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Front propagation and quasi-stationary distributions:

the same selection principle?
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Abstract

We analyze the connection between selection principles in front propagation and
quasi-stationary distributions. We describe the missing link through the microscopic
models known as Branching Brownian Motion with selection and Fleming-Viot.
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1 Introduction

A selection mechanism in front propagation can be thought of as follows: a certain
phenomenology is described through an equation that admits an infinite number of
traveling-wave solutions, but there is only one which has a physical meaning, the
one with minimal velocity. Under mild assumptions on initial conditions, the solution
converges to this minimal-velocity traveling wave. The most remarkable example of this
fact is the celebrated F-KPP equation(for Fisher, Kolmogorov-Petrovskii-Piskunov)

∂v

∂t
=

1

2

∂2v

∂x2
+ rf(v), x ∈ R, t > 0,

v(0, x) = v0(x), x ∈ R.

(1)

Assume for simplicity that f has the form f(s) = s2−s, but this can be generalized
up to some extent. We also restrict ourselves to initial data v0 that are distribution
functions of probability measures in R. The equation was introduced in 1937 [20, 28]
as a model for the evolution of a genetic trait, and since then has been widely studied
(in fact more than two thousand works refer to one of these papers).

Both Fisher and Kolmogorov, Petrovskii and Piskunov proved independently that
this equation admits an infinite number of traveling wave solutions of the form v(t, x) =
wc(x−ct) that travel at velocity c. This fact is somehow unexpected from the modeling
point of view. In words of Fisher [20, p. 359]
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“Common sense would, I think, lead us to believe that, though the ve-
locity of advance might be temporarily enhanced by this method, yet ul-
timately, the velocity of advance would adjust itself so as to be the same
irrespective of the initial conditions. If this is so, this equation must omit
some essential element of the problem, and it is indeed clear that while a
coefficient of diffusion may represent the biological conditions adequately
in places where large numbers of individuals of both types are available, it
cannot do so at the extreme front and back of the advancing wave, where
the numbers of the mutant and the parent gene respectively are small, and
where their distribution must be largely sporadic”.

Fisher proposed a way to overcome this difficulty, related to the probabilistic rep-
resentation given later on by McKean [35], weaving links between solutions to (1) and
Branching Brownian Motion. The general principle behind is that microscopic effects
should be taken into account to properly describe the physical phenomena. With a
similar point of view in mind, Brunet, Derrida and coauthors [13, 14, 11, 12] started
in the nineties a study of the effect of microscopic noise in front propagation for equa-
tion (1) and related models, which resulted in a huge number of works that study the
change in the behavior of the front when microscopic effects are taken into account.
These works include both numerical and heuristic arguments [13, 14, 11, 12, 26] as
well as rigorous proofs [4, 5, 16, 31, 32]. Before that, Bramson et.al [10] gave the first
rigorous proof of a microscopic model for (1) that has a unique velocity for every initial
condition. They also prove that these velocities converge in the macroscopic scale to
the minimum velocity of (1), and call this fact a microscopic selection principle, as
opposed to the macroscopic selection principle stated above, that holds for solutions
of the hydrodynamic equation.

The theory of quasi-stationary distributions (QSD) has their own counterpart. It
is a typical situation that there is an infinite number of quasi-stationary distributions,
but the Yaglom limit (the limit of the conditioned evolution of the process started from
a deterministic initial condition) selects the minimal one, i.e. the one with minimal
expected time of absorption.

Up to our knowledge, despite of a shared feeling that similar principles do occur in
the context of QSD and of traveling waves, this relation has never been stated precisely.
The purpose of this note is to show that they are two faces of the same coin. We first
explain this link through the example of Brownian motion. Then we show how to
extend these results to more general Lévy processes.

The paper is organized as follows. In Section 2, we introduce traveling waves and
QSDs as macroscopic models. We focus in particular on the KPP equation and the
links between its traveling waves and the QSDs of a drifting Brownian motion. In
Section 3, we introduce particle systems enlightening the selection principles observed
for the macroscopic models. Finally in Section 4 we export these observations to more
general models. We consider general Lévy processes under suitable assumptions and
analyze selection principles in this context.

