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Abstract In this paper we extend the classical theory of combinatorial manifolds
to the non-homogeneous setting. N H -manifolds are polyhedra which are locally like
Euclidean spaces of varying dimensions. We show that many of the properties of clas-
sical manifolds remain valid in this wider context. N H -manifolds appear naturally
when studying Pachner moves on (classical) manifolds. We introduce the notion of
N H -factorization and prove that P L-homeomorphic manifolds are related by a finite
sequence of N H -factorizations involving N H -manifolds.
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1 Introduction

The notion of manifold (piecewise linear, topological, differentiable) is central in
mathematics. An n-manifold is an object which is locally like the Euclidean space R

n .
Concretely, in the piecewise linear setting a PL-manifold of dimension n is a polyhedron
in which every point has a (closed) neighborhood which is a PL-ball of dimension n.
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420 Beitr Algebra Geom (2013) 54:419–439

The theory of combinatorial manifolds (which are the triangulations of PL-mani-
folds) has been widely developed during the last 90 years. J.W. Alexander’s Theorem
on regular expansions, Newman’s result on the complement of an n-ball in an n-sphere,
Whitehead’s Regular Neighborhood theory and the s-cobordism theorem are some of
its most important advances (see Alexander (1930); Glaser (1970); Hudson (1969);
Lickorish (1999); Rourke and Sanderson (1972)). More recently Pachner (1991) stud-
ied a set of elementary combinatorial operations or moves, and showed that any com-
binatorial manifold can be transformed into any other PL-homeomorphic one by using
these moves (see also Lickorish 1999).

It is well known that any combinatorial n-manifold is a homogeneous (or pure) sim-
plicial complex, which means that all the maximal simplices have the same dimension.
It is natural to ask whether it is possible to extend the theory of combinatorial mani-
folds to the non-homogeneous context. More concretely, the main goal of this article
is to investigate the properties of those polyhedra which are locally like Euclidean
spaces of varying dimensions (see Figs. 1, 2 below). In this paper we introduce the
theory of non-homogeneous manifolds or N H -manifolds, for short. We will show that
many of the basic properties of (classical) manifolds are also satisfied in this much
wider setting.

We investigate shellability in the non-homogeneous context. It is well-known that
any shellable complex is homotopy equivalent to a wedge of spheres and that the
only shellable manifolds are balls and spheres (see Björner et al. 1999; Kozlov 2008).
We prove that every shellable N H -manifold is in particular an N H -bouquet, which
extends the classical result for manifolds. We also study the notion of regular expansion
for N H -manifolds and prove a generalization of Alexander’s Theorem.

Non-homogeneous manifolds appear naturally when studying Pachner moves
between manifolds. We introduce the notion of N H -factorization and prove that any
two PL-homeomorphic manifolds (with or without boundary) are related by a finite
sequence of factorizations involving N H -manifolds. When the manifolds are closed,
the converse also holds.

2 Preliminaries

We start by fixing some notation and terminology. In this paper, all the simplicial com-
plexes that we deal with are assumed to be finite. If a simplex σ is a face of a simplex
τ , we will write σ < τ and when σ is an immediate face we write σ ≺ τ . A principal
or maximal simplex in K is a simplex which is not a proper face of any other simplex
of K and a ridge in K is an immediate face of a maximal simplex. A complex is said
to be homogeneous of dimension n if all of its principal simplices have dimension n.
The boundary ∂K of an n-homogeneous complex K is the subcomplex generated by
the mod 2 union of the (n − 1)-simplices. The set of vertices of a complex K will be
denoted by VK .

The join of two simplices σ, τ with σ ∩ τ = ∅will be denoted by σ ∗ τ . Also K ∗ L
will denote the join of the complexes K and L . Given a simplex σ ∈ K , lk(σ, K ) will
denote its link, which is the subcomplex lk(σ, K ) = {τ ∈ K : τ ∩σ = ∅, τ ∗σ ∈ K },
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and st (σ, K ) = σ ∗ lk(σ, K ) will denote the (closed) star of σ in K . The union of
two complexes K , L will be denoted by K + L .

Following Glaser (1970), arbitrary subdivisions of K will be denoted by αK ,
βK , . . . Derived subdivisions will be denoted by δK and the barycentric subdivi-

sion by K ′, as usual. If σ ∈ K and a ∈ ◦σ , the interior of σ , then (σ, a)K will denote
the elementary subdivision of K by starring σ in a; i.e. the replacing of st (σ, K ) by
a ∗ ∂σ ∗ lk(σ, K ). A stellar subdivision sK of K is a finite sequence of elementary
starrings. The operation inverse to an elementary starring is called an elementary weld
and denoted by (σ, a)−1 K . Two complexes K and L are stellar equivalent if they are
related by a sequence of starrings, welds and (simplicial) isomorphisms. In this case
we write K ∼ L . It is well known that the combinatorial and the stellar theories are
equivalent (see for example Glaser 1970; Lickorish 1999), and therefore K ∼ L if
and only if they are PL-homeomorphic. A class of complexes will be called PL-closed
if it is closed under PL-homeomorphisms.

