x−y) represent the probability
distribution density of jumping from a point x to a point y. Then, using the symmetry of the
kernel J , the diffusion term

∫

J(x− y)(u(y, t)−u(x, t)) dy represents the difference between the
rate at which the population is arriving at the point x and the rate at which it is leaving x. The
absorption term −up represents a rate of consumption due to an internal reaction.

This diffusion operator has been used to model several nonlocal diffusion processes in the last
few years. See for instance [1, 2, 3, 4, 10, 20]. In particular, nonlocal diffusions are of interest in
biological and biomedical problems. Recently, these kind of nonlocal operators have also been
used for image enhancement [11].

We are interested in the large time behavior of the solutions to (1.1) and how the space
dimension N , the absorption exponent p and the assumptions on the initial data u0 influence
the result.

These kind of problems have been widely studied for the heat equation with absorption or,
more generally, the porous medium equation or other diffusion equations. (See, for instance,
[6, 12, 14, 15, 16, 21]).
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In the case of semilinear problems, one possible approach is the direct use of the variations of
constants formula associated to the knowledge of a fundamental solution of the purely diffusive
linear part. This approach has been considered for problem (1.1) in [18, 19] and it allowed to
study the supercritical cases, in which the presence of the absorption term does not influence
the asymptotic behavior.

Another possible approach is to consider rescalings that leave the purely diffusive equation
unchanged. This is done, for instance, for the porous medium or the evolutionary p-laplace
equations.

At first sight, this last approach is not possible for (1.1) since the nonlocal diffusion equation
is not invariant under any rescaling. Anyhow, it is easy to see that if u is a solution to

(1.2) ut =

∫

J(x− y)(u(y, t) − u(x, t)) dy = Lu,

and, for k > 0 and f(k) any function of the parameter k,

uk(x, t) = f(k)u(kx, k2t),

then uk is a solution to the following equation

(1.3) vt = k2
∫

Jk(x− y)
(

v(y, t) − v(x, t)
)

dy,

where Jk(x) = kNJ(kx). It is not difficult to prove that for a fixed smooth function v, the right
hand side in (1.3) converges, as k goes to infinity, to a∆v where a is a constant that depends
only on the kernel J of the nonlocal operator.

This fact has already been used –with ε = k−1 → 0– in order to prove that the solutions of the
rescaled problems set in a fixed bounded domain converge to the solution of the heat equation
with diffusivity a. (See, for instance, [8, 9]).

Therefore, since k going to infinity for uk(x, 1) amounts to t going to infinity for u(x, t), it is
not at all striking that the asymptotic behavior as t goes to infinity of the solution of (1.1) is
the same as that of the solution of the equation obtained by replacing the nonlocal operator by
a∆, as was proved in [18] when u0 ∈ L∞ ∩L1 and p > 1 + 2/N and in [19] when u0 is bounded
and |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α ≤ N and p > 1 + 2/α.

Both in [18] and [19] no rescaling was proposed and instead, the variations of constants formula
was used. Nevertheless, such method only led to the study of the supercritical cases.

As stated above, the idea of the rescaling method is that the behavior of u(x, t) as t → ∞ is
that of uk(x, 1) as k → ∞ (for a suitable choice of f(k)).

In order to prove the convergence of the functions uk(x, 1) on compact sets of R
N , it is

necessary to establish compactness of a family of uniformly bounded solutions to the equation
satisfied by uk. In the case of the heat or the porous medium equations, this compactness follows
from their regularizing effect.

The purpose of this paper is twofold. On one hand, to establish the large time behavior in
the critical case p = 1 + 2/α, 0 < α < N that was left open in [19]. On the other hand, to
show how to use the rescaling method in the present situation in which each uk is a solution of
a different equation. And moreover, how to obtain, in the present situation, the compactness of
the family {uk} from uniform L∞ bounds.
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One very important issue that we had to overcome is the lack of a regularizing effect of
equation (1.2) and its rescalings. In fact, u(x, t) is exactly as smooth as u0(x). This problem is
overcome by the observation that the fundamental solution of equation (1.2) can be decomposed
as e−tδ+W (x, t) withW (x, t) smooth, as proved in [5]. Then, the variations of constants formula
for the rescaled equations allowed us to decompose uk(x, t) = vk(x, t) + hk(x, t) with vk → 0
and hk smooth. So, the limit as k → ∞ of uk(x, t) for t > 0 is that of the smooth functions hk,
for which we can prove compactness by establishing uniform Holder estimates.

One of the main contributions of the present paper is a very sharp estimate on the space-time
behavior of W (x, t) (as well as its space and time derivatives). This estimate is invariant under
the rescaling Wk(x, t) = kNW (kx, k2t), thus leading to estimates for the rescalings uk of the
solution u.

This study of the good part of the fundamental solution and the idea of how to use the
rescaling method in order to study asymptotics related to the nonlocal diffusion equation (1.2)
give insight into how to attack other semilinear problems related to this equation like blow up
or quenching problems (determine blow up and quenching profiles, for instance) and thus they
are of an independent interest.

In the present paper we apply this method in order to study the asymptotic behavior as
time goes to infinity of the solution to (1.1) for general bounded initial data u0. We find that
this behavior is determined by the way u0 decays at infinity, retrieving for (1.1) results that
were known for the heat equation (see [12, 14, 16]). In particular, this method allows to treat
the critical case p = 1 + 2/α, 0 < α < N left open in our previous paper [19]. Moreover, we
also complete the results of [18] for integrable initial data by proving that –in the critical case

p = 1 + 2/N– there holds that tN/2u(x, t) → 0 as t → ∞ (as compared to the supercritical case
p > 1 + 2/N where a nontrivial limit is achieved).

Moreover, since our approach allows for very general initial data, we find results for both
integrable and nonintegrable initial data that do not behave as a negative power at infinity, and
we give some examples of application of our results to such cases at the end of this article.

Before presenting some examples of initial data to which our results apply let us introduce
some notation.

Notation. We consider rescalings that depend on the behavior of u0 at infinity. For k > 0 we
denote by vk(x, t) = kNv(kx, k2t) and, following the notation in [16], we denote by vk(x, t) =
f(k)v(kx, k2t) where

f(k) :=
kN

∫

Bk
u0

.

Remark 1.1. Since u0 ≥ 0, u0 6= 0, there exist κ > 0 and x0 ∈ R
N such that

∫

Bk(x0)
u0(x) dx ≥

κkN for k > 0 small. Without loss of generality we will assume that x0 = 0.

We assume further.

Conditions on f

(F1) u0 ∈ L∞(RN ) and there exists B > 0 such that f(|x|)u0(x) ≤ B.

(F2) For every δ > 0, there exists Cδ > 0 such that f(k) ≤ Cδf(l) if k0 ≤ k ≤ lδ−1.
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(F3) There exists c0 ≥ 0 such that F (k) := f(k)1−pk2 → c0 as k → ∞.

Remark 1.2. Assumption (F3) implies that f(k) ≥ c1k
2/(p−1) if k ≥ k0 and k0 is large.

Therefore, f(k) → ∞ as k → ∞.

Examples By including the function f in our rescaled sequence we are able to deal with rather
general initial conditions. It is also interesting to note that, for u0 ∈ L∞ satisfying

(1.4) |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α < N,

the function f behaves like kα as k tends to infinity. This is then, a rather usual rescaling in
this case.

The following is a list of examples of initial data satisfying our assumptions.

Ex. 1 Assume u0 ∈ L∞(RN ) and |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α < N . Then,

f(k) ∼ kα so we take it to be equal

F (k) = k−α(p−1)+2 →
{

0 if p > 1 + 2
α

1 if p = 1 + 2
α

Ex. 2 Assume u0 ∈ L∞(RN ) and |x|Nu0(x) → A > 0 as |x| → ∞. Then,

f(k) ∼ kN

log k
so we take it to be equal

F (k) = k−N(p−1)+2(log k)p−1 → 0 ∈ R if p > 1 +
2

N
.

Ex. 3 Assume u0 ∈ L∞(RN ) and
|x|α
log |x|u0(x) → A > 0 as |x| → ∞ with 0 < α < N . Then,

f(k) ∼ kα

log k
so we take it to be equal

F (k) = k−α(p−1)+2(log k)p−1 → 0 ∈ R if p > 1 +
2

α
.

Ex. 4 Assume u0 ∈ L∞(RN ) and |x|α(log |x|)u0(x) → A > 0 as |x| → ∞ with 0 < α < N .
Then,

f(k) ∼ kαlog k so we take it to be equal

F (k) =
k−α(p−1)+2

(log k)p−1
→ 0 if p ≥ 1 +

2

α
.