2 Macroscopic models

We elaborate on the two macroscopic models we study: front propagation and QSD.
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2.1 Front propagation in the KPP

Since the seminal papers [20, 28], equation (1) has received a huge amount of attention
for several reasons. Among them, it is one of the simplest models explaining several
phenomena that are expected to be universal. For instance, it admits a continuum of
traveling wave solutions that can be parametrized by their velocity c. More precisely,
for each c ∈ [

√
2r,+∞) there exists a function wc : R → [0, 1] such that

v(t, x) = wc(x− ct)

is a solution to (1). For c <
√
2r, there is no traveling wave solution, [1, 28]. Hence c∗ =√

2r represents the minimal velocity and wc∗ the minimal traveling wave. Moreover, if
v0 verifies for some 0 < b <

√
2r

lim
x→∞

ebx(1− v0(x)) = a > 0,

then

lim
t→∞

v(t, x+ ct) = wc(x), for c = r/b+
1

2
b, (2)

see [35, 36]. If the initial measure has compact support (or fast enough decay at
infinity), the solution converges to the minimal traveling wave and the domain of
attraction and velocity of each traveling wave is determined by the tail of the initial
distribution [1, 35, 39]. A smooth traveling wave solution of (1) that travels at velocity
c is a solution to

1

2
w′′ + cw + r(w2 −w) = 0. (3)

The behavior at infinity of these traveling waves is given by

1−wc(x) ∼
{

c1e
−bx c >

√
2r

c2xe
−x

√
2r c =

√
2r.

This behavior is determined by the linearization of (3) at w = 1, i.e. the solution of

1

2
w′′ + cw′ + rw = 0. (4)

See [25, 39]. We come back to this equation when dealing with quasi-stationary distri-
butions.

2.2 Quasi-stationary distributions

Quasi-stationary distributions have been extensively studied since the pioneering work
of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951) on the behavior of
Galton-Watson processes.

The beginning of this theory and an important part of the research in the area
has been motivated by models on genetics and population biology, where the notion of
quasi-stationarity is completely natural to describe the behavior of populations that are
expected to get extinct, conditioned on the event that extinction has not yet occurred,
on large time scales.
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Being more precise, consider a Markov process Z = (Zt, t ≥ 0), killed at some state
or region that we call 0. The absorption time is defined by τ = inf{t > 0: Zt ∈ 0}.
The conditioned evolution at time t is defined by

µγt (·) := Pγ(Zt ∈ ·|τ > t).

Here γ denotes the initial distribution of the process. A probability measure ν is
said to be a quasi-stationary distribution (QSD) if µνt = ν for all t ≥ 0.

For Markov chains in finite state spaces, the existence and uniqueness of QSDs
as well as the convergence of the conditioned evolution to this unique QSD for every
initial measure follows from Perron-Frobenius theory. The situation is more delicate
for unbounded spaces as there can be 0, 1 or an infinite number of QSD. Among those
distributions, the minimal QSD is the one that minimizes Eν(τ).

The Yaglom limit is a probability measure ν defined by

ν := lim
t→∞

µδxt ,

if it exists and does not depend on x. It is known that if the Yaglom limit exists, then
it is a QSD. A general principle is that the Yaglom limit selects the minimal QSD,
i.e. the Yaglom limit is the QSD with minimal mean absorption time. This fact has
been proved for a wide class of processes that include birth and death process, Galton-
Watson processes, random walks, Brownian motion, more general Lévy processes, etc.

It can also be proved for R-positive processes by means of the theory of R-positive
matrices [38]. To give a flavor of the results that hold in this situation, consider a
discrete time Markov chain in N that it is absorbed at 0. Denote p = (p(i, j), i, j ∈ N)
its transition matrix so that p is sub-stochastic. We use p(n) for the n-th power of
p. We say that p is R-positive if one (and hence both) of the following equivalent
statements hold

1. For some i and j, the sequence Rnp(n)(i, j) tends to a finite non-zero limit as
n→ ∞.

2. There exist non-negative, non-zero eigenvectors ν = (ν(k))k∈N, β = (β(k))k∈N
associated to the eigenvalue 1/R such that

∑∞
k=1 ν(k)β(k) <∞.

In 1966, Seneta and Vere-Jones proved the following theorem

Theorem 2.1 (Seneta and Vere-Jones, [38]). Assume that the matrix p is R-positive,
then the conditioned evolution converges to ν as n→ ∞ if one of the following condi-
tions hold

1. The left eigenvector ν satisfies
∑

ν(i) <∞ and the initial distribution µ is dom-
inated (pointwise) by a multiple of ν.