We recall now the basic definitions and properties of combinatorial manifolds. For
a comprehensive exposition of the theory of combinatorial manifolds we refer the
reader to Glaser (1970); Lickorish (1999) and Rourke and Sanderson (1972).
�n will denote the n-simplex. A combinatorial n-ball is a complex which is

PL-homeomorphic to �n . A combinatorial n-sphere is a complex PL-homeomor-
phic to ∂�n+1. By convention, ∅ = ∂�0 is considered a sphere of dimension −1.
A combinatorial n-manifold is a complex M such that for every v ∈ VM , lk(v,M)
is a combinatorial (n − 1)-ball or (n − 1)-sphere. It is easy to verify that n-mani-
folds are homogeneous complexes of dimension n. It is well known that the link of
any simplex in a manifold is also a ball or a sphere and that the class of n-mani-
folds is PL-closed. It follows that combinatorial balls and spheres are combinatorial
manifolds.

The boundary ∂M can be regarded as the set of simplices whose links are combi-
natorial balls. By a classical result of Newman (1926) (see also Glaser 1970; Hudson
1969; Lickorish 1999), if S is a combinatorial n-sphere containing a combinatorial
n-ball B, then the closure S − B is a combinatorial n-ball.

Some global properties of combinatorial manifolds can be stated in terms of pseudo
manifolds. An n-pseudo manifold is an n-homogeneous complex K satisfying the fol-
lowing two properties: (a) for every (n − 1)-simplex σ , lk(σ, K ) is a combinatorial
0-ball or 0-sphere [or equivalently, every (n − 1)-simplex is a face of at most two
n-simplices], and (b) K is strongly connected, i.e. given two n-simplices σ, σ ′, there
exists a sequence of n-simplices σ = σ0, . . . , σk = σ ′ such that σi ∩ σi+1 is (n − 1)-
dimensional for all i = 0, . . . , k−1. It is well known that any connected combinatorial
n-manifold, or more generally, any triangulated homological manifold, is an n-pseudo
manifold.

A simplex τ of a complex K is said to be collapsible in K if it has a free face σ ,
i.e. a proper face which is not a face of any other simplex of K . Note that, in partic-
ular, τ is a maximal simplex and σ is a ridge. In this situation, the operation which
transforms K into K − {τ, σ } is called an elementary (simplicial) collapse, and it is
usually denoted by K ↘e K − {τ, σ }. The inverse operation is called an elementary
(simplicial) expansion. If there is a sequence K ↘e K1 ↘e · · · ↘e L we say that K
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Fig. 1 The neighbourhoods of the points in the underlying topological space determined by an
N H -manifold

collapses to L (or equivalently, L expands to K ) and write K ↘ L or L ↗ K respec-
tively. A complex K is said to be collapsible if it has a subdivision which collapses
to a single vertex. A celebrated theorem of J.H.C. Whitehead states that collapsible
combinatorial n-manifolds are combinatorial n-balls (Glaser 1970, Corollary III.17).

A more general type of collapse is the geometrical collapse. If K = K0+Bn , where
Bn is a combinatorial n-ball and Bn ∩ K0 = Bn−1 is a combinatorial (n − 1)-ball
contained in the boundary of Bn , then the move K → K0 it called an elementary
geometrical collapse. A finite sequence of elementary geometrical collapses (resp.
expansions) is a geometrical collapse (resp. expansion).

If M is an n-manifold, an elementary geometrical expansion M → N = M + Bn

such that M ∩ Bn ⊂ ∂M is called an elementary regular expansion. By a Theorem
of Alexander, an elementary regular expansion is a PL-equivalence (see Glaser 1970;
Lickorish 1999). A sequence of elementary regular expansions (resp. collapses) is
a regular expansion (resp. collapse). Note that the dimension of all the balls being
expanded in such a sequence must be n.

If M is a combinatorial n-manifold with boundary and there is an n-simplex η =
σ∗τ ∈ M with dim σ, dim τ ≥ 0 such thatσ ∈ ◦M , the interior of M , and ∂σ∗τ ⊂ ∂M ,

then the move M
sh−→ M1 = M − σ ∗ τ is called an elementary shelling. This oper-

ation produces again a combinatorial n-manifold. The inverse operation is called an
inverse shelling. Pachner (1991) showed that two combinatorial n-manifolds with
non-empty boundary are PL-homeomorphic if and only if one can obtain one from
the other by a sequence of elementary shellings, inverse shellings and isomorphisms.

3 NH-manifolds

A non-homogeneous manifold, or N H-manifold for short, is a simplicial complex
whose underlying topological space locally looks as in Fig. 1. We will define such
complexes by induction on the dimension. We need first a definition.

Definition 3.1 Let K be a complex. A subcomplex L ⊆ K is said to be top generated
in K if it is generated by principal simplices of K , i.e. every maximal simplex of L is
also maximal in K .

Definition 3.2 An N H-manifold (resp. N H-ball, N H-sphere) of dimension 0 is a
manifold (resp. ball, sphere) of dimension 0. An N H -sphere of dimension −1 is, by
convention, the empty set. For n ≥ 1, we define by induction
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Fig. 2 From left to right: a non-connected N H -manifold of dimension 3; a homotopy 2-sphere triangu-
lated by triangles and tetrahedra; the underlying space of an N H -sphere of dimension 2 and homotopy
dimension 1; the underlying space of an N H -ball of dimension 3 constructed by gluing a solid torus with
a 2-disk

• An N H -manifold of dimension n is a complex M of dimension n such that
lk(v,M) is an N H -ball of dimension 0 ≤ k ≤ n − 1 or an N H -sphere of
dimension −1 ≤ k ≤ n − 1 for all v ∈ VM .

