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The distance-two labelling problem of graphs was proposed by Griggs and Roberts in 1988, and it is
a variation of the frequency assignment problem introduced by Hale in 1980. An L(2, 1)-labelling of a
graph G is an assignment of non-negative integers to the vertices of G such that vertices at distance two
receive different numbers and adjacent vertices receive different and non-consecutive integers. The L(2, 1)-
labelling number of G, denoted by λ(G), is the smallest integer k such that G has a L(2, 1)-labelling in
which no label is greater than k.

In this work, we study the L(2, 1)-labelling problem on block graphs. We find upper bounds for
λ(G) in the general case and reduce those bounds for some particular cases of block graphs with maximum
clique size equal to 3.
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1. Introduction

The distance-two labelling problem of graphs was proposed by Griggs and Roberts in 1988
(cf. [7]), and it is a variation of the frequency assignment problem introduced by Hale in 1980
[8]. Suppose we are given a number of transmitters or stations. The L(2, 1)-labelling problem
addresses the problem of assigning frequencies (non-negative integers) to the transmitters so that
‘close’ transmitters receive different frequencies and ‘very close’ transmitters receive frequencies
that are at least two frequencies apart.

Let G be a simple, finite, undirected graph with a vertex set V (G). Let �(G) denote the
maximum degree of a vertex of G, dG(u, v) the distance in G between vertices u and v, and ω(G)

the maximum size of a clique of G.
Let k be a non-negative integer. Denote by [0, k] the set {x ∈ Z : 0 ≤ x ≤ k}.
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An L(2, 1)-labelling of a graph G is a function f : V (G) → Z≥0 such that |f (u) − f (v)| ≥
1 if dG(u, v) = 2 and |f (u) − f (v)| ≥ 2 if dG(u, v) = 1. For a non-negative integer k, a k-
L(2, 1)-labelling is an L(2, 1)-labelling f : V (G) → [0, k]. The L(2, 1)-labelling number of
G, denoted by λ(G), is the smallest number k such that G has a k-L(2, 1)-labelling. It is not
difficult to see that λ(G) ≥ �(G) + 1 and λ(G) ≥ 2ω(G) − 2. The L(2, 1)-labelling problem
has been studied widely. Griggs and Yeh [7] showed that the L(2, 1)-labelling problem is NP-
complete for general graphs. They proved that λ(G) ≤ �2(G) + 2�(G) and conjectured that
λ(G) ≤ �2(G) for general graphs different from K2. Chang and Kuo [1] proved that λ(G) ≤
�2(G) + �(G) and gave a linear-time algorithm for the L(2, 1)-labelling problem on cographs.
Král and Škrekovski [10] proved that λ(G) ≤ �2(G) + �(G) − 1 for graphs different from K2.
More recently, Gonçalves [6] proved that λ(G) ≤ �2(G) + �(G) − 2, giving the best-known
upper bound for small values of �(G). In [9], the authors prove Griggs and Yeh’s conjecture
for graphs G with �(G) sufficiently large. For further studies on the L(2, 1)-labelling and some
generalizations, see [2–6,11,12].

A block of a graph is a maximal two-connected component. An end-block is a block containing
exactly one cutpoint. A block-cutpoint tree of a graph G is a tree whose vertices are the cutpoints
and the blocks of G, such that two vertices are adjacent if and only if they correspond to a block
B of G and a cutpoint v of B. A graph is a block graph if it is connected and every block is a
clique.

Block graphs with ω(G) = 2 are trees. Griggs and Yeh [7] showed that �(G) + 1 ≤
λ(G) ≤ �(G) + 2 for trees, and Chang and Kuo [1] gave a polynomial-time algorithm for the
L(2, 1)-labelling problem on this class of graphs. However, there is no simple characterization
distinguishing the cases λ = � + 1 and λ = � + 2. For the special case of paths, it is not difficult
to see that λ(P1) = 0, λ(P2) = 2, λ(P3) = λ(P4) = 3, and λ(Pn) = 4 for n ≥ 5.

The aim of this work is to study the L(2, 1)-labelling problem on block graphs. We find upper
bounds for λ(G) in the general case and reduce those bounds for some particular cases with
ω(G) = 3.