2. The right eigenvector β is bounded away from zero and
∑

µ(j)β(j) <∞

Observe that in both situations we have that ν is the minimal QSD and the Yaglom
limit. Also every initial distribution with tail light enough is in the domain of attraction
of ν. So, in the R-positive case, the situation is pretty clear. These results can be
applied for instance to the Galton-Watson process. In that case, a detailed study of
the domain of attraction of the other QSDs (which are parametrized by an interval) is
given in [37] where it can be seen that the limiting conditional distribution is given by
the tail of the initial distribution.
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Unfortunately, on the one hand R-positivity is a property difficult to check and
on the other hand, there is a lot of interesting processes that are not R-positive.
For example, a birth and death process with constant drift towards the origin, has
a continuum of QSDs and initial distributions with light tails are attracted by the
minimal QSD, which can be computed explicitly [19], but this process is not R-positive
and hence Theorem 2.1 does not apply.

The presence of an infinite number of quasi-stationary distributions is something
anomalous from the modeling point of view, in the sense that no physical nor biological
meaning has been attributed to them. The reason for their presence here and in the
front propagation context is similar: when studying for instance population or genes
dynamics through the conditioned evolution of a Markov process, we are implicitly
considering an infinite population and microscopic effects are lost.

So, as Fisher suggests, in order to avoid the undesirable infinite number of QSD,
we should take into account microscopic effects. A natural way to do this is by means
of interacting particle systems. We discuss this in Section 3.

Brownian Motion with drift. Quasi-stationary ditributions for Brownian Mo-
tion with constant drift towards the origin are studied in [33, 34]. We briefly review
here some of the results of these papers and refer to them for the details.

For c > 0 we consider a one-dimensional Brownian Motion X = (Xt)t≥0 with drift
−c defined by Xt = Bt−ct. Here Bt is a one dimensional Wiener process defined in the
standard Wiener space. We use Px for the probability defined in this space such that
Bt is Brownian Motion started at x and Ex for expectation respect to Px. Define the
hitting time of zero, when the process is started at x > 0 by τx(c) = inf{t > 0: Xt = 0}
and denote with P ct the submarkovian semigroup defined by

P ct f(x) = Ex(f(Xt)1{τx(c)>t}). (5)

In this case, differentiating (5) and after some manipulation it can be seen that the
conditioned evolution µPt has a density u(t, ·) for every t > 0 and verifies

∂u

∂t
(t, x) =

1

2

∂2u

∂2x
(t, x) + c

∂u

∂x
(t, x) +

1

2

∂u

∂x
(t, 0)u(t, x), t > 0, x > 0,

u(t, 0) = u(t,+∞) = 0, t > 0,
(6)

Recall now that a probability measure ν in R+ is a QSD if

Pν(Xt ∈ ·|Xt > 0) = ν(·).

It is easy to check that if ν is a QSD, the hitting time of zero, started with ν is an
exponential variable of parameter r and hence ν is a QSD if and only if there exists
r > 0 such that

νP ct = e−rtν, for any t > 0.

Differentiating (5) and using the semigroup property we get that ν is a QSD if and
only if

∫

(
1

2
f ′′ − cf ′) dν = −r

∫

f dν, for all f ∈ C∞
0 (R+). (7)
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Integrating by parts we get that the density w of ν must verify

1

2
w′′ + cw′ + rw = 0. (8)

Solutions to this equation with initial condition w(0) = 0 are given by

w(x) =











me−cx sin(
√
c2 − 2rx) r > c2

2 ,

mxe−cx r = c2

2 ,

me−cx sinh(
√
c2 − 2rx) r < c2

2 .

Observe that w defines an integrable density function if and only if 0 < r ≤ c2/2 (or
equivalently, c ≥

√
2r). One can thus parametrize the set of QSDs by their eigenvalues

r, {νr : 0 < r ≤ c2/2}. For each r, the distribution function of νr, v(x) =
∫ x

0 w(y) dy is
a monotone solution of (8) with boundary conditions

v(0) = 0, v(+∞) = 1, (9)

which is the same equation (4) but in a different domain. The following theorem
characterizes the domain of attraction of each QSD.

Theorem 2.2 (Mart́ınez, Picco, San Mart́ın, [33]). Let γ be a probability measure on
(0,+∞) with density ρ. If

lim
xր∞

−1

x
log ρ(x) = b < c, (10)

then limt µ
γ
t = νr(b), where r(b) = cb− b2/2.

Observe that this last equation is equivalent to c = r/b + 1
2b, which should be

compared with (2). Also remark that if (10) holds then

lim
xր∞

−1

x
log µ([x,+∞) = b.

We come back to equation (8) later, shedding light on the links between QSD and
traveling waves.