• An N H -ball of dimension n is a collapsible N H -manifold of dimension n.
• An N H -sphere of dimension n and homotopy dimension k is an N H -manifold S

of dimension n such that there exist a top generated N H -ball B of dimension n
and a top generated combinatorial k-ball L such that B+ L = S and B∩ L = ∂L .
We say that S = B + L is a decomposition of S.

Note that the definition of N H -ball is motivated by Whitehead’s theorem on regu-
lar neighborhoods and the definition of N H -sphere by that of Newman’s (see Glaser
1970; Lickorish 1999).

Remark 3.3 An N H -ball of dimension 1 is the same as a 1-ball. An N H -sphere of
dimension 1 is either a 1-sphere (if the homotopy dimension is 1) or the disjoint union
of a point and a combinatorial 1-ball (if the homotopy dimension is 0). In general, an
N H -sphere of homotopy dimension 0 consists of a disjoint union of a point and an
N H -ball. These are the only N H -spheres which are not connected.

Example 3.4 Figure 2 shows some examples of N H -manifolds and the underlying
spaces of N H -manifolds.

Remark 3.5 Note that the decomposition of an N H -sphere need not be unique. How-
ever the homotopy dimension of the N H -sphere is well defined since the geometric
realization of an N H -sphere of homotopy dimension k is a homotopy k-sphere.

We show now that the notion of N H -manifold is in fact an extension of the concept
of combinatorial manifold to the non-homogeneous context.

Theorem 3.6 A complex K is a homogeneous N H-manifold (resp. N H-ball,
N H-sphere) of dimension n if and only if it is a combinatorial n-manifold (resp.
n-ball, n-sphere).

Proof Let n ≥ 1. It is easy to see that the result holds for N H -manifolds of dimension
n provided that it holds for N H -balls and N H -spheres of dimension less than n. Then
it suffices to prove that the result holds for N H -balls and N H -spheres of dimension
n if it holds for N H -manifolds of dimension n.
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For N H -balls the result is clear by the theorem of Whitehead (Glaser 1970, Corol-
lary III.17). Suppose now that S= B+L is a homogeneous N H -sphere of dimension n.
It follows that B and L are combinatorial n-balls. Take σ ∈ ∂L a maximal simplex.
Since lk(σ, S) = {v}+lk(σ, B) for some vertex v ∈ L and S is an n-pseudo manifold,
then lk(σ, B) is also a single vertex. It follows that σ ∈ ∂B. Since both ∂L and ∂B
are combinatorial (n − 1)-spheres, this implies that ∂L = ∂B. This proves that S is
a combinatorial n-sphere. Conversely, any n-simplex of a combinatorial n-sphere can
play the role of L in its decomposition as an N H -sphere. The result then follows from
Newman’s Theorem. ��

Following the same reasoning of (Glaser 1970, Theorem II.2) for combinatorial
manifolds, one can show that the links of all simplices in an N H -manifold behave
nicely. Concretely:

Proposition 3.7 Let M be an N H-manifold of dimension n and let σ ∈ M be a
k-simplex. Then lk(σ,M) is an N H-ball or an N H-sphere of dimension less than
n − k.

The property stated in the preceding proposition is often called regularity.
In order to show that the class of N H -manifolds is PL-closed, we will need the

following lemma, which is somehow an analogue of (Glaser 1970, Proposition II.1).
This result will be generalized in Corollary 3.10 and in Theorem 3.13.

Lemma 3.8 Let K be an N H-ball or an N H-sphere and let σ be a simplex disjoint
from K . Then,

(1) σ ∗ K is an N H-ball.
(2) ∂σ ∗ K is an N H-ball (if K is an N H-ball) or an N H-sphere (if K is an

N H-sphere).

Proof For the first part of the lemma, we proceed by double induction. Suppose first
that dim σ = 0, i.e. σ is a vertex v, and that the result holds for N H -balls and N H -
spheres K of dimension less than n. Note that v ∗ K ↘ 0, so we only have to verify
that v ∗ K is an N H -manifold. Take w ∈ VK . Since lk(w, v ∗ K ) = v ∗ lk(w, K ),
by induction applied to lk(w, K ), it follows that lk(w, v ∗ K ) is an N H -ball. On the
other hand, lk(v, v ∗ K ) = K , which is an N H -ball or an N H -sphere by hypothesis.
This shows that v ∗ K is an N H -manifold and proves the case dim σ = 0. Suppose
now that dim σ = k ≥ 1. Write σ = τ ∗v for some v ∈ σ . Since σ ∗K = τ ∗ (v ∗K ),
the results follows by induction applied to v and τ .