2. Upper bounds

Theorem 2.1 Let G be a block graph with a maximum degree � and a maximum clique size ω.
Then, λ(G) ≤ max{� + 2, min{3ω − 2, � + ω}}.
Proof Let G be a block graph with maximum degree � and maximum clique size ω, and let k =
max{� + 2, min{3ω − 2, � + ω}}. We will prove that G has a k-L(2, 1)-labelling by induction
on the number of blocks. If G is a complete graph of n vertices, then ω = n, � = n − 1 and
k = max{n + 1, min{3n − 2, 2n − 1}} = max{n + 1, 2n − 1} ≥ 2n − 2 = λ(G). Suppose now
that G is not a complete graph, and let v be a cutpoint of G such that all the blocks containing
v but at most one are end-blocks. Denote by B1, B2, . . . , Bt the blocks containing v, where
B2, . . . , Bt are end-blocks with |B2| ≥ · · · ≥ |Bt |, let B ′

i = Bi − v for i = 1, . . . , t and let B =⋃
2≤i≤t B

′
i . Let bi = |B ′

i | for i = 1, . . . , t and let b = |B|. By inductive hypothesis, there is a
L(2, 1)-labelling of G \ B with labels in [0, k]. We will extend this labelling to B. From the
set [0, k], B can use neither the label used by v nor its previous or subsequent label, and it
cannot use any of the labels used by the neighbours of v in G \ B, that is, vertices in B ′

1. So,
the available labels for B are at least k + 1 − 3 − b1. One can observe that the labelling can
be extended to B if there are at least max{b, 2b2 − 1} available labels. In fact, let c1 < c2 <

· · · < cp be the available labels. The vertices in B2, and subsequently in B3, . . . , Bt , can be
labelled by using first labels with odd indices followed by the even ones, respecting the increasing
ordering of labels. Since p ≥ 2b2 − 1, vertices in the same set Bi do not receive consecutive labels.
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It holds that k − 2 − b1 ≥ max{b, 2b2 − 1} if and only if k ≥ max{b + b1 + 2, b1 + 2b2 + 1}.
Note that b1 + b ≤ �, and for i = 1, . . . , t, bi ≤ ω − 1 since B ′

i ∪ {v} is a clique. Thus, b1 +
b + 2 ≤ � + 2, b1 + 2b2 + 1 ≤ 3(ω − 1) + 1 = 3ω − 2 and b1 + 2b2 + 1 ≤ (b1 + b2) + b2 +
1 ≤ � + b2 + 1 ≤ � + ω. Therefore, k = max{� + 2, min{3ω − 2, � + ω}} ≥ max{b + b1 +
2, b1 + 2b2 + 1}. This completes the proof. �

Corollary 2.2 LetGbe a block graph different fromK2. Then,λ(G) ≤ 2�(G) + 1 andλ(G) ≤
�2(G).

Proof If G is a block graph different from K2, then �(G) ≥ 2. So, �(G) + 2 ≤ �2(G). If
�(G) = 2, then G is either a path or a triangle, and in both cases it is known that λ(G) ≤
4. If �(G) ≥ 3, then �(G) + ω(G) ≤ 2�(G) + 1 ≤ �2(G). Thus, λ(G) ≤ max{�(G) +
2, min{3ω(G) − 2, �(G) + ω(G)}} ≤ min{2�(G) + 1, �2(G)}. �

Corollary 2.3 Let G be a block graph with maximum degree � and maximum clique size at
most 3. If � ≥ 5, then λ(G) ≤ � + 2; if � = 4, then λ(G) ≤ 7; and if � ≤ 3, then λ(G) ≤ 6.

Proposition 2.4 The bounds of Corollary 2.3 are tight for � = 3, � = 4 and � ≥ 5, and they
are attained by graphs G1, G2 and G3(�) of Figure 1, respectively.

Proof Let us consider 5-L(2, 1)-labellings and show that G1 does not admit one. In a 5-L(2, 1)-
labelling of a graph, the set of possible triplets for a triangle is {0, 2, 4; 0, 2, 5; 0, 3, 5; 1, 3, 5}.
Let A1 = v1v2v3 and A2 = v4v5v6 be two disjoint triangles in a graph, joined by the edge v1v4. If
A1 is labelled 0, 2, 5, then v1 cannot receive number 2, otherwise v4 must receive number 4 but
A2 cannot be labelled 0, 2, 4, and v1 cannot receive number 5, otherwise v4 must receive number
3 or 1, but A2 can neither be labelled 0, 3, 5 nor 1, 3, 5. Analogously, if A1 is labelled 0, 3, 5, then
v1 cannot receive number 0 or 3. Therefore, in a 5-L(2, 1)-labelling of G1, the triangles A, B