Finally let us mention that a similar result holds for the discrete-space analog, i.e.
birth and death processes with constant drift towards the origin [17, 19]

3 Particle systems

In this section we introduce two particle systems. The first one is known as Branching
Brownian Motion (BBM) with selection of the N right-most particles (N−BBM). As a
consequence of the link between BBM and F-KPP that we describe below, this process
can be thought of as a microscopic version of F-KPP. The second one is called Fleming-
Viot and was introduced by Burdzy, Ingemar, Holyst and March [15], in the context
of Brownian Motion in a d-dimensional bounded domain. It is a slight variation of
the original one introduced by Fleming and Viot [21]. The first interpretation of this
process as a microscopic version of a conditioned evolution is due to Ferrari and Maric
[18].
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3.1 BBM and F-KPP equation

One-dimensional supercritical Branching Brownian Motion is a well-understood object.
Particles diffuse following standard Brownian Motion started at the origin and branch
at rate 1 according to an offspring distribution that we assume for simplicity to be δ2.
When a particle branches, it has two children and then dies. As already underlined, its
connection with the F-KPP equation and traveling waves was pointed out by McKean
in the seminal paper [35]. Denote with Nt the number of particles alive at time t ≥ 0
and ξt(1) ≤ · · · ≤ ξt(Nt) the position of the particles enumerated from left to right.
McKean’s representation formula states that if 0 ≤ v0(x) ≤ 1 and we start the process
with one particle at 0 (i.e. N(0) = 1, ξ0(1) = 0), then

v(t, x) := E

(

Nt
∏

i=1

v0(ξt(i) + x)

)

is the solution of (1). Of special interest is the case where the initial condition is the
Heaviside function v0 = 1{[0,+∞)} since in this case

v(t, x) = P(ξt(1) + x > 0) = P(ξt(Nt) < x).

This identity as well as various martingales obtained as functionals of this process have
been widely exploited to obtain the precise behavior of solutions of (1), using analytic
as well as probabilistic tools [8, 9, 24, 25, 35, 39].

3.2 N−BBM and Durrett-Remenik equation

Consider now a variant of BBM where the N right-most particles are selected. In
other words, each time a particle branches, the left-most one is killed, keeping the
total number of particles constant.

This process was introduced by Brunet and Derrida [11, 12] as part of a family of
models of branching-selection particle systems to study the effect of microscopic noise
in front propagation. By means of numerical simulations and heuristic arguments, they
conjectured that the linear speed of N−BBM differs from the speed of standard BBM
by (logN)−2 and in a series of papers with coauthors they study various statistics of
the process [13, 14, 11, 12]. Bérard and Gouéré proved this shift in the velocity for a
similar process. We refer to the work of Maillard [31] for the most detailed study of
this process.

Durret and Remenik [16] considered a slightly different process in the class of Brunet
and Derrida: N−BRW. The system starts with N particles. Each particle gives rise
to a child at rate one. The position of the child of a particle at x ∈ R is x+ y, where
y is chosen according to a probability distribution with density ρ, which is assumed
symmetric and with finite expectation. After each birth, the N +1 particles are sorted
and the left-most one is deleted, in order to keep always N particles. They prove that
the empirical measure of this system converges to a deterministic probability measure
νt for every t, which is absolutely continuous with density u(t, ·), a solution of the



Selection Principles. 8

following free-boundary problem

Find (γ, u)such that

∂u

∂t
(t, x) =

∫ ∞

−∞
u(t, y)ρ(x − y) dy ∀x > γ(t),

∫ ∞

γ(t)
u(t, y) dy = 1, u(t, x) = 0, ∀x ≤ γ(t),

u(0, x) = u0(x).

(11)

They also find all the traveling wave solutions for this equation. Just as for the BBM,
there exists a minimal velocity c∗ ∈ R such that for c ≥ c∗ there is a unique traveling
wave solution with speed c and no traveling wave solution with speed c for c < c∗. The
value c∗ and the behavior at infinity of the traveling waves can be computed explicitly
in terms of the Laplace transform of the random walk. In Section 4 we show that these
traveling waves correspond to QSDs of drifted random walks.

It follows from renewal arguments that for each N , the process seen from the left-
most particle is ergodic, which in turn implies the existence of a velocity vN at which
the empirical measure travels for each N . Durrett and Remenik prove that these
velocities are increasing and converge to c∗ as N goes to infinity.

We can interpret this fact as a weak selection principle: the microscopic system has
a unique velocity for each N (as opposed to the limiting equation) and the velocities
converge to the minimal velocity of the macroscopic equation. The word “weak” here
refers to the fact that only convergence of the velocities is proved, but not convergence
of the empirical measures in equilibrium.