For the second part of the lemma, suppose that dim σ = k ≥ 1 and let K be an
N H -ball or an N H -sphere of dimension n. It is easy to see that the result is valid if
n = 0. Suppose now that n ≥ 1 and that the result holds for t < n. For any vertex
v ∈ ∂σ ∗ K , we have

lk(v, ∂σ ∗ K ) =
{
∂σ ∗ lk(v, K ) v /∈ ∂σ
lk(v, ∂σ ) ∗ K v ∈ ∂σ

In the first case, by induction on n, it follows that lk(v, ∂σ ∗ K ) is an N H -ball or
sphere. In the second case, we use induction on k [note that lk(v, ∂σ ) = ∂lk(v, σ )].
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This proves that ∂σ ∗K is an N H -manifold. Now, if K is an N H -ball then ∂σ ∗K ↘ 0
and ∂σ ∗ K is again an N H -ball. If K is an N H -sphere write K = B + L with B an
N H -ball, L a combinatorial ball and B ∩ L = ∂L . Since ∂(∂σ ∗ L) = ∂σ ∗ ∂L =
∂σ ∗ B ∩ ∂σ ∗ L , then ∂σ ∗ K = ∂σ ∗ B + ∂σ ∗ L is an N H -sphere by the previous
case. This concludes the proof. ��

In particular, from Lemma 3.8 we deduce that M is an N H -manifold if and only if
st (v,M) is an N H -ball for all v ∈ VM .

Theorem 3.9 The classes of N H-manifolds, N H-balls and N H-spheres are
PL-closed.

Proof It suffices to prove that K is an N H -manifold (resp. N H -ball, N H -sphere)
if and only if any starring (τ, a)K is an N H -manifold (resp. N H -ball, N H -sphere).
We suppose first that the result is valid for N H -manifolds of dimension n and prove
that it is valid for N H -balls and N H -spheres of the same dimension. If (τ, a)K is an
N H -ball of dimension n then K is also an N H -ball since it is an N H -manifold with
α((τ, a)K )↘ 0 for some subdivision α. On the other hand, if K is an N H -manifold
of dimension n with αK ↘ 0, by (Glaser 1970, Theorem I.2) we can find a stellar
subdivision δ and an arbitrary subdivision β such that β((τ, a)K ) = δ(αK ). Since
stellar subdivisions preserve collapses, (τ, a)K is collapsible and hence an N H -ball.
Now, if K is an N H -sphere of dimension n with decomposition B+ L then the result
holds by the previous case and the following identities.

(τ, a)K =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(τ, a)B + L , with (τ, a)B ∩ L = ∂L a ∈ B − L

B + (τ, a)L , with B ∩ (τ, a)L = ∂L a ∈ L − B

(τ, a)B + (τ, a)L , with (τ, a)B ∩ (τ, a)L = (τ, a)∂L
a ∈ B ∩ L = ∂L

Note that (τ, a)∂L = ∂(τ, a)L . The converse follows by replacing (τ, a)with (τ, a)−1.
We assume now that the result is valid for N H -balls and N H -spheres of dimension

n and prove that it is valid for N H -manifolds of dimension n + 1. Suppose K is an
N H -manifold of dimension n+ 1 and take v ∈ (τ, a)K . If v �= a then lk(v, (τ, a)K )
is PL-homeomorphic to an elementary starring of lk(v, K ). The inductive hypothesis
on lk(v, K ) shows that lk(v, (τ, a)K ) is also an N H -ball or N H -sphere. On the other
hand, lk(a, (τ, a)K ) = ∂τ ∗ lk(τ, K ), which is an N H -ball or an N H -sphere by
Lemma 3.8. Once again, the converse follows by replacing (τ, a) with (τ, a)−1. ��
Corollary 3.10 Let B be a combinatorial n-ball, S a combinatorial n-sphere and K
an N H-ball or N H-sphere. Then,

(1) B ∗ K is an N H-ball.
(2) S ∗ K is an N H-ball (if K is an N H-ball) or an N H-sphere (if K is an N H-

sphere).

Proof Follows from Lemma 3.8 and Theorem 3.9. ��
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Proposition 3.11 Let K be an n-dimensional complex and let B be a combinatorial
r-ball. Suppose K + B is an N H-manifold such that

(1) K ∩ B ⊂ ∂B is homogeneous of dimension r − 1 and
(2) lk(σ, K ) is collapsible for all σ ∈ K ∩ B

Then, K is an N H-manifold.

Proof We show first that K , B ⊂ K +B are top generated. Clearly, B is top generated
since it intersects K in dimension r − 1. On the other hand, a principal simplex in
K which is not principal in K + B must lie in K ∩ B. Then, by hypothesis, it has a
collapsible link in K . But this contradicts the fact that it is principal in K . Therefore
K , B ⊂ K + B are top generated and, in particular, r ≤ n.

We prove the result by induction on r . For r = 0 the result is trivial. Let r ≥ 1 and
v ∈ K . If v /∈ B then lk(v, K ) = lk(v, K+B), which is an N H -ball or N H -sphere by
hypothesis. Suppose now that v ∈ K ∩ B. If r = 1, then lk(v, K + B) = lk(v, K )+∗.
It follows that lk(v, K ) is an N H -ball. Suppose r ≥ 2 (and hence n ≥ 2). We will
see that the pair lk(v, K ), lk(v, B) also satisfies the conditions of the theorem. Note
that lk(v, K ) + lk(v, B) = lk(v, K + B) is an N H -manifold by hypothesis and
lk(v, K )∩ lk(v, B) = lk(v, K ∩ B) is homogeneous of dimension r−2. On the other
hand, if η ∈ lk(v, K )∩lk(v, B) then, v∗η ∈ K ∩B, so lk(η, lk(v, K )) = lk(v∗η, K )
is collapsible. By induction, it follows that lk(v, K ) is an N H -manifold, and, since it
is also collapsible, it is an N H -ball. This shows that K is an N H -manifold. ��
Lemma 3.12 Suppose S1 = G1+L1 and S2 = G2+L2 are two disjoint N H-spheres.
Then, G1 ∗ S2 + L1 ∗ G2 is collapsible.