Ex. 5 Assume u0 ∈ L∞(RN ) and
|x|N
log |x|u0(x) → A > 0 as |x| → ∞. Then,

f(k) ∼ kN

log2 k
so we take it to be equal

F (k) = k−N(p−1)+2(log k)2(p−1) → 0 if p > 1 +
2

N
.
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Ex. 6 Assume u0 ∈ L∞(RN ) and |x|N (log |x|)u0(x) → A > 0 as |x| → ∞. Then,

f(k) ∼ kN

log log k
so we take it to be equal

F (k) = k−N(p−1)+2(log log k)p−1 → 0 if p > 1 +
2

N
.

Ex. 7 Assume u0 ∈ L1(RN ). Then,

f(k) ∼ kN so we take it to be equal

F (k) = k−N(p−1)+2 →
{

0 if p > 1 + 2
N

1 if p = 1 + 2
N

Let us just mention that the function f(k) is related to the rate of decay in time of the solution
whereas c0 = limk→∞ F (k) turns out to be the coefficient in front of the absorption term in the
equation satisfied by the limiting profile.

For our main results we refer to Section 4.

The paper is organized as follows. In Section 2 we construct barriers for the good part W of
the fundamental solution of (1.2), as well as for its space and time derivatives. By using these
barriers we obtain an upper bound for the solution uL to (1.2) for all times. This result improves
the one we had established for finite time intervals in [19] in case u0 satisfies (1.4). Also, this
bound on uL implies that the rescaled functions uk are uniformly bounded in R

N × [τ,∞) for
every τ > 0.

In Section 3 we analyze the rescaled problems satisfied by the uk’s and prove that, under
sequences, {uk} converges uniformly on compact sets to a solution U of the equation Ut−a∆U =
−c0U

p, where c0 = limk→∞ F (k).

Moreover, we obtain a general result stating that we can determine the limit function U . In
fact, we prove that if uk0(x) → φ(x) as k tends to infinity in the sense of distributions and, for
every R > 0 there holds that

||uk||L1(BR×(0,τ)) ≤ C(R)τ

and either there exists γ > 0 such that

||uk||Lp(BR×(0,τ)) ≤ C(R)τγ

or, for every τ ≤ 1, R > 0,
lim
k→∞

||uk||Lp(BR×(0,τ)) = 0,

then U satisfies moreover,
U(x, 0) = φ(x).

Then we establish, for the different cases of nonintegrable initial data u0 considered in the
examples, the desired L1 and Lp bounds.

At the end of the section we analyze the case where u0 is integrable (in which case it does not
satisfy an Lp estimate as above) and determine U , both for p supercritical and for p critical.

Finally, in Section 4 we prove our main results on the asymptotic behavior of the solution
for initial data comprised in the examples above. In particular, we obtain the behavior in the
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critical cases p = 1 + 2/α when u0 satisfies (1.4), and p = 1 + 2/N when u0 ∈ L1 ∩ L∞, that
were left open in [19] and [18] respectively.

2. Barriers and first asymptotic estimates

In this section we analyze in detail the smooth part W of the fundamental solution to the
linear equation

(2.5) ut =

∫

J(x− y)(u(y, t) − u(x, t)) dy = Lu.

We establish upper bounds for W and also for its space and time derivatives. These will be
essential in Section 3, in order to prove the convergence of the rescaled sequence.

In [5] the authors observed that the fundamental solution of (2.5) can be written as

U(x, t) = e−tδ +W (x, t)

where δ is the Dirac measure and W (x, t) is a smooth function. Then, in [13] the authors showed
that

|W (x, t)| ≤ C0t
−N/2.

In [19] we established that W is a solution to the problem

(2.6)







Wt(x, t) =

∫

J(x− y)
(

W (y, t)−W (x, t)
)

dy + e−tJ(x)

W (x, 0) = 0,

and used this fact to prove that W ≥ 0 and to obtain estimates in Lq(RN ), which in turn allowed
us to establish the asymptotic behavior of solutions to the nonlocal problem with absorption in
the supercritical case.

In order to deal with the critical case, we will use the method of rescaled sequences for which
we need the knowledge of the behavior of W (x, t) as |x| → ∞. We obtain this behavior from
sharp barriers. We have,

Theorem 2.1. Let W as above. There exists a constant C > 0 depending only on J and N
such that

(2.7) W (x, t) ≤ C
t

|x|N+2
.

Proof. First observe that W (x, t) ≤ v1(x, t) := ‖J‖∞t. In fact, in any finite time interval, the
function v1 is a bounded supersolution of the problem (2.6) satisfied by W . Thus, the inequality
follows from the comparison principle.

Now, let v2(x, t) = C t
|x|N+2 . We will show that there is a constant C depending only on J

and N such that v2 is a supersolution of the Dirichlet problem










vt − Lv = e−tJ(x) in A := {|x| ≥ K
√
t} ∩ {|x| ≥ 2R}

v = W in the complement of A
v(x, 0) = 0

satisfied by W . Here R is large enough and such that BR contains the support of J , and K is
a large enough constant to be determined.
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In fact, v2 ≥ W in Ac if C is large since W ≤ ‖J‖∞t and W ≤ C0t
−N/2.

On the other hand, v2t =
C

|x|N+2 . In order to estimate Lv2 we use Taylor’s expansion to get,

1

|y|N+2
− 1

|x|N+2
= −N + 2

|x|N+4
x · (y − x)− 1

2

N + 2

|x|N+4
|y − x|2

+
1

2

(N + 2)(N + 4)

|x|N+6

∣

∣x · (y − x)
∣

∣

2
+

∫ 1

0
O
( |y − x|3
|x+ s(y − x)|N+5

)

ds.

Now, since J is radially symmetric,

−N + 2

|x|N+4

N
∑

i=1

xi

∫

J(x− y)(yi − xi) dy = 0,

1

2

N + 2

|x|N+4

∫

J(x− y)|y − x|2 dy =
(N + 2)N

|x|N+4
a,

and

1

2

N
∑

i,j=1

xixj
|x|N+6

(

− (N + 2)(N + 4)
)

∫

J(x− y)(yi − xi)(yj − xj) dy = −(N + 2)(N + 4)

|x|N+4
a,

where a = 1
2N

∫

J(x)|x|2 dx.
On the other hand, x+ s(y − x) ≥ |x| − |y − x| ≥ 1

2 |x| if |x| ≥ 2R and |y − x| ≤ R. Thus, if
|x| ≥ 2R,

∫ ∫ 1

0
J(x− y)O

( |y − x|3
|x+ s(y − x)|N+5

)

ds dy ≤ C1

|x|N+5
.

Putting everything together we get, if |x| ≥ 2R and R is large enough,

v2t − Lv2 ≥
C

|x|N+2

(

1− C2
t

|x|2
)

.

So that, if |x| ≥ K
√
t with K large enough,

v2y − Lv2 ≥
C/2

|x|N+2
≥ e−tJ(x)

if C is large enough since J is bounded and has compact support. �

Now we find a barrier for the space derivatives of W .

Theorem 2.2. Let W be as above. There exists a constant C > 0 depending only on J and N
such that

(2.8) |∇W (x, t)| ≤ C
t

|x|N+3
.

Proof. We proceed as above. First, by differentiating the equation satisfied by W we find that
Vi = Wxi is the solution to

(2.9)

{

Vit − LVi = e−tJxi

Vi(x, 0) = 0
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As with W we find immediately that |Vi| ≤ ‖∇J‖∞t. On the other hand, from the Fourier

characterization of W it can be seen that ‖∇W (·, t)‖∞ ≤ C0t
−N+1

2 . (See, for instance, [13]).
Therefore, for every K > 0 there exists a constant C such that

v̄(x, t) := C
t

|x|N+3
≥ Vi in Ac.

On the other hand, the same type of computation as the one in Theorem 2.1 yields that, if
K is large enough, there exists C such that v̄ is a supersolution to the Dirichlet problem











vt − Lv = e−tJxi(x) in A := {|x| ≥ K
√
t} ∩ {|x| ≥ 2R}

v = Vi in the complement of A
v(x, 0) = 0

satisfied by Vi.

We conclude that Vi ≤ v̄.

Analogously, −v̄ is a subsolution to this problem. Thus, |Vi| ≤ v̄ and the theorem is proved.
�

The estimate in (2.8) allows to derive estimates of the L1 norm of ∇W . In fact,
∫

|∇W (x, t)| dx =

∫

|x|≤
√
t
|∇W (x, t)| dx+

∫

|x|≥
√
t
|∇W (x, t)| dx

≤ C0

∫

|x|≤
√
t
t−

N+1

2 dx+ C

∫

|x|≥
√
t

t

|x|N+3
dx

= CN,J

[

t−
N+1

2 t
N
2 + tt−

3

2

]

= CN,J t
− 1

2 .

So, we obtain a first estimate that is suitable for large times

(2.10)

∫

|∇W (x, t)| dx ≤ C1 t
− 1

2

with C1 depending only on J and N .

On the other hand, since |∇W | ≤ Ct, there holds that

(2.11) |∇W (x, t)| ≤ C
t

(1 + |x|)N+3
.