and C should be labelled 0, 2, 4 or 1, 3, 5. If two of A, B, C use different labels, then there is no
colour left to v. If all of them use the same labelling, the three neighbours of v must use different
colours. Since none of 1, 3, 5 is at distance two of 0, 2 and 4, and conversely, there is no suitable
colour for v. Consider the graph G2 in Figure 1, and suppose there is an L(2, 1)-labelling of it
with labels in [0, 6]. The set of possible triplets for labelling a triangle is {0, 2, 4; 0, 2, 5; 0, 2, 6;
0, 3, 5; 0, 3, 6; 0, 4, 6; 1, 3, 5; 1, 3, 6; 1, 4, 6; 2, 4, 6}. We say that two triplets are compatible if
they share exactly one number, and we say that a triplet is good if it has three compatible triplets,
each one sharing a different number with it. As it can be seen in Figure 2, the set of good triplets
is {0, 2, 5; 0, 3, 6; 1, 3, 5; 1, 4, 6}. It is clear that the triangles A, B, C, D, A1, A2, B1, B2, C1 and
C2 of G2 should be labelled with good triplets. So, we call very good triplets those triplets having

Figure 1. Examples showing tightness of the bounds of Corollary 2.3.
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Figure 2. Compatibility between triplets on [0, 6].

three compatible good triplets, each one sharing a different number. As it can be seen in Figure 2,
the only very good triplets are 0, 3, 6 and 1, 3, 5. The triangles A, B, C and D of G2 should be
labelled with very good triplets. Since the vertices of D are labelled by very good triplets and
{0, 3, 6} ∩ {1, 3, 5} = {3}, at least one of A, B or C is labelled by the same very good triplet as
for D, a contradiction. Hence, the L(2, 1)-labelling number of G2 is greater than 6. The family
of graphs G3(�) is a known example of trees with maximum degree � and L(2, 1)-labelling
number � + 2: in every L(2, 1)-labelling of a graph with labels in [0, � + 1], all the vertices of
degree � must receive label 0 or � + 1, but the three vertices of degree � in G3(�) must receive
pairwise distinct labels. �

Let T3 be the leftmost graph in Figure 3, that is, a graph with seven vertices
v1, v2, v3, v4, w1, w2, w3, where v1, v2, v3, v4 induce a path of length four, and wi is adjacent
to vi and vi+1 for i = 1, 2, 3.

Theorem 2.5 Let G be a block graph with maximum degree 4 and maximum clique size 3. If G

does not contain T3, then λ(G) ≤ 6.

Proof We will construct a 6-L(2, 1)-labelling of G by labelling the vertices of G ordered by
their distance to some vertex v0 with degree 4. For d ≥ 0, denote by Vd the set of vertices of G

at distance d from v0. Note that since G is a block graph with ω(G) = 3, each vertex in Vd with
d ≥ 1 has exactly one neighbour in Vd−1, and at most one neighbour in Vd and, in that case, they
share the neighbour in Vd−1. We call type 1 the vertices belonging to two triangles. Note that a
type 1 vertex belongs to a triangle formed by it and its neighbours in Vd and Vd−1, and to another
triangle formed by it and its neighbours in Vd+1. We call type 2 those vertices that are not of type
1. As in the proof of Proposition 2.4, we will consider the set of possible triplets for labelling a
triangle. Recall that two triplets are compatible if they share exactly one number, and we say that
a number a is bad for a triplet t if t has no compatible triplet sharing the number a. As it can
be seen in Figure 2, every triplet has at most one bad number for it, which is boldfaced in each
triplet.

First, we give to v0 the label 0. Now, we will continue the labelling process in such a way that
no type 1 vertex in Vd , with d ≥ 1, is labelled with a bad colour for the triplet given to the triangle
formed by it and its neighbours in Vd and Vd−1.