Proof Since G1 and G2 are collapsible, there exist subdivisions ε1, ε2 such that
ε1G1 ↘ 0 and ε2G2 ↘ 0. We can extend these subdivisions to S1 and S2 and
then suppose without loss of generality that G1 ↘ 0 and G2 ↘ 0. Note that

G1 ∗ S2 ∩ L1 ∗ G2 = ∂L1 ∗ G2.

We will show that some subdivision of L1 ∗G2 collapses to (the induced subdivision
of) ∂L1 ∗ G2. Let α be an arbitrary subdivision of L1 and δ a derived subdivision of
�r such that αL1 = δ�r . Then, α(L1 ∗ G2) = δ(�r ∗ G2). Since G2 ↘ 0, then
�r ∗ G2 ↘ ∂�r ∗ G2 (Glaser 1970, Corollary III.4). Therefore

α(L1 ∗ G2) = δ(�r ∗ G2)↘ δ(∂�r ∗ G2) = α(∂L1 ∗ G2).

We extend α to (G1 ∗ S2 + L1 ∗ G2) and then

α(G1 ∗ S2 + L1 ∗ G2) = α(G1 ∗ S2)+ α(L1 ∗ G2)↘ α(G1 ∗ S2)

+α(∂L1 ∗ G2) = α(G1 ∗ S2).

By (Glaser 1970, Theorem III.6) there is a stellar subdivision s such that sαG1 ↘ 0
and therefore

sα(G1 ∗ S2 + L1 ∗ G2)↘ sα(G1 ∗ S2) = sαG1 ∗ sαS2 ↘ 0.

��
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Theorem 3.13 Let B1, B2 be N H-balls and S1, S2 be N H-spheres. Then,

(1) B1 ∗ B2 and B1 ∗ S2 are N H-balls.
(2) S1 ∗ S2 is an N H-sphere.

Proof Let K1 represent B1 or S1 and let K2 represent B2 or S2. We must show that
K1 ∗ K2 is an N H -ball or an N H -sphere. We proceed by induction on s = dim K1+
dim K2. If s = 0, 1 the result follows from Lemma 3.8. Let s ≥ 2. We show first that
K1 ∗ K2 is an N H -manifold. Let v ∈ K1 ∗ K2 be a vertex. Then,

lk(v, K1 ∗ K2) =
{

lk(v, K1) ∗ K2 v ∈ K1
K1 ∗ lk(v, K2) v ∈ K2

Since dim lk(v, K1) + dim K2 = dim K1 + dim lk(v, K2) = s − 1, then by induc-
tion, lk(v, K1 ∗ K2) is an N H -ball or an N H -sphere. It follows that K1 ∗ K2 is an
N H -manifold. Now, if K1 = B1 or K2 = B2, then K1 ∗ K2 ↘ 0 and K1 ∗ K2 is an
N H -ball.

We prove now that S1 ∗ S2 is an N H -sphere. Decompose S1 = G1 + L1 and
S2 = G2 + L2. Note that S1 ∗ S2 = (G1 ∗ S2 + L1 ∗ G2) + L1 ∗ L2 and that
(G1 ∗ S2+ L1 ∗G2)∩ (L1 ∗ L2) = ∂(L1 ∗ L2), then it suffices to show that (G1 ∗ S2+
L1∗G2) is an N H -ball. By Lemma 3.12 it is collapsible, so we only need to check that
(G1 ∗ S2+ L1 ∗G2) is an N H -manifold. In order to prove this, we apply Proposition
3.11 to the complex G1 ∗ S2 + L1 ∗ G2 and the combinatorial ball L1 ∗ L2. The only
non-trivial fact is that lk(σ,G1 ∗ S2 + L1 ∗ G2) is collapsible for σ ∈ ∂(L1 ∗ L2).
To see this, take η ∈ ∂(L1 ∗ L2) = ∂L1 ∗ L2 + L1 ∗ ∂L2 and write η = l1 ∗ l2 with
l1 ∈ L1, l2 ∈ L2. Then,

lk(η,G1 ∗ S2 + L1 ∗ G2) = lk(l1,G1) ∗ lk(l2, S2)+ lk(l1, L1) ∗ lk(l2,G2).

Now, if l1 ∈ L1 − ∂L1 then lk(l1 ∗ l2,G1 ∗ S2) = ∅ and lk(η,G1 ∗ S2 + L1 ∗ G2) =
lk(l1, L1) ∗ lk(l2,G2)↘ 0. By a similar argument, the same holds if l2 ∈ L2 − ∂L2.
If l1 ∈ ∂L1 and l2 ∈ ∂L2 then lk(l1, S1) = lk(l1,G1) + lk(l1, L1) and lk(l2, S2) =
lk(l2,G2)+ lk(l2, L2) are N H -spheres (by Lemma 4.8). By Lemma 3.12, it follows
that lk(η,G1 ∗ S2 + L1 ∗ G2) is also collapsible. By Proposition 3.11, we conclude
that G1 ∗ S2 + L1 ∗ G2 is an N H -manifold. ��

The following result will be used in the next section. First we need a definition.