Thus, we have the following estimate, which is better than the previous one for small t.

(2.12)

∫

|∇W (x, t)| dx ≤ C1 t.

We obtain similar results for Wt. We have,

Theorem 2.3. Let W be as above. There exists a constant C > 0 depending only on J and N
such that

(2.13) |Wt(x, t)| ≤ e−tJ(x) + C
t

(1 + |x|)N+4
.
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Proof. By differentiating the equation satisfied by W we obtain

(Wt)t(x, t) = LWt(x, t) − e−tJ(x).

On the other hand, from the equation for W we get

Wt(x, 0) = J(x).

Let V (x, t) = Wt(x, t)− e−tJ(x). Then,

(2.14)

{

Vt − LV = e−t(J ∗ J − J)

V (x, 0) = 0

Since |J ∗ J − J | ≤ 2‖J‖∞ we get a first estimate for V : |V (x, t)| ≤ 2‖J‖∞t.

We can derive the estimate |V (x, t)| ≤ Ct−
N+2

2 by differentiating W with respect to time in
its Fourier representation.

Now, proceeding as above we see that there exist C and K large so that the function C t
|x|N+4

is a supersolution of the following problem satisfied by V .










vt − Lv = e−t(J ∗ J − J) in A := {|x| ≥ K
√
t} ∩ {|x| ≥ 2R}

v = V in the complement of A
v(x, 0) = 0

Analogously, −C t
|x|N+4 is a subsolution to this problem. Therefore,

|V (x, t)| ≤ C
t

|x|N+4
.

So that,

|Wt(x, t)| ≤ e−tJ(x) + |V (x, t)| ≤ e−tJ(x) + C
t

|x|N+4
.

Since, |V (x, t)| ≤ Ct we prove (2.13). �

From estimate (2.13) we obtain the following estimates

‖Wt(·, t)‖L1(RN ) ≤ Ct−1(2.15)

‖Wt(·, t)‖L1(RN ) ≤ e−t + Ct.(2.16)

Finally, we construct a barrier for the solution uL. We have,

Proposition 2.1. Let uL be the solution to (2.5) with initial datum u0 satisfying our assump-

tions. There exists a constant C depending only on ‖u0‖∞, B,N, J such that

(2.17)
f(t1/2)uL(x, t) ≤ C,

f(|x|)uL(x, t) ≤ C.

In particular, if µ > 0 is such that kµ ≤ Cf(k) if k ≥ 1 there holds that

(2.18) uL(x, t) ≤
C

(1 + t1/2 + |x|)µ
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Let us recall that this is always the case when µ = 2
p−1 .

Remark 2.1. (2.18) improves the estimate found in [19], Proposition 2.1 where the estimate

was proved in finite time intervals when u0 satisfies (1.4) with α > 0.

Proof. We already know that uL(x, t) ≤ ‖u0‖∞. Let us begin with the time estimate. We have
–by the estimates on W and our assumptions on u0– that for t large,

f(t1/2)uL(x, t) = f(t1/2)e−tu0(x) + f(t1/2)

∫

W (x− y, t)u0(y) dy

≤ C +
1

∫

B
t1/2

u0

∫

|y|<t1/2
tN/2W (x− y, t)u0(y) dy +

∫

|y|>t1/2
W (x− y, t)f(t1/2)u0(y) dy

≤ C
(

1 +

∫

W (x− y, t) dy
)

≤ C.

On the other hand, since uL is bounded and f is locally bounded,

f(t1/2)uL(x, t) ≤ C

if t is bounded.

Now, we estimate,

f(|x|)uL(x, t) = e−tf(|x|)u0(x) + f(|x|)
∫

W (x− y, t)u0(y) dy

≤ B + f(|x|)
∫

|y|< 1

2
|x|

W (x− y, t)u0(y) dy + f(|x|)
∫

|y|≥ 1

2
|x|

W (x− y, t)u0(y) dy

= B + I + II.

Observe that f(2k) = 2NkN∫
B2k

u0
≤ 2Nf(k). Thus,

II ≤ C

∫

W (x− y, t)f(2|y|)u0(y) dy ≤ C2NB.

In order to estimate I we use the barrier of W . We have, since |y| < 1
2 |x| implies that

|x− y| > 1
2 |x|,

I = f(|x|)
∫

|y|< 1

2
|x|

W (x− y, t)u0(y) dy ≤ C|x|−2t
1

∫

B|x|
u0

∫

|y|< 1

2
|x|

u0(y) dy

≤ C
t

|x|2 ≤ C if |x|2 > t.

On the other hand, in the region k20 ≤ |x|2 ≤ t there holds that

f(|x|)uL(x, t) ≤ C1f(t
1/2)uL(x, t) ≤ C.

Finally, if |x| ≤ k0, there holds that f(|x|)uL(x, t) ≤ C. So, the proposition is proved. �

Remark 2.2. When u0 ≥ 0 the solution uL of the homogeneous equation (2.5) with initial data

u0 is non-negative. Thus, uL is a supersolution to (1.2) and 0 is a subsolution to (1.2). By the

comparison principle we deduce that

0 ≤ u(x, t) ≤ uL(x, t),
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for every solution u of (1.2). Hence, the estimates of the previous proposition hold with uL
replaced by u, that is,

f(|x|)u(x, t) ≤ C and f(t1/2)u(x, t) ≤ C.

3. The rescaled problem

In this section we analyze the rescaled problem. This is, the one satisfied by the rescaled
functions uk. Using the bounds obtained in the previous section we are able to prove that
the rescaled sequence {uk} has a convergent subsequence to a function U . We establish the
equation satisfied by the limit function U , as well as the initial datum U(x, 0), depending on the
conditions assumed on u0. In the case of nonintegrable initial data u0, in order to completely
determine U , it is necessary to establish certain bounds on the L1 and Lp norms of uk. On the
other hand, if u0 is integrable, we proceed in a different way, as can be seen at the end of this
section.

Let u be a solution of

(3.1)

{

ut = Lu− up in R
N × (0,∞)

u(x, 0) = u0(x) in R
N .

As defined in the introduction we denote by

uk(x, t) = f(k)u(kx, k2t), where f(k) =
kN

∫

BR
u0

.

By Remark 2.2 we have that f(t1/2)u(x, t) ≤ C. So that, by our assumption (F2) on f , if
t ≥ t0 there holds that

uk(x, t) ≤ Ct0f(k
√
t)u(kx, k2t) ≤ Ct0 .

The function uk satisfies the following equation,

(3.2) ukt = k2Lku
k − F (k)(uk)p

where F (k) = f(k)1−pk2 → c0 ≥ 0 as k → ∞ by our assumptions, and the operator Lk is defined
by

(3.3) Lkv(x) =
(

Jk ∗ v
)

(x)− v(x) = kN
∫

J
(

k(x− y)
)(

v(y)− v(x)
)

dy.

Our goal is to study the behavior of the sequence {uk}. To do so, we will decompose uk

into an exponentially small part and another one, hk, depending on W , the smooth part of the
fundamental solution of the homogeneous linear problem.

Take t0 > 0 and write u(x, t) = e−(t−k2t0)u(x, k2t0) + z(x, t). Then,

zt − Lz = e−(t−k2t0)
(

J ∗ u(·, k2t0)
)

− up

and z(x, k2t0) = 0. After rescaling we have that uk(x, t) = e−k2(t−t0)uk(x, t0)+zk(x, t). Observe
that

e−k2(t−t0)uk(x, t0) ≤ Ct0e
−k2(t−t0) → 0,

as k → ∞ uniformly in t− t0 ≥ c > 0, so that the asymptotic behavior of uk for k → ∞ is that
of zk.
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By the variations of constants formula we get

z(x, t) =

∫ t

k2t0

S(t− s)
[

e−(s−k2t0)
(

J ∗ u(·, k2t0)
)

(x)− up(x, s)
]

ds

where S(t) is the semigroup associated to the homogeneous equation ut − Lu = 0.

Thus,

z(x, t) =

∫ t

k2t0

e−(t−s)
[

e−(s−k2t0)
(

J ∗ u(·, k2t0)
)

(x)− up(x, s)
]

ds

+

∫ t

k2t0

∫

W (x− y, t− s)
[

e−(s−k2t0)
(

J ∗ u(·, k2t0)
)

(y)− up(y, s)
]

dy ds

=

∫ t

k2t0

e−(t−k2t0)
(

J ∗ u(·, k2t0)
)

(x) ds −
∫ t

k2t0

e−(t−s)up(x, s) ds + h(x, t)

= (t− k2t0)e
−(t−k2t0)

(

J ∗ u(·, k2t0)
)

(x)−
∫ t

k2t0

e−(t−s)up(x, s) ds + h(x, t)

with

h(x, t) =

∫ t

k2t0

∫

W (x− y, t− s)
[

e−(s−k2t0)
(

J ∗ u(·, k2t0)
)

(y)− up(y, s)
]

dy ds.