In view of these results, the same theorem is expected to hold for a N−BBM that
branches at rate r. In this case the limiting equation is conjectured to be given by

Find (γ, u)such that

∂u

∂t
(t, x) =

1

2

∂2u

∂2x
(t, x) + ru(t, x) ∀x > γ(t),

∫ ∞

γ(t)
u(t, y) dy = 1, u(t, x) = 0, ∀x ≤ γ(t),

u(0, x) = u0(x).

(12)

The empirical measures in equilibrium are also expected to converge to the minimal
traveling wave. More precisely,

Conjecture 3.1. Both N-BBM and N-BRW are ergodic, with (unique) invariant mea-
sure λN and the empirical measure distributed according to λN converges to the delta
measure supported on the minimal quasi-stationary distribution.

Traveling waves. Let us look at the traveling wave solutions u(t, x) = w(x − ct)
of (12). Plugging-in in (12) we see that they must verify

1

2
w′′ + cw′ + rw = 0, w(0) = 0,

∫ ∞

0
w(y) dy = 1. (13)

Which is exactly (8). Note nevertheless that in (13) the parameter r is part of the data
of the problem (the branching rate) and c is part of the unknown (the velocity), while
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in (8) the situation is reversed: c is data (the drift) and r unknown (the absorption
rate under the QSD). However, we have the following relation

c is a minimal velocity for r
in (13)

⇐⇒ r is a maximal absorption rate for c
in (8)

Observe also that 1/r is the mean absorption time for the QSD associated to r
and hence, if r is maximal, the associated QSD is minimal. So the minimal QSD for
Brownian Motion in R+ and the minimal velocity traveling wave of (12) are one and
the same. They are given by

uc∗(r)(x) = ur∗(c) = 2r∗xe−
√
2r∗ = (c∗)2xe−c

∗x,

which is the one with fastest decay at infinity.
Again, the distribution function v of u is a monotone solution to the same problem

but with boundary conditions given by v(0) = 0, v(+∞) = 1.
It is worth noting that although the solutions to (8) and (4) are not the same since

they are defined in different domains, there is a natural way to identify them (and also
with solutions of (3)). Given positive constants c and r, there is a solution w of (3) if
and only if there is solution w̃ of (8). Moreover, we have

lim
x→∞

w(x)

w̃(x)
= 1.

In this case, the proof of this statement is immediate since solutions of (8) and (4) are
explicit and the relation among solutions of (4) and (3) is very well understood [25].
We conjecture that the same situation holds in much more generality.

3.3 Fleming-Viot and QSD

The Fleming-Viot process can be thought of as a microscopic version of conditioned
evolutions. Its dynamics are built with a continuous time Markov process Z = (Zt, t ≥
0) taking values in the metric space Λ∪{0}, that we call the driving process. We assume
that 0 is absorbing in the sense that

P(Zt = 0|Z0 = 0) = 1, ∀t ≥ 0.

We use τ for the absorption time

τ = inf{t > 0: Zt /∈ Λ}.

As, before, we use Pt for the submarkovian semigroup defined by

Ptf(x) = Ex(f(Zt)1{τ > t}).

For a given N ≥ 2, the Fleming-Viot process is an interacting particle system with N
particles. We use ξt = (ξt(1), . . . , ξt(N)) ∈ ΛN to denote the state of the process, ξt(i)
denotes the position of particle i at time t. Each particle evolves according to Z and
independently of the others unless it hits 0, at which time, it chooses one of the N − 1
particles in Λ uniformly and takes its position. The guenine definition of this process is
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not obvious and in fact is not true in general. It can be easily constructed for processes
with bounded jumps to 0, but is much more delicate for diffusions in bounded domains
[6, 22] and it does not hold for diffusions with a strong drift close to the boundary of
Λ, [7].

Here we are also interested in the empirical measure of the process

µNt =
1

N

N
∑

i=1

δξt(i). (14)

Its evolution is mimicking the conditioned evolution: the mass lost from Λ, is redis-
tributed in Λ proportionally to the mass at each state. Hence, as N goes to infinity, we
expect to have a deterministic limit given by the conditioned evolution of the driving
process Z, i.e.

µNt (A) → P(Zt ∈ A|τ > t) (N → ∞).