At most one of the four vertices in V1 is of type 1, otherwise G would contain T3 as an induced
subgraph, so we can label vertices in V1 following that rule. Let d > 1 and suppose that every

Figure 3. Paths of triangles.
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vertex at distance at most d − 1 from v0 is labelled. Let v be a no-labelled vertex in Vd , and w its
neighbour in Vd−1. Let W be the set of neighbours of w in Vd . We will label the vertices in W all
at once. Since w has a neighbour in Vd−2 and G has maximum degree 4, |W | ≤ 3. If w has no
neighbour in Vd−1, then the number of available colours for W is at least 3. If the vertices in W are
pairwise non-adjacent, we can clearly label them. If two of them are adjacent, at most one is type
1, otherwise G would contain T3 as an induced subgraph. So we can label those two vertices with
two non-consecutive numbers within the available ones in such a way that the (possible) type 1
vertex does not receive a bad colour for the triplet formed by these two labels and the label of w.
Finally, there is at least one remaining label for the (possible) third vertex. If w has a neighbour
in Vd−1, then |W | ≤ 2 and the number of available colours for W is at least 2. If the vertices in
W are non-adjacent, then we can clearly label them. If they are adjacent, then w is type 1 and
none of the vertices in W is, otherwise G would contain T3 as an induced subgraph. Since w is
not labelled with a bad colour for the triplet given to the triangle formed by it and its neighbours
in Vd−1 and Vd−2, there is a triplet compatible to that one in order to label W . �

By now, the computational complexity of computing λ(G) of a block graph G is open, even
when ω(G) = 3. Nevertheless, the proofs of the previous theorems are constructive and lead to
algorithms to produce an L(2, 1)-labelling of the graph with the showed upper bound.

3. The L(2, 1)-labelling number for paths of triangles

We call paths of triangles the block graphs G with ω(G) = 3 and such that the block-cutpoint tree
of G is a path. Examples of paths of triangles can be seen in Figure 3. Note that since ω(G) = 3,
then λ(G) ≥ 4.

For these kind of graphs we prove that λ(G) ≤ �(G) + 2 and give a complete characterization
for each possible value of λ.

Theorem 3.1 Let G be a path of triangles. Then, λ(G) ≤ 6. Moreover, λ(G) = 6 if and only if
G contains T3, and λ(G) = 4 if and only if G does not contain any of the graphs in Figure 4.

Proof The scheme in Figure 5 shows that for every path of triangles G, λ(G) ≤ 6.
It is easy to see also that T3 does not admit a 5-L(2, 1)-labelling because the only two pairs of

compatible triplets are 0, 2, 5 and 1, 3, 5 sharing 5, and 0, 2, 4 and 0, 3, 5 sharing 0.
We will show that every path of triangles with no induced T3 can be 5-L(2, 1)-labelled. In order

to do that, we will consider a path of triangles without T3 as a sequence of pieces consisting of

Figure 4. Paths of triangles with λ = 5.

Figure 5. Scheme for the 6-L(2, 1)-labelling on paths of triangles.
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Figure 6. Scheme for the 5-L(2, 1)-labelling of paths of triangles without T3.

one or two consecutive triangles joined by simple paths. We will consider four different ways
of labelling a piece consisting on two consecutive triangles, namely A, B, C and D, and four
different ways of labelling a piece consisting on a single triangle, namely A′, B ′, C ′ and D′.
Figure 6 shows A, B, C, D, A′, B ′, C ′ and D′, together with the possible labels for the last vertex
in a path preceding the piece and the first vertex in a path succeeding the piece. In the scheme on
the right of Figure 6, we have a node for every way of labelling a piece, and we join a node X

and a node Y with a directed arc labelled t to mean that a piece labelled as X can be succeeded
by a piece labelled as Y with a join path of length t . We omit the arcs between A, B, C, D and
A′, B ′, C ′, D′, but note that the first two vertices of X and X′ are identically labelled. Thus, if
we have an arc (X, Y ) labelled by t then we could add an arc (X, Y ′) labelled by t , and if we
have an arc (X′, Y ′) labelled by t then we could add an arc (X′, Y ) labelled by t . Since for every
length t and for every node X there exists a directed arc labelled t joining X with one of A, B,
C, D (and, consequently, with one of A′, B ′, C ′, D′), every path of triangles without T3 can be
5-L(2, 1)-labelled, subject to the correctness of the scheme. The arcs labelled up to 5 are easy
to check by hand. It remains to prove that B and A (respectively D and C) can be joined to A

(respectively C) by a path of arbitrary length at least 5, and that B ′ and A′ (respectively D′ and
C ′) can be joined to A′ (respectively C ′) by a path of arbitrary length at least 2.