Therefore,

zk(x, t) = k2(t− t0)e
−k2(t−t0)f(k)

(

J ∗ u(·, k2t0)
)

(kx)−
∫ k2t

k2t0

e−(k2t−s)f(k)up(kx, s) ds

+ hk(x, t)

= k2(t− t0)e
−k2(t−t0)f(k)

(

J ∗ u(·, k2t0)
)

(kx)− F (k)

∫ t

t0

e−k2(t−s)(uk)p(x, s) ds

+ hk(x, t).

There holds that,

f(k)
(

J ∗ u(·, k2t0)
)

(kx) =

∫

J(kx− y)f(k)u(y, k2t0) dy

=
(

Jk ∗ uk(·, t0)
)

(x).

So that,

zk(x, t) = k2(t− t0)e
−k2(t−t0)

(

Jk ∗ uk(·, t0)
)

(x)− F (k)

∫ t

t0

e−k2(t−s)(uk)p(x, s) ds

+ hk(x, t).

With similar computations we find that

hk(x, t) = k2
∫ t

t0

∫

Wk(x− y, t− s)e−k2(s−t0)
(

Jk ∗ uk(·, t0)
)

(y) dy ds

− F (k)

∫ t

t0

∫

Wk(x− y, t− s)(uk)p(y, s) dy ds,
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where Wk(x, t) = kNW (kx, k2t).

Let us now estimate the first term in the expansion of zk. We have

k2(t− t0)e
−k2(t−t0)

(

Jk ∗ uk(·, t0)
)

(x) ≤ Ck2(t− t0)e
−k2(t−t0)Ct0 → 0 as k → ∞,

uniformly in t− t0 ≥ c > 0.

For the second term, since F (k) is bounded, we have the estimate

F (k)

∫ t

t0

e−k2(t−s)(uk)p(x, s) ds ≤ Ct0

∫ t

t0

e−k2(t−s) ds

≤ Ct0k
−2 → 0 as k → ∞.

Therefore, the asymptotic behavior as k → ∞ of uk is that of hk.

Since the functions hk are smooth, we can show that the family {hk} is precompact in C(K)
with K ⊂⊂ R

N × (t0,∞) by finding uniform Holder estimates.

We begin with estimates in space.

Proposition 3.1. Let t0 > 0 and T > 2t0. There exists a constant L > 0 such |∇hk(x, t)| ≤ L
for x ∈ R

N if t ∈ [2t0, T ].

Proof. Recall that we have obtained estimates for the L1 norm of ∇W (·, t) (cf. (2.10) and
(2.12)). Now we derive estimates for the L1 norm of ∇Wk(x, t) = kkN∇W (kx, k2t). We have,

‖∇Wk(·, t)‖L1(RN ) = k‖∇W (·, k2t)‖L1(RN ).

Therefore,

‖∇Wk(·, t)‖L1(RN ) ≤ Ck(k2t) = Ck3t.

On the other hand,

‖∇Wk(·, t)‖L1(RN ) ≤ Ck(k2t)−1/2 = Ct−1/2.

Differentiating the function hk we obtain,

|∇hk(x, t)| ≤ k2
∫ t

t0

∫

|∇Wk(x− y, t− s)| e−k2(s−t0)
(

Jk ∗ uk(·, t0)
)

(y) dy ds

+ F (k)

∫ t

t0

∫

|∇Wk(x− y, t− s)|(uk)p(y, s) dy ds = I + II.

There holds,

I ≤ k2Ct0

∫ 3t/4

t0

e−k2(s−t0)(t− s)−1/2 ds+ k2Ct0

∫ t

3t/4
e−k2(s−t0)k3(t− s) ds

≤ Ct0(t/4)
−1/2 + Ct0(t/4)k

3e−k2( 3t
4
−t0) ≤ Ct0,T

On the other hand,

II ≤ Ct0

∫ t

t0

(t− s)−1/2 ds ≤ Ct0,T .

�
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Finally we prove one of our main results, namely, that the sequence {hk} and therefore, the
sequence {uk} is uniformly convergent on compact sets.

Theorem 3.1. There exists a subsequence that we still call hk which is uniformly convergent

on every compact subset of RN × [2t0,∞).

Proof. In order to prove the result, let us split hk into two terms.

hk(x, t) = k2
∫ t

t0

∫

Wk(x− y, t− s)e−k2(s−t0)
(

Jk ∗ uk(·, t0)
)

(y) dy ds

− F (k)

∫ t

t0

∫

Wk(x− y, t− s)(uk)p(y, s) dy ds

= Hk
0 (x, t) +Hk(x, t).

with

Hk
0 (x, t) = k2

∫ t

t0

∫

Wk(x− y, t− s)e−k2(s−t0)
(

Jk ∗ uk(·, t0)
)

(y) dy ds

and

Hk(x, t) = F (k)

∫ t

t0

∫

Wk(x− y, t− s)(uk)p(y, s) dy ds.

By the estimates of ‖Wt(·, t)‖L1(RN ) (cf. (2.15)) we get

‖Wkt(·, t)‖L1 ≤ Ct−1

and

‖Wkt(·, t)‖L1 ≤ k2e−k2t + Ck4t.

Therefore,

|Hk
0 t(x, t)| ≤ k2

∫ t

t0

∫

|Wkt(x− y, t− s)| e−k2(s−t0)
(

Jk ∗ uk(·, t0)
)

(y) dy ds

≤ Ck2
∫ 3t/4

t0

(t− s)−1Ct0e
−k2(s−t0) ds+ Ck2

∫ t

3t/4
k2e−k2(t−s)Ct0e

−k2(s−t0) ds

+Ck2
∫ t

3t/4
k4(t− s)Ct0e

−k2(s−t0) ds

≤ Ct0(t/4)
−1 + Ct0(t/4)k

4e−k2(t−t0) + Ct0(t/4)k
4e−k2( 3t

4
−t0)

≤ Ct0,T .

Therefore, the sequence Hk
0 has a subsequence that converges uniformly on compact subsets

of RN × [2t0,∞).

In order to see that the same conclusion holds for the sequence Hk, let us define

Rk(x, t) := F (k)

∫ t

t0

∫

Ua(x− y, t− s)(uk)p(y, s) dy ds,

with Ua the fundamental solution of the heat equation with diffusivity a. Then, for every T > 0,

‖Rk‖L∞(RN×[t0,T ]) ≤ Ct0,T
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and

‖Hk −Rk‖L∞(RN×[t0,T ]) → 0 as k → ∞.

In fact,

‖Hk(·, t)−Rk(·, t)‖L∞(RN ) ≤ F (k)

∫ t

t0

‖Wk(·, t− s)− Ua(·, t− s)‖q′‖(uk)p(·, s)‖q ds.

Recall that f(k) ≥ ckβ with β = 2/(p − 1). Let us take q > N/βp. So that there holds,

‖(uk)p(·, s)‖q ≤
(

∫

dx
(

s1/2 + |x|
)βpq

)1/q
≤ Ct0,q for s ≥ t0.

On the other hand, since Ua(x, t) = Uak(x, t),

‖Wk(·, t) − Ua(·, t)‖q′ = ‖Wk(·, t) − Uak(·, t)‖q′
= kN/q‖W (·, k2t)− Ua(·, k2t)‖q′
≤ kN/q (k2t)−(N+1)/2q = k−1/qt−(N+1)/2q (cf. [19]).

Let us choose q big enough so that we also have q > (N + 1)/2. Then,

‖Hk(·, t) −Rk(·, t)‖L∞(RN ) ≤ F (k)Cq,t0k
−1/q

∫ t

t0

(t− s)−(N+1)/2q ds

≤ Cq,t0,T k
− 1

q if t0 ≤ t ≤ T.

Hence,

‖Hk −Rk‖L∞(RN×[t0,T ]) ≤ Cq,t0,T k−
1

q → 0 as k → ∞.

Finally, observe that Rk is a solution of the heat equation with diffusivity a and uniformly
bounded right hand side. In fact,

Rk
t (x, t)− a∆Rk(x, t) = F (k)(uk)p(x, t)

and

0 ≤ F (k)(uk)p(x, t) ≤ Ct0 if t ≥ t0.

Therefore, the family Rk is uniformly Holder continuous in R
N × [2t0, T ] for every T > 2t0.

We conclude that there exists a subsequence that is uniformly convergent on every compact
subset of RN × [2t0,∞). And the same conclusion then holds for the family Hk. �

Now that we know that {uk} has a convergent subsequence, we proceed in identifying the
limit function U . As a first step, and using the assumptions on F (k) in the introducion we
establish the equation satisfied by U .