This is proved in [40] by the Martingale method in great generality. See also [23] for
a proof based on sub and super-solutions and correlations inequalities. A much more
subtle question is the ergodicity of the process for fixed N and the behavior of these
invariant measures as N → ∞. As a general principle it is expected that

Conjecture 3.2. If the driving process Z has a Yaglom limit ν, then the Fleming-Viot
process driven by Z is ergodic, with (unique) invariant measure λN and the empirical
measures (14) distributed according to λN converge to ν.

We refer to [23] for an extended discussion on this issue. This conjecture has been
proved for subcritical Galton-Watson processes, where a continuum of QSDs arises [2].

We have again here a microscopic selection principle: whereas there exists an in-
finite number of QSDs, when microscopic effects are taken into account (through the
dynamics of the Fleming-Viot process), there is a unique stationary distribution for the
empirical measure, which selects asymptotically the minimal QSD of the macroscopic
model.

When the driving process is a one dimensional Brownian motion with drift −c
towards the origin as in Section 2.2, the proof of the whole picture remains open, but
the ergodicity of FV for fixed N has been recently proved [3, 27].

So, from [40, Theorem 2.1] we have that for every t > 0, µNt converges as N → ∞
to a measure µt with density u(t, ·) satisfying (6). The open problem is to prove a
similar statement in equilibrium. Observe that u is a stationary solution of (6) if and
only if it solves (8) for some r > 0. Hence, although equations (12) and (6) are pretty
different, stationary solutions to (6) coincide with traveling waves of (12).

3.4 Summing up

1. The link between N−BBM and Fleming Viot, in the Brownian Motion case is
clear. Both processes evolve according to N independent Brownian Motions and
branch into two particles. At branching times, the left-most particle is eliminated
(selection) to keep the population size constant. The difference is that while
N−BBM branches at a constant rate Nr, Fleming-Viot branches each time a
particle hits 0. This explains why in the limiting equation for N−BBM the
branching rate is data and the velocity is determined by the system while in the
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hydrodynamic equation for Fleming-Viot the velocity is data and the branching
rate is determined by the system.

2. The empirical measure of N−BBM is expected to converge in finite time intervals
to the solution of (12). This is supported by the results of [16] where the same
result is proved for random walks.

3. The empirical measure of Fleming-Viot driven by Brownian Motion converges in
finite time intervals to the solution of (6).

4. Both N -BBM seen from the left-most particle and FV are ergodic and their
empirical measure in equilibrium is expected to converge to the deterministic
measure given by the minimal solution of (13).

Note though that while for N−BBM r is data and minimality refers to c, for
Fleming-Viot c is data and minimality refers to 1/r (microscopic selection prin-
ciple).

5. u(t, x) = w(x − ct) is a traveling wave solution of (12) if and only if w is the
density of a QSD for Brownian Motion with drift −c and eigenvalue −r.

6. c is minimal for r (in (13)) if and only if 1/r is minimal for c. So, we can talk of a
“minimal solution of (13)”, which is both a minimal QSD and a minimal velocity
traveling wave.

7. The microscopic selection principle is conjectured to hold in both cases, with the
same limit, but a proof is still unavailable.

4 Traveling waves and QSD for Lévy processes

Let Z = (Zt, t ≥ 0) be a Lévy process with values in R, defined on a filtered space
(Ω,F , (Ft),P) and Laplace exponent ψ : R → R defined by

E(eθZt) = eψ(θ)t

such that

ψ(θ) = bθ + σ2
θ2

2
+ g(θ),

where b ∈ R, σ > 0 (which ensures that Z is non-lattice) and g is defined in terms of
the jump measure Π supported in R \ {0} by

g(θ) =

∫

x

(eθx − 1− θx1{|x|<1})Π(dx),
∫

R

(1 ∧ x2)Π(dx) <∞.

Let θ⋆ = sup{θ : |ψ(θ)| < ∞} and recall that ψ is strictly convex on (0, θ⋆) and by
monotonicity ψ(θ⋆) = ψ(θ⋆−) and ψ′(θ⋆) = ψ′(θ⋆−) are well defined as well as the
right derivative at zero ψ′(0) = ψ′(0+) = E(Z1), that we assume to be zero. We
also assume that θ⋆ > 0. In this case we can relate ψ to the characteristic function
Ψ(λ) = − logE(eiλZ1) by ψ(θ) = −Ψ(−iθ) for 0 ≤ θ < θ⋆.

This centered Lévy process plays the role of Brownian Motion in the previous
sections.