Definition 3.14 Two principal simplices σ, τ ∈ M are said to be adjacent if the
intersection τ ∩ σ is an immediate face of σ or τ .

Lemma 3.15 Let M be a connected N H-manifold. Then

(1) For each ridge σ ∈ M, lk(σ,M) is either a point or an N H-sphere of homotopy
dimension 0.

(2) Given any two principal simplices σ, τ ∈ M, there exists a sequence σ =
E1, . . . , Es = τ of principal simplices of M such that Ei is adjacent to Ei+1
for every 1 ≤ i ≤ s − 1.
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By analogy with the homogeneous case, a complex K satisfying properties (1) and
(2) of this lemma will be called an N H-pseudo manifold. For more details on (homo-
geneous) pseudo manifolds we refer the reader to Munkres (1984) (see also Spanier
1966). The proof of Lemma 3.15 will follow from the next result.

Lemma 3.16 If K is a connected complex such that st (v, K ) is an N H-pseudo man-
ifold for all v ∈ VK then K is an N H-pseudo manifold.

Proof We will show that K satisfies properties (1) and (2) of Lemma 3.15. Let σ ∈ K
be a ridge and let v ∈ σ be any vertex. Then σ is also a ridge in st (v, K ) and
lk(σ, K ) = lk(σ, st (v, K )). Therefore K satisfies property (1).

Let ν, τ ∈ K be maximal simplices and let v ∈ ν, w ∈ τ . Take an edge path from
v to w. We will prove that K satisfies property (2) by induction on the length r of the
edge path. If r = 0, then v = w. In this case, ν, τ ∈ st (v, K ) and the results follows
by hypothesis. Suppose now that ψ1, . . . , ψr is an edge path from v to w of length
r ≥ 1. Take maximal simplices Ei such that ψi ≤ Ei . Note that E1 ∩ E2 contains the
vertex ψ1 ∩ ψ2. By hypothesis, st (ψ1 ∩ ψ2, K ) satisfies property (2) and therefore
we can join E1 with E2 by a sequence of adjacent maximal simplices. Now the result
follows by induction. ��
Proof of Lemma 3.15 We proceed by induction on the dimension n of M . By Lemma
3.16, it suffices to prove that st (v,M) is an N H -pseudo manifold for every vertex v.
The case n = 0 is trivial. Suppose that n ≥ 1 and that the result is valid for k ≤ n− 1.
Now, if lk(v,M) is an N H -ball or a connected N H -sphere then, by induction, it is an
N H -pseudo manifold. It follows that st (v,M) is also an N H -pseudo manifold since
it is a cone of an N H -pseudo manifold. In the other case, lk(v,M) is an N H -sphere
of homotopy dimension 0 of the form B + ∗, for some N H -ball B. Since vB is an
N H -pseudo manifold, it follows that st (v,M) is also an N H -pseudo manifold. ��

4 Boundary, pseudo boundary and the anomaly complex

The concept of boundary is not defined in the non-homogeneous setting and, in fact,
it is not clear what a boundary of a general complex could be. However, the charac-
terization of the boundary of combinatorial manifolds allows us to extend this notion
to the class of N H -manifolds.

Definition 4.1 Let M be an N H -manifold. The pseudo boundary of M is the set of
simplices ∂̃M whose links are N H -balls. The boundary of M is the subcomplex ∂M

spanned by ∂̃M . In other words, ∂M is the closure ∂̃M .

It is clear that ∂̃M = ∂M for any combinatorial manifold M . We will see that,
in fact, this is the only case where this happens. The result will follow from the next
lemma.

Lemma 4.2 Let M be an N H-manifold and let σ ∈ M. If σ is a face of two principal
simplices of different dimensions then σ ∈ ∂M.
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M M
~

M

Fig. 3 Boundary and pseudo boundary

Proof Let τ1 = σ ∗ η1 and τ2 = σ ∗ η2 be principal simplices such that dim τ1 �=
dim τ2. By Lemma 3.15 we may assume that τ1 and τ2 are adjacent. Let ρ = τ1 ∩
τ2 and suppose ρ ≺ τ1. Then, lk(ρ,M) is an N H -sphere of homotopy dimen-
sion 0 with decomposition lk(ρ,M − τ1) + ∗. Since dim lk(ρ,M − τ1) ≥ 1 then
∂̃lk(ρ,M − τ1) = ∂̃lk(ρ,M) is non-empty. For any simplex ν in ∂̃lk(ρ,M), ν ∗ ρ ∈
∂̃M . Thus σ ∈ ∂M . ��
Proposition 4.3 If M is a connected N H-manifold such that ∂̃M = ∂M then M is a
combinatorial manifold. In particular, N H-manifolds without boundary (or pseudo
boundary) are combinatorial manifolds.