Proposition 3.2. Let kn → ∞ be such that ukn → U uniformly on compact sets of RN ×(0,∞).
Then, U is a solution to

(3.4) Ut − a∆U = −c0U
p

where c0 = limk→∞ F (k).
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Proof. For simplicity we drop the subscript n. Let ϕ ∈ C∞
0 (RN × (0,∞)) and K a compact set

containing its support. Then,
∫ ∞

0

∫

RN

U(x, t)
(

ϕt + a∆ϕ
)

(x, t) dx dt =

∫ ∞

0

∫

RN

uk(x, t)
(

ϕt + k2Lkϕ
)

(x, t) dx dt +

+

∫ ∞

0

∫

RN

(U − uk)(x, t)
(

ϕt + a∆ϕ
)

(x, t) dx dt −
∫ ∞

0

∫

RN

uk(x, t)
(

k2Lkϕ− a∆ϕ
)

(x, t) dx dt

= −
∫ ∞

0

∫

RN

(

ukt − k2Lku
k
)

(x, t)ϕ(x, t) dx dt +

+

∫ ∞

0

∫

RN

(U − uk)(x, t)
(

ϕt + a∆ϕ
)

(x, t) dx dt −
∫ ∞

0

∫

RN

uk(x, t)O
(

k−3
)

χK dx dt

= F (k)

∫ ∞

0

∫

RN

(uk)p(x, t)ϕ(x, t) dx dt

+

∫ ∞

0

∫

RN

(U − uk)(x, t)
(

ϕt + a∆ϕ
)

(x, t) dx dt −
∫ ∞

0

∫

RN

uk(x, t)O
(

k−3
)

χK dx dt

→ c0

∫ ∞

0

∫

RN

Up(x, t)ϕ(x, t) dx dt as k → ∞.

So that,
∫ ∞

0

∫

RN

U(x, t)
(

ϕt + a∆ϕ
)

(x, t) dx dt = c0

∫ ∞

0

∫

RN

Up(x, t)ϕ(x, t) dx dt

for everyϕ ∈ C∞
0 (RN × (0,∞)). Thus,

Ut − a∆U = −c0U
p.

�

Finally, in order to identify the initial datum U(x, 0), we need to take into account the behavior
of u0 at infinity. Moreover, it is necessary to have some control on the L1 and Lp norms of uk

on sets of the form BR × (0, τ) for R, τ > 0.

Proposition 3.3. Let u be a solution to (3.1) and uk its rescaling. Let kn → ∞ and assume

ukn → U as n → ∞. Assume that for every R > 0 there exists CR such that
∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CRτ

and either there exists γ > 0 such that

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRτ
γ

or else, for every R, τ > 0,

lim
k→∞

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt = 0.

Assume further that

uk0(x) → φ(x) (k → ∞) in the sense of distributions.
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Then, there holds that U is the solution to

Ut − a∆U = −c0U
p

U(x, 0) = φ(x)

Proof. We proceed as in the proof of Proposition 3.2. We drop the subscript n. Let ϕ ∈
C∞
0 (RN × [0,∞)), R > 0 such that ϕ(x, t) = 0 if |x| > R and let ε > 0. Let τ > 0, k0 > 0 be

such that for k ≥ k0,

∫ τ

0

∫

BR

uk(x, t) dx dt + F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt < ε

∫ τ

0

∫

BR

U(x, t) dx dt + c0

∫ τ

0

∫

BR

Up(x, t) dx dt < ε

Then,

∣

∣

∣

∫ ∞

0

∫

RN

U(x, t)
(

ϕt + a∆ϕ
)

(x, t) dx dt −
∫ ∞

0

∫

RN

c0U
p(x, t)ϕ(x, t) dx dt

+

∫

RN

φ(x)ϕ(x, 0) dx
∣

∣

∣
≤ C

∣

∣

∣

∫ τ

0

∫

BR

U(x, t) dx dt
∣

∣

∣
+C

∣

∣

∣
c0

∫ τ

0

∫

BR

Up(x, t) dx dt
∣

∣

∣

+C

∫ ∞

τ

∫

BR

|U − uk|(x, t) dx dt +
∫ ∞

τ

∫

BR

∣

∣ c0U
p − F (k)(uk)p

∣

∣(x, t) dx dt

+

∫ ∞

τ

∫

BR

uk(x, t)O(k−3) dx dt+ C
∣

∣

∣

∫ τ

0

∫

BR

uk(x, t) dx dt
∣

∣

∣
+ C

∣

∣

∣
F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt
∣

∣

∣

+
∣

∣

∣

∫

RN

uk0(x)ϕ(x, 0) dx −
∫

RN

φ(x)ϕ(x, 0) dx
∣

∣

∣
≤ 2Cε+ C

∫ ∞

τ

∫

BR

|U − uk|(x, t) dx dt

+

∫ ∞

τ

∫

BR

∣

∣ c0U
p − F (k)(uk)p

∣

∣(x, t) dx dt +

∫ ∞

τ

∫

BR

uk(x, t)O(k−3) dx dt

+
∣

∣

∣

∫

RN

uk0(x)ϕ(x, 0) dx −
∫

RN

φ(x)ϕ(x, 0) dx
∣

∣

∣

Therefore, taking lim supk→∞ we obtain,

∣

∣

∣

∫ ∞

0

∫

RN

U(x, t)
(

ϕt + a∆ϕ
)

(x, t) dx dt −
∫ ∞

0

∫

RN

c0U
p(x, t)ϕ(x, t) dx dt+

+

∫

RN

φ(x)ϕ(x, 0) dx
∣

∣

∣
≤ 2Cε.

As ε is arbitrary, the proposition is proved. �

In order to prove the bounds assumed in the previous proposition, and hence be able to
completely determine U , we need to consider separate cases, according to the behavior of u0 at
infinity. We begin with the case where u0 behaves as a power −α > −N .
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Lemma 3.1. Let u be the solution to (3.1). Assume (1+ |x|)αu(x, t) ≤ B and (1+t)α/2u(x, t) ≤
B with 0 < α < N . Then, for every R > 0 there exists CR such that, for k ≥ τ−1/2,

∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CRτ

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRk
−α(p−1)+2τ ≤ CRτ if N − αp > 0

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRk
−α(p−1)+2τ | log τ | ≤ CRτ | log τ | if N − αp = 0

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ck−α(p−1)+2τ
N−αp+2

2 ≤ Cτ
N−αp+2

2 if 0 > N − αp > −2

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ckα−N ≤ CRτ
N−α

2 if N − αp < −2

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ckα−N log(1 + k2τ) ≤ Cτ (N−α)/2 if N − αp = −2.

Proof. We begin with the estimate of the integral of uk.

∫ τ

0

∫

BR

uk(x, t) dx dt = f(k)k−N−2

∫ k2τ

0

∫

BRk

u(x, t) dx dt(3.5)

≤ Ckα−N−2

∫ k2τ

0

∫

BRk

1

(1 + |x|)α dx dt

≤ Ckα−N−2k2τ(Rk)N−α ≤ CRτ.

Let us now estimate the integral of (uk)p. There holds,

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt = F (k)f(k)pk−N−2

∫ k2τ

0

∫

BRk

up(x, t) dx dt(3.6)

= f(k)k−N

∫ k2τ

0

∫

BRk

up(x, t) dx dt.

We consider several cases.

Case 1: N − αp > 0

We have,

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CF (k)kαp−N−2

∫ k2τ

0

∫

BRk

1

(1 + |x|)αp dx dt

≤ CF (k)kαp−N−2k2τ(Rk)N−αp

= CRk
−α(p−1)+2τ ≤ CRτ.

Case 2: N − αp < 0
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First,
∫

BRk

up(x, t) dx ≤ C

∫

|x|≤
√
t
(1 + t)−αp/2 dx+ C

∫

√
t<|x|<Rk

1

(1 + |x|)αp dx(3.7)

≤ C(1 + t)
N−αp

2 .

Assume k ≥ τ−1/2. We consider 3 subcases.

(i) −2 < N − αp < 0.

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ckα−N

∫ k2τ

0
(1 + t)

N−αp
2 dt

≤ Ckα−N (k2τ)
N−αp+2

2

= Ck−α(p−1)+2τ
N−αp+2

2

≤ Cτ
N−αp+2

2 .

(ii) N − αp = −2.

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ckα−N

∫ k2τ

0
(1 + t)−1 dt

= Ckα−N log(1 + k2τ)

= C(k2τ)(α−N)/2 log(1 + k2τ)τ (N−α)/2

≤ Cτ (N−α)/2.

(iii) N − αp < −2.

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ckα−N

∫ k2τ

0
(1 + t)(N−αp)/2 dt

≤ Ckα−N ≤ Cτ (N−α)/2.

Case 3: N − αp = 0

Instead of (3.7) we have,
∫

BRk

up(x, t) dx ≤ C
(

1 + log
Rk√
t

)

.

Thus,

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ckα−N

∫ k2τ

0

(

1 + log
Rk√
t

)

dt

= Ckα−N+2

∫ τ

0

(

1 + log
R√
t

)

dt

≤ CRk
−α(p−1)+2τ | log τ | ≤ CRτ | log τ |.