The generator of Z applied to a function f ∈ C2
0 , the class of compactly supported

functions with continuous second derivatives, gives

Lf(x) = 1

2
σ2f ′′(x) + bf ′(x) +

∫

R

(f(x+ y)− f(x)− yf ′(x)1{|y| ≤ 1})Π(dy).
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The adjoint of L is also well defined in C2
0 and has the form

L∗f(x) =
1

2
σ2f ′′(x)− bf ′(x) +

∫

R

(f(x− y)− f(x) + yf ′(x)1{|y| ≤ 1})Π(dy).

Now, for c > 0 we consider the drifted process Zc given by

Zct = Zt − ct

It is immediate to see that the Laplace exponent of Zc is given by ψc(θ) = ψ(θ) − cθ
for θ ∈ [0, θ⋆], that C2

0 is contained in the domain of the generator Lc of Zc, and that
Lcf = Lf − cf ′. Recall that the forward Kolmogorov equation for Z is given by

d

dt
Ex(f(Zt)) = Lf(x),

while the forward Kolmogorov (or Fokker-Plank) equation for the density u (which
exists since σ > 0) is given by

d

dt
u(t, x) = L∗u(t, ·)(x).

As in the Brownian case, we consider

• A branching Lévy process (BLP) (Nt, (ξt(1), . . . , ξt(Nt))) driven by L.
• A branching Lévy process with selection of the N rightmost particles (N−BLP),

also driven by L.
• A Fleming-Viot process driven by Lc (FV).

We focus on the last two processes. For a detailed account on BLP, we refer to [29].
Let us just mention that the KPP equation can be generalized in this context to:

∂v

∂t
= Lv + rf(v), x ∈ R, t > 0,

v(0, x) = v0(x), x ∈ R.

(15)

A characterization of the traveling waves as well as sufficient conditions of existence
are then provided in [29].

For N−BLP we expect (but a proof is lacking) that the empirical measure converges
to a deterministic measure whose density is the solution of the generalized Durrett-
Remenik equation

Find (γ, u) such that

∂u

∂t
(t, x) = L∗u(t, x) + ru(t, x), x > γ(t),

∫ ∞

γ(t)
u(t, y) dy = 1, u(t, x) = 0, x ≤ γ(t),

u(0, x) = u0(x), x ≥ 0.

(16)

Existence and uniqueness of solutions to this problem have to be examined, but we
believe that the proof presented in [16] can be extended to this context.
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We show below the existence of traveling wave solutions for this equation under
mild conditions on L based on the existence of QSDs.

Concerning FV, it is known [40] that the empirical measure converges to the deter-
ministic process given by the conditioned evolution of the process, which has a density
for all times and verifies

∂u

∂t
(t, x) = L∗u(t, x) + c

∂u

∂x
(t, x)− u(t, x)

∫

R

L∗u(t, y, )dy t > 0, x > 0,

u(t, 0) = u(t,+∞) = 0, t > 0,
(17)

4.1 Traveling waves vs. QSDs

We now establish the link between traveling waves and QSD.

Proposition 4.1. The following statements are equivalent:

• The probability measure ν with density w is a QSD for Zc with eigenvalue −r ,

• u(t, x) = w(x− ct) is a traveling wave solution with speed c for the free-boundary
problem (16), with parameter r.

Proof. Denote 〈f, g〉 =
∫

f(x)g(x)dx. A QSD ν for Zc with eigenvalue −r is a solution
of the equation

〈νLc + rν, f〉 = 0,∀f ∈ C2
0 .

Using that L∗
cf = L∗f + cf ′ and writing that ν has density w, we obtain that

L∗w + cw′ + rw = 0,

which in turn is clearly equivalent to w being a traveling wave solution with speed c
for (16).

4.2 Minimal QSD and minimal velocities

We now study the relation between minimal traveling waves and minimal QSD. Using
known results on QSDs for Lévy processes, we can describe the traveling waves for the
corresponding set of equations. Since we rely on results of Kyprianou and Palmowski
[30], we assume that Z is non-lattice and consider the following two classes.

Definition 4.1. The Lévy process Z belongs to class C1 if there exists 0 < θ0 < θ⋆

such that ψ′(θ0) > 0 and the process (Z,Pθ0) is in the domain of attraction of a stable
law with index 1 < α ≤ 2, where the probability P

θ is given by

dPθz
dPz

∣

∣

∣

∣

Ft

= eθ(Zt−z)−ψ(θ)t.