To simplify the notation, we will enclose with brackets a subsequence of a sequence to mean
that it can be either omitted or repeated as many times as necessary. For example, the sequence
1, 2, [3, 4], 5 will stand for any of the sequences 1, 2, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 3, 4, 5; etc.

Case 1 We have to join 5, 1 or 5, 2 with 5, 2 by paths of length at least 5. We will use
subsequences of the 5-periodic sequence [2, 4, 1, 3, 0] in the following way: if the length of the
path is 5k, 5k + 1 or 5k + 2, we will join 5, 2 with 5, 2 by using the subsequence beginning at 4
(e.g., 5, 2, 4, 1, 5, 2; 5, 2, 4, 1, 3, 5, 2; 5, 2, 4, 1, 3, 0, 5, 2; 5, 2, 4, 1, 3, 0, 2, 4, 1, 5, 2; etc.); if the
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length of the path is 5k + 3 or 5k + 4 we will join 5, 1 with 5, 2 by using the sequence beginning at
3 (e.g., 5, 1, 3, 0, 2, 4, 1, 5, 2; 5, 1, 3, 0, 2, 4, 1, 3, 5, 2; 5, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 5, 2; etc.).

Case 2 We have to join 0, 4 or 0, 3 with 0, 3 by paths of length at least 5. This case is symmetric
of Case 1, considering the isometric bijection between labels t 	→ 5 − t .

Case 3 We have to join 0, 3 or 0, 5 with 5, 2 by paths of length at least 2. The first cases
are 0, 5, 2; 0, 3, 5, 2; 0, 3, 1, 5, 2. For paths of length greater than 5, we will join 0, 5 with
5, 2 by using subsequences of the 5-periodic sequence [2, 4, 1, 3, 0] in the following way:
if the length of the path is 5k or 5k + 4, we will use the sequence beginning at 1 (e.g.,
0, 5, 1, 3, 5, 2; 0, 5, 1, 3, 0, 2, 4, 1, 5, 2; 0, 5, 1, 3, 0, 2, 4, 1, 3, 5, 2; etc.) and if the length of the
path is 5k + 1, 5k + 2 or 5k + 3, we will use the sequence beginning at 2 (e.g., 0, 5, 2, 4, 1, 5, 2;
0, 5, 2, 4, 1, 3, 5, 2; 0, 5, 2, 4, 1, 3, 0, 5, 2; etc.).

Case 4 We have to join 5, 2 or 5, 0 with 0, 3 by paths of length at least 2. This case is symmetric
of Case 3, considering the isometric bijection between labels t 	→ 5 − t .

Finally, we will characterize the paths of triangles G with λ(G) = 4. Since λ(G) ≥ �(G) + 1,
then �(G) ≤ 3. In particular, G cannot contain the first graph in Figure 4. Moreover, if �(G) = 3,
then every vertex of degree 3 should be labelled with 0 or 4. The only possible triplet in this case
is 0, 2, 4, and from the observation above, in every triangle the label 2 should be assigned to a
vertex of degree 2. Considering these facts, it is not difficult to check that none of the graphs in
Figure 4 admits a 4-L(2, 1)-labelling.

Since 4-L(2, 1)-labellings are preserved under the map t 	→ 4 − t , we can assume that the
cutpoint in the first triangle linked to the path is labelled 0. Two triangles joined by a path of length
3 can be labelled giving to the vertices of degree 3 numbers 0 and 4, and to their neighbours in the
path numbers 3 and 1, respectively. If we have two triangles joined by a path of length at least 7, we
have to join 0, 3 with 3, 0 or 1, 4 by a path. If the length of the path is 3k + 1, we will join 0, 3 with
1, 4 by using the sequence 0, 3, 1, 4, 0, [2, 4, 0], 3, 1, 4. If the length of the path is 3k + 2, we will
join 0, 3 with 1, 4 by using the sequence 0, 3, 1, 4, 2, 0, [4, 2, 0], 3, 1, 4. Finally, if the length of
the path is 3k, we will join 0, 3 with 3, 0 by using the sequence 0, 3, 1, 4, 2, 0, [4, 2, 0], 4, 1, 3, 0.
This completes the proof of the theorem. �

This characterization leads to an efficient algorithm to compute λ(G) and an optimum L(2, 1)-
labelling on paths of triangles.
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