�

Corollary 3.1. Assume |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α < N . Let u be the solution

to (3.1). Then, u satisfies the conclusions of Lemma 3.1
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Proof. By Remark 2.2, the estimates of Proposition 2.1 hold for u. In this case, since f(k) ∼ kα

we take it to be equal and hence,

(1 + |x|)αu(x, t) ≤ C and (1 + t)α/2u(x, t) ≤ C.

Thus, u satisfies the assumptions of Lemma 3.1. �

Using Lemma 3.1, we are able to prove with almost no computations, the desired estimates
in the other examples considered in the introduction. We use the ideas of Kamin-Ughi in [16].

Let us introduce some notation. For µ > 0, let

(3.8) uk,µ(x, t) = kµu(kx, k2t).

Then,

(3.9) F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt = f(k)k−µk−µ(p−1)+2

∫ τ

0

∫

BR

(uk,µ)p(x, t) dx dt.

We begin with the case where u0 behaves as |x|−N at infinity.

Lemma 3.2. Assume |x|Nu0(x) → A > 0 as |x| → ∞. Let p > 1+2/N . Then, for every R > 0
there exists CR such that,

∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CRτ(3.10)

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ C

log k
.(3.11)

Proof. Recall that in this case f(k) ∼ kN

log k for k ≥ 2. Let 0 < µ < N to be chosen later. Then,

for |x| ≥ 1, t ≥ 1,

|x|µu(x, t) ≤ C
|x|N

log(1 + |x|)u(x, t) ≤ B, tµ/2u(x, t) ≤ C
tN/2

log(1 + t)
u(x, t) ≤ B.

So that, we can apply the results of Lemma 3.1 to uk,µ. Let us choose µ so close to N so that
µp > N + 2(> µ+ 2). By (3.9) and Lemma 3.1, Case 2, (iii), there holds,

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Cf(k)k−µkµ−N =
C

log k
.

On the other hand,

∫ τ

0

∫

BR

uk(x, t) dx dt =
k−2

log k

∫ k2τ

0

∫

BRk

u(x, t) dx dt.
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Now,
∫

BRk

u(x, t) dx ≤e−t

∫

BRk

u0(x) dx+

∫ ∫

BRk

W (y, t)u0(x− y) dx dy

=e−t

∫

BRk

u0(x) dx+

∫

|y|<2Rk

∫

BRk

W (y, t)u0(x− y) dx dy

+

∫

|y|>2Rk

∫

BRk

W (y, t)u0(x− y) dx dy ≤ Ce−t log(Rk) + I + II.

There holds,

I ≤
∫

|y|<2Rk
W (y, t)

∫

|x|<3Rk
u0(x) dx dy ≤ C log(3Rk).

On the other hand,

II ≤
∫

|y|>2Rk
W (y, t)

∫

|x|<Rk

C

|y|N dx dy

≤C(Rk)N
∫

|y|>2Rk

t

|y|2N+2
dy ≤ CKk−2 t.

Thus,
∫ τ

0

∫

BR

uk(x, t) dx dt ≤C
log(Rk)

log k
k−2

∫ k2τ

0
e−t dt

+C
log(3Rk)

log k
k−2k2τ + CKk−4

∫ k2τ

0
t dt

≤CRτ if τ < 1.

�

With similar computations we can prove

Lemma 3.3. Assume |x|N (log |x|)u0(x) → A > 0 as |x| → ∞. Let p > 1 + 2
N . Then, for every

R > 0 there exists CR such that
∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CKτ(3.12)

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ C

log log k
.(3.13)

Also,

Lemma 3.4. Assume
|x|N
log |x|u0(x) → A > 0 as |x| → ∞. Let p > 1 + 2

N . Then, for every R > 0

there exists CR such that
∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CKτ(3.14)

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ C

log2 k
.(3.15)

In a similar way we obtain,
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Lemma 3.5. Assume
|x|α
log |x|u0(x) → A > 0 as |x| → ∞ with 0 < α < N . Let p > 1 + 2

α . Then,

for every R > 0 there exists CR such that, for k ≥ τ−1/2,
∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CRτ

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRτ if N − αp ≥ 0

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Cτ
N−µp+2

2 for a certain µ ∈ (0, α) if 0 > N − αp ≥ −2

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRτ
N−α

2 if N − αp < −2.

Proof. In this case f(k) = kα

log(1+k) . We will chose µ ∈ (0, α) according to the relative sizes

of α and p. For any such µ there holds that |x|µu(x, t) ≤ C |x|α
log(1+|x|)u(x, t) ≤ B if |x| ≥ 1,

tµ/2u(x, t) ≤ C tα/2

log(1+t)u(x, t) if t ≥ 1. So that, we can apply the results of Lemma 3.1 to uk,µ.

Recall that αp > α+ 2. We consider several cases.

Case 1: N − αp ≥ 0

Chose µ ∈ (0, α) so that α+ 2 < µp < N . Then, by (3.9) and Lemma 3.1, Case (i),

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRf(k)k
−µk−µ(p−1)+2τ = CR

kα+2−µp

log k
τ ≤ CRτ.

Case 2: N − αp < 0

(i) −2 ≤ N − αp < 0. Chose µ ∈ (0, α) so that −2 < N − µp < 0 and µp > α + 2. Then,
by (3.9) and Lemma 3.1, Case 2, (ii),

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRf(k)k
−µk−µ(p−1)+2 τ

N−µp+2

2

= CR
kα+2−µp

log k
τ

N−µp+2

2 ≤ CRτ
N−µp+2

2 .

(ii) N − αp < −2. Choose µ ∈ (0, α) so that N − µp < −2. Then, by (3.9) and Lemma 3.1,
Case 2, (iii),

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Cf(k)k−µkµ−N = C
kα−N

log k
≤ Cτ

N−α
2 .

On the other hand, computations similar to those in (3.5) give
∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CRτ.

This time we use that
∫

BRk

dx

(2 + |x|)α log(2 + |x|) ∼ (Rk)N (f(Rk))−1 ∼ (Rk)N−αlog(Rk) as k → ∞.

�



NONLOCAL DIFFUSION WITH ABSORPTION 23

With similar computations we can prove,

Lemma 3.6. Assume |x|α(log |x|)u0(x) → A > 0 as |x| → ∞ with 0 < α < N . Let p > 1 + 2
α .

Then, for every R > 0 there exists CR such that, for k ≥ τ−1/2,
∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CRτ

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRτ if N − αp ≥ 0

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Cτ
N−µp+2

2 for a certain µ ∈ (0, α) if 0 > N − αp ≥ −2

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ CRk
α−N log k ≤ CRτ

N−α
4 if N − αp < −2.

In order to consider the critical case p = 1+ 2/α we need to perform different computations.
There holds,

Lemma 3.7. Assume |x|α(log |x|)u0(x) → A > 0 as |x| → ∞ with 0 < α < N . Let p = 1 + 2
α .

Then, for every τ,R > 0 there exists CR such that,
∫ τ

0

∫

BR

uk(x, t) dx dt ≤ CRτ

and

lim
k→∞

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt = 0.

Proof. The L1 estimate follows as in the previous lemmas. For the Lp estimate we consider
several cases.

Case 1: N − αp > 0. There holds,
∫

BRk

up(x, t) dx ≤ C

∫

BRk

dx

(2 + |x|)αp logp(2 + |x|) ≤ C

∫ Rk

0

(2 + r)N−αp−1

logp(2 + r)
dr

where the last integral goes to infinity as k goes to infinity. Moreover,

lim
k→∞

∫ Rk
0

(2+r)N−αp−1

logp(2+r) dr

kN−αp

logp k

= lim
k→∞

R(2+Rk)N−αp−1

logp(2+Rk)

(N−αp)kN−αp−1

logp k − p kN−αp−1

logp+1 k

= lim
k→∞

(2 +Rk)N−αp−1

kN−αp−1

logp k

logp(2 +Rk)

R

N − αp − p
log k

= CN,R,α,p < ∞.