Definition 4.2. The process Z is in class C2 if −∞ < ψ′(θ⋆) < 0, and the function
x→ Πθ⋆

(

[x,∞)
)

is regularly varying at infinity with index −β < −2, where Πθ(dx) =
eθxΠ(dx).
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Recall that we are also assuming ψ′(0) = 0 and hence there exists a critical c∗,
possibly infinity, such that for c ≤ c∗, ψc attains its negative infimum at a point θc ≤ θ⋆

with ψ′
c(θc) = 0 and for c > c∗, the negative infimum is attained at θ⋆. In this case we

write θc = θ⋆. Since ψc(θ) = ψ(θ) − cθ, observe that eθ(Z
c

t
−z)−ψc(θ)t = eθ(Zt−z)−ψ(θ)t.

Hence, if Z is in class C1, then for c ≤ c∗, Zc is in class A in the sense of Bertoin and
Doney [12, 30]. Similarly if Z is in class C2 and c > c∗, then Zc is in class B in the
sense of Bertoin and Doney.

The union of class A and B represents a very large family of Lévy processes including
for instance Brownian motion and spectrally negative (positive) processes, as well as
many others. The following theorem is proved in [30].

Theorem 4.1 (Kyprianou and Palmowski, [30]). Assume c ≤ c∗ and Z is in class C1
or c > c∗ and Z is in class C2. Then the Yaglom limit of Zc exists and is given by

ν(dx) = θ0κθc(0, θc)e
−θcxVθc(x) dx.

Here κθ and Vθ are respectively the Laplace exponent of the ascending ladder process
and the renewal function of the ladder heights process corresponding to (Zc,Pθ).

The proof is based on a careful control of the asymptotics of the process as t→ ∞
that in particular yields

Px(τ > t) ∼ H(x, θc)ℓ(t)e
ψc(θc)t. (18)

Here H is a function that depends on the characteristic exponent of the process and ℓ
is a function regularly varying at infinity. This allows us to prove the following

Proposition 4.2. The probability measure ν defined in Theorem 4.1 is the minimal
QSD.

Proof. Recall that under a QSD, the hitting time of zero is exponentially distributed.
Since ν is the Yaglom limit, for any bounded function f

∫

fdν = lim
t→∞

Ex(f(Xt), τ > t)

Px(τ > t)
.

Applying this to f(y) = Py(τ > s) and using Corollary 4 in [30], one obtains that

Pν(τ > s) = lim
t→∞

Px(τ > t+ s)

Px(τ > t)
= exp(ψc(θc)s).

Hence the parameter of ν equals −ψc(θc). If ν is not minimal, there exists another
QSD ν̃, with parameter r̃ > −ψc(θc). Then Eν̃(e

−ψc(θc)τ ) < ∞ and as a consequence
there exists x > 0 such that Ex(e

−ψc(θc)τ ) <∞, but this contradicts (18).

Let C be the subset of R2 such that (c, r) ∈ C if and only if there exists a QSD ν
for Zc with eigenvalue −r. Proposition 4.1 states that this set coincides with the set
of pairs (c, r) such that there exists a traveling wave for (16) with velocity c.

Definition 4.3. We say that r is maximal for c if r = max{r′ : (c, r′) ∈ C}. In the
same way, c is minimal for r if c = min{c′ : (c′, r) ∈ C}.
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Proposition 4.3. Under the same hypotheses of Theorem 4.1 we have that c is minimal
for r if and only if r is maximal for c.

Proof. For each c > 0, the maximal absorption rate is given by r(c) = −ψc(θc). The
proof follows by observing that the function c 7→ ψc(θc) is strictly decreasing and
continuous.

5 Conclusions and general conjectures

We emphasized the direct links between quasi stationary distributions QSDs for space
invariant Markov processes in R and traveling waves of Durrett-Remenik equation,
that are closely related to the generalized F-KPP equation. We proved also that
minimal QSDs correspond to minimal velocity traveling waves. As a general fact both
macroscopic and microscopic selection principles are expected to hold for QSDs and
for traveling waves. They have been proved for a series of models. This suggests that
the selection principles in front propagation and in QSDs are one and the same. For
random walks in R, the microscopic selection principle is an open problem in both
cases (traveling waves and QSD).
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[12] É. Brunet and B. Derrida. Effect of microscopic noise on front propagation. J.
Statist. Phys., 103(1-2):269–282, 2001.

[13] E. Brunet, B. Derrida, A. H. Mueller, and S. Munier. Noisy traveling waves: effect
of selection on genealogies. Europhys. Lett., 76(1):1–7, 2006.
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82(1):1–14, 1999.

[30] A. E. Kyprianou and Z. Palmowski. Quasi-stationary distributions for Lévy pro-
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