Proof If M is non-homogeneous, by Lemma 3.15 there exist two adjacent principal
simplices τ1, τ2 of different dimensions. By Lemma 4.2, ρ = τ1 ∩ τ2 ∈ ∂M − ∂̃M .��

The following result will be used in the next sections. It is the non-homogeneous
version of the well-known fact that any n-homogeneous subcomplex of an n-combina-
torial manifold with non-empty boundary has also a non-empty boundary (see Glaser
1970).

Lemma 4.4 Let M be a connected N H-manifold with non-empty boundary and let
L ⊆ M be a top generated N H-submanifold. Then, ∂L �= ∅.
Proof We may assume L �= M . We proceed by induction on n = dim M . The 1-
dimensional case is clear. Let n ≥ 2. Take adjacent principal simplices σ ∈ L and
τ ∈ M − L and let ρ = σ ∩ τ . If dim σ = dim τ then lk(ρ,M) = S0 and there-
fore, ρ ∈ ∂L . If dim σ �= dim τ then lk(ρ,M) = B + ∗ is a non-homogeneous
N H -sphere of homotopy dimension 0. We analyze both cases: ρ ≺ σ and ρ ≺ τ . If
ρ ≺ σ then lk(ρ, L) is either a 0-ball, which implies ρ ∈ ∂̃L , or a non-homogeneous
N H -sphere of homotopy dimension 0. In this case, by Proposition 4.3 ∂̃lk(ρ, L) �= ∅.
If ρ ≺ τ then ∂̃lk(ρ, L) �= ∅ by induction applied to lk(ρ, L) ⊂ B. In any case, if
η ∈ ∂̃lk(ρ, L) then η ∗ ρ ∈ ∂̃L . ��
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M A(M) M A(M)

Fig. 4 Anomaly complex

Corollary 4.5 If M is a connected N H-manifold of dimension n ≥ 1 containing a
top generated combinatorial manifold L without boundary then M = L.

Note that if S = B+∗ is a non-homogeneous N H -sphere of homotopy dimension
0 and M is a non-trivial top generated combinatorial n-manifold contained in S, then
M ⊆ B. This implies that ∂M �= ∅ by Corollary 4.5. We state this fact in the following

Corollary 4.6 A non-homogeneous N H-sphere S = B+∗ of homotopy dimension 0
cannot contain a non-trivial top generated combinatorial manifold without boundary.

In contrast to the classical situation, the boundary of an N H -manifold is not in gen-
eral an N H -manifold (see Fig. 3). However, similarly as in the homogeneous setting,
if M is an N H -manifold and η ∈ M is any simplex, then lk(η, ∂M) = ∂lk(η,M).
Moreover, it is well-known that the boundary of a combinatorial manifold has no
boundary. The following result generalizes this fact to the non-homogeneous setting.

Proposition 4.7 The boundary of an N H-manifold M has no collapsible simplices.

Proof Let σ be a ridge in ∂M . Since lk(σ, ∂M) = ∂lk(σ,M), it suffices to show that
the boundary of any N H -ball or N H -sphere cannot be a singleton. This is clear for
classical balls and spheres and, by Proposition 4.3, the same is true for N H -balls and
N H -spheres. ��

A simplex σ ∈ M will be called internal if lk(σ,M) is an N H -sphere, i.e. if

σ /∈ ∂̃M . We denote by
◦
M the relative interior of M , which is the set of its internal

simplices.

Lemma 4.8 Let S be an N H-sphere with decomposition B + L. Then, every σ ∈ L
is internal in S. In particular, ∂̃S = ∂̃B − L.

Proof This is a particular case of Lemma 5.7. ��
Definition 4.9 Let M be an N H -manifold. The anomaly complex of M is the sub-
complex

A(M) = {σ ∈ M : lk(σ,M) is not homogeneous}.

The fact that A(M) is a simplicial complex follows from the equation lk(σ∗η,M) =
lk(σ, lk(η,M)). Figure 4 shows examples of anomaly complexes.
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Fig. 5 The underlying spaces of N H -bouquets of index 2. Note that the rightmost example is obtained
from a solid cylinder by attaching a 1-disk to one side and a 2-disk to the other

Proposition 4.10 For any N H-manifold M, ∂M = ∂̃M + A(M).

Proof If σ ∈ A(M) then σ is face of two principal simplices of M of different dimen-
sions. Therefore σ ∈ ∂M by Lemma 4.2. For the other inclusion, let σ ∈ ∂M − ∂̃M .
Then lk(σ,M) is an N H -sphere and σ < τ with τ ∈ ∂̃M . Write τ = σ ∗ η, thus
lk(τ,M) = lk(η, lk(σ,M)). If σ /∈ A(M) then lk(σ,M) is a combinatorial sphere
and so is lk(τ,M), contradicting the fact that τ ∈ ∂̃M . ��

5 NH-bouquets and shellability

Recall that, similarly as in the homogeneous setting, an N H -sphere is obtained by
“gluing” a combinatorial ball to an N H -ball along its entire boundary. In the homo-
geneous case one can no longer glue another ball to a sphere for it would produce
a complex which is not a manifold (not even a pseudo manifold). The existence of
boundary in non-homogeneous N H -spheres allows us to glue balls and obtain again
an N H -manifold. This is the idea behind the notion of N H -bouquet. This concept
arises naturally when studying shellability of non-homogeneous manifolds.