Therefore, for k large,

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Cτkα+2−N log k

∫ Rk

0

(2 + r)N−αp−1

logp(2 + r)
dr

≤ Cτkα+2−N log k
kN−αp

logp k

= Cτ
k−α(p−1)+2

logp−1 k
= Cτ

1

logp−1 k
→ 0 as k → ∞.
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Case 2: N − αp < 0. There holds,

∫

BRk

up(x, t) dx ≤ C

∫

|x|≤
√
t

dx

(2 + t1/2)αp logp(2 + t1/2)
+

+C

∫

√
t≤|x|≤Rk

dx

(2 + |x|)αp logp(2 + |x|)

≤ C
(2 + t1/2)N−αp

logp(2 + t1/2)
+ C

∫ Rk

√
t

(2 + r)N−αp−1

logp(2 + r)
dr

≤ C
(2 + t1/2)N−αp

logp(2 + t1/2)
+ C

1

logp(2 + t1/2)

∫ Rk

√
t
(2 + r)N−αp−1 dr

≤ C
(2 + t1/2)N−αp

logp(2 + t1/2)

Since αp = α+ 2, there holds that N − αp = N − α− 2 > −2. We have,

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ckα−N log k

∫ k2τ

0

(2 + t1/2)N−αp

logp(2 + t1/2)
dt,

and this last integral goes to infinity as k goes to infinity. Thus,

lim
k→∞

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ lim
k→∞

C
∫ k2τ
0

(2+t1/2)N−αp

logp(2+t1/2)
dt

kN−α

log k

= lim
k→∞

C2kτ(2+kτ1/2)N−αp

logp(2+kτ1/2)

(N−α)kN−α−1

log k − kN−α−1

log2 k

= lim
k→∞

C2kτ(2 + kτ1/2)N−α−2

kN−α−1

log k

logp(2 + kτ1/2)

1

N − α− 1
log k

= 0

Case 3: N − αp = 0. We begin as in Case 2.

∫

BRk

up(x, t) dx ≤ C

∫

|x|≤
√
t

dx

(2 + t1/2)αp logp(2 + t1/2)
+

+C

∫

√
t≤|x|≤Rk

dx

(2 + |x|)αp logp(2 + |x|)

≤ C
1

logp(2 + t1/2)
+ C

∫ Rk

√
t

(2 + r)−1

logp(2 + r)
dr

≤ C
1

logp(2 + t1/2)

(

1 + log
2 +Rk

2 + t1/2

)

Thus,

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ Ckα−N log k

∫ k2τ

0

1

logp(2 + t1/2)

(

1 + log
2 +Rk

2 + t1/2

)

dt,
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and this last integral goes to infinity as k goes to infinity. Therefore, since N − α− 1 = 1,

lim
k→∞

F (k)

∫ τ

0

∫

BR

(uk)p(x, t) dx dt ≤ lim
k→∞

C
∫ k2τ
0

1
logp(2+t1/2)

(

1 + log 2+Rk
2+t1/2

)

dt

kN−α

log k

= lim
k→∞

C2kτ
logp(2+kτ1/2)

(

1 + log 2+Rk
2+kτ1/2

)

(N−α)kN−α−1

log k − kN−α−1

log2 k

= lim
k→∞

2Cτ
log k

logp(2 + kτ1/2)

(

1 + log
2 +Rk

2 + kτ1/2

) 1

N − α− 1
log k

= 0

�

If u0 ∈ L1(RN ), the limit U of uk does not satisfy that U(x, 0) = lim uk0 = M0δ with
M0 =

∫

u0. Therefore, estimates as the ones we have just stated do not hold. In order to
establish our result we need the following lemma.

Lemma 3.8. Let u0 ∈ L∞(RN ). Assume further that |x|N+2u0(x) ≤ B. Let u be the solution

to (3.1) and uk its rescaling. Assume ukn → U with kn → ∞ as n → ∞. Then, there exists a

constant C > 0 such that

U(x, t) ≤ C
t

|x|N+2
.

In particular, for every µ > 0,

lim
t→0

U(x, t) = 0 uniformly in |x| ≥ µ.

Proof. We proceed as in the proof of Theorem 2.1. There holds that u(x, t) ≤ e−tu0(x)+ z(x, t)
with z the solution to

(3.16)

{

zt − Lz = e−t(J ∗ u0)(x)
z(x, 0) = 0

By the assumption on the growth of u0 at infinity there holds that v(x, t) = C t
|x|N+2 is

a supersolution to (3.16) in t
|x|2 ≤ K, |x| ≥ 2. On the other hand, z(x, t) ≤ v(x, t) in the

complement of this set since z(x, t) ≤ Ct and tN/2z(x, t) ≤ C in this case (u0 ∈ L1(RN )).

Therefore, u(x, t) ≤ e−tu0(x) + C t
|x|N+2 . Rescaling, and recalling that in the present case

f(k) = kN we have that uk(x, t) ≤ e−k2tuk0(x) + C t
|x|N+2 . Passing to the limit as k → ∞ with

x 6= 0 we get U(x, t) ≤ C t
|x|N+2 . And the result follows. �

Proposition 3.4. Let u0 ∈ L1∩L∞. Let u be the solution to (3.1) and uk its rescaling. Assume

for some sequence kn → ∞ there holds that ukn → U uniformly on compact sets of RN × (0,∞).

Assume p > 1+ 2/N . Then, U(x, t) = MUa(x, t) where Ua is the fundamental solution of the

heat equation with diffusivity a and M =
∫

u0(x) dx −
∫∞
0

∫

up(x, t) dx dt.

When p = 1 + 2/N there holds that U ≡ 0.
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Proof. As before we drop the subscript n. We already know that U is a solution to

Ut − a∆U = −c0U
p.

Assume for simplicity that u0 has compact support. Then, by Lemma 3.8 there exists C > 0
such that U(x, t) ≤ C t

|x|N+2 . Let M(t) =
∫

U(x, t) dx. We will see that M(t) ≡ M is constant,

and U(x, t) → Mδ as t → 0 in the sense of distributions where δ is the Dirac delta. In fact,
assume we already proved that M(t) is constant M . Let ϕ ∈ C∞

0 (RN ). Then, given ε > 0, if µ
is small we get,

∣

∣

∫

U(x, t)ϕ(x) dx −Mϕ(0)
∣

∣ =
∣

∣

∫

U(x, t)
[

ϕ(x)− ϕ(0)
]

dx
∣

∣

≤
∫

|x|<µ
U(x, t)|ϕ(x) − ϕ(0)| dx + C

∫

|x|>µ

t

|x|N+2
|ϕ(x) − ϕ(0)| dx

≤ ε

∫

U(x, t) dx+ 2C‖ϕ‖∞
∫

|x|>µ

t

|x|N+2
dx

≤ Mε+ C̄µ t < (M + 1)ε if t is small.

Now, integrating the equation satisfied by uk and using the symmetry of J we obtain
∫

uk(x, t) dx =

∫

uk0(x) dx− F (k)

∫ t

0

∫

(uk)p(x, s) dx ds(3.17)

=

∫

u0(x)−
∫ k2t

0

∫

up(x, s) dx ds.

Moreover

(3.18)

∫

BK

uk(x, t) dx →
∫

BK

U(x, t) dx for every K > 0

and

(3.19)

∫

|x|>K
uk(x, t) dx ≤ e−k2t

∫

|x|>Kk
u0(x) dx+ Ct

∫

|x|>K

dx

|x|N+2
< ε

∫

|x|>K
U(x, t) dx ≤ Ct

∫

|x|>K

dx

|x|N+2
< ε

if K is large.

Hence, we have that

M(t) =

∫

U(x, t) dx =

∫

u0(x) dx−
∫ ∞

0

∫

up(x, t) dx dt = M.

When p > 1+2/N there holds that c0 = 0, so that U is M times the fundamental solution of
the heat equation with diffusivity a. On the other hand, if p = 1+2/N there holds that c0 = 1,
so that

∫

U(x, t) dx =

∫

U(x, τ) dx −
∫ t

τ

∫

Up(x, s) dx ds.

Therefore, M(t) cannot be constant unless U ≡ 0. And the proposition is proved when u0
has compact support.
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Let now u0 ∈ L∞ ∩ L1 be arbitrary. We have to prove that uk converges to U = MUa

uniformly on compact subsets of RN × (0,∞) with M =
∫

u0(y) dy −
∫∞
0

∫

up(y, t) dy dt.

Let un0 = u0χ|x|<n and un the solution to (3.1) with initial datum un0 . Then, un ≤ u. Let
vn = u− un. There holds that vn is a nonnegative solution to

vnt − Lvn = −up + upn ≤ 0.

Therefore,

0 ≤ vn(x, t) ≤ e−t{u0(x)− un0 (x)}+
∫

W (x− y, t){u0(y)− un0 (y)} dy.

Thus, if t ≥ τ > 0,

0 ≤ vkn(x, t) ≤kNe−k2t{u0(kx)− un0 (kx)} +
∫

Wk(x− y, t){uk0(y)− (un0 )
k(y)} dy

≤CkNe−k2t + Cτ

∫

{u0(y)− un0 (y)} , dy

Then, if t ≥ τ > 0 we find,

Un(x, t) ≤ lim inf
k→∞

uk(x, t) ≤ lim sup
k→∞

uk(x, t)

≤ Un(x, t) + Cτ

∫

{u0(y)− un0 (y)} dy

≤ Un(x, t) + ε if n ≥ n0(τ, ε).

Therefore, if there exists limn→∞Un there holds that there exists U = limk→∞ uk = limn→∞ Un.
Moreover, it is easy to prove from the estimates above that this limit is uniform on compact
sets of RN × (0,∞).

On the other hand, by similar arguments we find that for m > n,

0 ≤
∫

{Um(x, t)− Un(x, t)} dx

≤ lim sup
k→∞

e−k2t

∫

{um0 (x)− un0 (x)} dx +

∫

{um0 (y)− un0 (y)} dy → 0 as m,n → ∞.

Therefore, Mn =
∫

Un(x, t) dx → M and, since Un = MnUa, we deduce that U = MUa.

So, it only remains to prove that M =
∫

u0(y) dy −
∫∞
0

∫

up(y, t) dy dt.
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The estimates (3.17), (3.18) hold in the present situation and, instead of the estimate (3.19)
on the mass of uk and U outside a large ball, we get

(3.20)

∫

|x|>K
uk(x, t) dx ≤

∫

|x|>Kk
u0(x) dx+

∫

|x|>K

∫

|y|<K/2
Wk(x− y, t)uk0(y) dy dx

+

∫

|x|>K

∫

|y|>K/2
Wk(x− y, t)uk0(y) dy dx

≤
∫

|x|>Kk
u0(x) dx+

∫

|x|>K

∫

|y|<K/2
C

t

|x− y|N+2
uk0(y) dy dx

+

∫

|y|>K/2
uk0(y)

∫

|x|>K
Wk(x− y, t) dx dy

≤
∫

|x|>Kk
u0(x) dx+ Ct

∫

|x|>K

1

|x|N+2

∫

|y|<Kk/2
u0(y) dy dx

+

∫

|y|>Kk/2
u0(y) dy < ε if Kis large independently of k ≥ 1

So, that we also have
∫

|x|>K
U(x, t) dx ≤ lim inf

k→∞

∫

|x|>K
uk(x, t) dx ≤ ε

if K is large. So, we get again that

M =

∫

U(x, t) dx =

∫

u0(x) dx−
∫ ∞

0

∫

up(x, t) dx dt

and the proposition is proved by using again that, in the critical case,
∫

U(x, t) dx cannot be
constant unless U is identically zero. �

4. Main results

In this section we prove our main results. Namely, we establish the asymptotic behavior of
solutions to

(4.1)

{

ut(x, t) =
∫

J(x− y)(u(y, t)− u(x, t)) dy − up(x, t) in R
N × (0,∞)

u(x, 0) = u0(x) in R
N .

depending on the values of p, N and the coefficient α of non-integrability of the initial data
u0. At the end of this section we also address the case where u0 is integrable and bounded. As
mentioned before, we have to distinguish between several cases.

We begin with the case 0 < α < N . We further divide the analysis between the supercritical
case p > 1 + 2/α and the critical case p = 1 + 2/α. In the previous paper [19], we were
able to establish the asymptotic behavior only for the supercritical case. Now we present a
different proof that actually allows us to obtain the result both in the critical and supercritical
cases. Moreover, in the supercritical case, we prove the same type of result for more general
non-integrable initial data.
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Theorem 4.1. Let u0 ∈ L∞ be such that |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α < N . Let

p ≥ 1 + 2/α and u the solution to (4.1). Then, for every R > 0,

tα/2|u(x, t) − U(x, t)| → 0 as t → ∞ uniformly in |x| ≤ R
√
t

where U is the solution to

(4.2)







Ut − a∆U = −c0U
p

U(x, 0) =
CA,N

|x|α

with c0 = 0 if p > 1 + 2/α and c0 = 1 if p = 1 + 2/α.

In a similar way we get the following results: When
|x|α
log |x|u0(x) → A > 0 as |x| → ∞ with

0 < α < N and p > 1 + 2/α, for every R > 0 there holds that

tα/2
∣

∣

∣

u(x, t)

log t1/2
− U(x, t)

∣

∣

∣
→ 0 as t → ∞ uniformly in |x| ≤ R

√
t

with U as above.

When |x|α(log |x|)u0(x) → A > 0 as |x| → ∞ with 0 < α < N and p ≥ 1 + 2/α, for every

R > 0 there holds that

tα/2
∣

∣

∣
u(x, t) log t1/2 − U(x, t)

∣

∣

∣
→ 0 as t → ∞ uniformly in |x| ≤ R

√
t

with U the solution to (4.2) with c0 = 0 even in the critical case p = 1 + 2/α.

Proof. We know that the family uk is precompact in C(K) for every compact setK ⊂ R
N×(0,∞).

Therefore, for every sequence kn → ∞ there exists a subsequence that we still call kn such that
ukn converges uniformly on every compact subset of RN × (0,∞) to a function U .

On the other hand, it is easy to see that uk0 → CA,N

|x|α in the sense of distributions. Moreover,

we are in the situation of Proposition 3.3. So that, U is the solution to (4.2). Thus, the whole
family uk converges to U as k → ∞. In particular, uk(x, 1) → U(x, 1) uniformly on compact
sets of RN .

As the solution of (4.2) is invariant under the present rescaling. There holds that U(y, 1) =
Uk(y, 1). Thus, for every R > 0,

kα|u(ky, k2)− U(ky, k2)| → 0 uniformly for |y| ≤ R.

By calling x = y
√
t, t = k2 we get the result.

When |x|α
log |x|u0(x) → A > 0 as |x| → ∞ with 0 < α < N , it is easy to see that we still have

that uk0 → CA,N

|x|α in the sense of distributions. So the result follows also in this case.

Analogously, when |x|α(log |x|)u0(x) → A > 0 as |x| → ∞ with 0 < α < N , we also have that

uk0 → CA,N

|x|α in the sense of distributions, and the result follows. �

We now analyze the case α = N . Once again, we prove the result for more general non-
integrable initial data than the one considered in [19].
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Theorem 4.2. Let u0 ∈ L∞ be such that |x|Nu0(x) → A > 0 as |x| → ∞. Let p > 1 + 2/N .

Then, for every R > 0,

tN/2
∣

∣

∣

u(x, t)

log t1/2
− U(x, t)

∣

∣

∣
→ 0 as t → ∞ uniformly in |x| ≤ R

√
t

where u is the solution to (4.1) and U is the solution to
{

Ut − a∆U = 0

U(x, 0) = CA,Nδ

with δ Dirac’s delta.

In a similar way we get the following result when
|x|N
log |x|u0(x) → A > 0 as |x| → ∞ and

p > 1 + 2/N : for every R > 0,

tN/2
∣

∣

∣

u(x, t)

log2 t1/2
− U(x, t)

∣

∣

∣
→ 0 as t → ∞ uniformly in |x| ≤ R

√
t

with U as above.

When |x|N (log |x|)u0(x) → A > 0 as |x| → ∞ and p > 1 + 2/N we get: for every R > 0,

tN/2
∣

∣

∣

u(x, t)

log log t1/2
− U(x, t)

∣

∣

∣
→ 0 as t → ∞ uniformly in |x| ≤ R

√
t

with U as above.

Proof. We proceed as in the previous theorem. This time, uk0 → CA,Nδ in the sense of distribu-
tions. In fact,

∫

uk0(x)ϕ(x) dx =
1

log k

∫

|x|<Kk
u0(x)ϕ(x/k) dx

where K is such that ϕ(x) = 0 if |x| > K. Since ϕ(x/k) → ϕ(0) uniformly in R
N the result

easily follows from this formula and the fact that

1

logKk

∫

|x|<Kk
u0(x) dx → CA,N ,

logKk

log k
→ 1 as k → ∞.

The other cases follow similarly. �

Finally we consider the case where u0 is integrable and bounded. Such case has been studied
by Pazoto and Rossi in [18] for non-critical values of p . Here we present a new proof the includes
the critical case and therefore settles the question as far as integrable data is concerned.

Theorem 4.3. Let u0 ∈ L1 ∩ L∞ and p ≥ 1 + 2/N . Let u be the solution to (4.1).

First, assume p > 1 + 2/N . Then, for every R > 0,

tN/2|u(x, t) − U(x, t)| → 0 as t → ∞ uniformly in |x| ≤ R
√
t

where U is the solution to

(4.3)

{

Ut − a∆U = 0

U(x, 0) = Mδ

with δ Dirac’s delta and M =
∫

u0(x) dx−
∫∞
0

∫

up(x, t) dx dt.
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Now, let p = 1 + 2/N . For every R > 0 there holds that

tN/2u(x, t) → 0 as t → ∞ uniformly in |x| ≤ R
√
t

Proof. As in the previous theorems we know that uk(y, 1) → U(y, 1) uniformly on compact sets
of RN × (0,∞) as k → ∞. In the present situation, if p > 1 + 2/N , we know that U is the
solution to (4.3). In particular, U is invariant under the present rescaling. When p = 1 + 2/N
we know that U ≡ 0. So, we get the result as in the previous theorems. �

Remark 4.1. The same method allows to study the asymptotic behavior of the solution uL of

the equation without absorption.
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UBA (1428) Buenos Aires, Argentina.

E-mail address: jterra@dm.uba.ar

Noemi Wolanski
Departamento de Matemática, FCEyN
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