Definition 5.1 We define an N H-bouquet G of dimension n and index k by induction
on k.

• If k = 0 then G is an N H -ball of dimension n.
• If k ≥ 1 then G is an N H -manifold of dimension n such that there exist a top

generated N H -bouquet S of dimension n and index k − 1 and a top generated
combinatorial ball L , such that G = S + L and S ∩ L = ∂L .

We will show below that the index k is well defined since an N H -bouquet of
index k is homotopy equivalent to a bouquet of k spheres (of different dimensions). In
fact, the index is the number of balls that are glued to an N H -ball. A decomposition
G = B+ L1+· · ·+ Lk of an N H -bouquet G consists of top generated subcomplexes
of G such that B is an N H -ball, Li is a combinatorial ball for each i = 1, . . . , k and
(B + · · · + Li ) ∩ Li+1 = ∂Li+1. Of course, a decomposition is not unique.

Example 5.2 Figure 5 shows some examples of N H -bouquets of low dimensions.

Remark 5.3 Clearly an N H -bouquet of index 1 is an N H -sphere. Note also that for
every n ≥ 0 and every k ≥ 0 there exists an N H -bouquet G of dimension n and
index k.
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Similarly as in Theorem 3.9, it can be proved that the class of N H -bouquets is
PL-closed.

Lemma 5.4 If G = B + L1 + · · · + Lk is a decomposition of an N H-bouquet of
index k ≥ 2, then Li ∩ L j = ∂Li ∩ ∂L j for all 1 ≤ j < i ≤ k.

Proof Li ∩ L j ⊆ ∂Li by definition. Suppose that Li ∩ L j � ∂L j . Then there exists
a simplex σ ∈ Li ∩ L j such that lk(σ, L j ) is a sphere. By Corollaries 4.5 and 4.6,
lk(σ, L j ) = lk(σ,G). In particular lk(σ, Li ) ⊆ lk(σ, L j ), but if ν ∈ lk(σ, Li ) is
maximal, then σ ∗ ν is a maximal simplex in G and it is contained in Li ∩ L j ⊆ ∂Li

which is a contradiction. ��
Proposition 5.5 If G = B + L1 + · · · + Lk is a decomposition of an N H-bouquet,
then ∂Li ⊆ B for every i = 1, . . . , k. In particular, an N H-bouquet of index k is
homotopy equivalent to a bouquet of spheres of dimensions dim Li , for 1 ≤ i ≤ k.

Proof ∂L1 ⊆ B by definition. For i ≥ 2 the result follows immediately by induction
and Lemma 5.4.

For the second statement, note that, since ∂Li ⊆ B for every i , G is homotopy
equivalent to a CW-complex obtained by attaching cells of dimensions dim Li to a
point. ��
Remark 5.6 It is not hard to see that a homogeneous N H -bouquet of dimension
n ≥ 1 is a combinatorial n-ball or n-sphere. This follows from Theorem 3.6 and
Corollary 4.5.

The following result extends Lemma 4.8 and will be used below.

Lemma 5.7 Let G = B+L1+· · ·+Lk be a decomposition of an N H-bouquet. Then
every simplex in each Li is internal in G. Furthermore, if σ ∈ ∂Li then lk(σ,G) is an
N H-sphere with decomposition lk(σ, B)+lk(σ, Li ). In particular, ∂̃G = ∂̃B−∪i Li .

Proof It is clear that every simplex internal in Li is internal in G. Given σ ∈ ∂Li ,
by Proposition 5.5 lk(σ,G) = lk(σ, B) + lk(σ, Li ). Also lk(σ, Li ) ∩ lk(σ, B) =
∂lk(σ, Li ). ��

Shellings are structure-preserving moves that transform a combinatorial manifold
into another one. They were first studied by Newman 1926 (see also Lickorish 1999;
Rourke and Sanderson 1972; Whitehead 1939) and they turned out to be central in the
theory. At the beginning of the 1990s Pachner (1991) showed that two (connected)
combinatorial manifolds with boundary are PL homeomorphic if and only if one can
obtain one from the other by a sequence of elementary shellings, inverse shellings and
simplicial isomorphisms (see also Lickorish 1999).

An elementary shelling on a combinatorial n-manifold M is the move M
sh→ M ′ =

M − τ , where τ = σ ∗ η is an n-simplex of M with σ ∈ ◦
M and ∂σ ∗ η ⊂ ∂M .

The opposite move is called an inverse shelling. It is not hard to see that these moves
are special cases of regular collapses and expansions and therefore, they preserve the
structure of the manifold.
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A combinatorial n-manifold which can be transformed into a single n-simplex by
a sequence of elementary shellings is said to be shellable. Shellable combinatorial
n-manifolds are collapsible and, hence, combinatorial n-balls. The definition of shel-
lability can also be extended to combinatorial n-spheres by declaring S to be shellable
if for some n-simplex σ , S − σ is a shellable n-ball.

The alternative, and more constructive, definition of shellability by means of inverse
shellings requires the existence of a linear order F1, . . . , Ft of all the n-simplices such
that Fk ∩ (F1 + · · · + Fk−1) is (n − 1)-homogeneous for all 2 ≤ k ≤ t . This formu-
lation can be used to define the concept of shellability in arbitrary n-homogeneous
complexes. It is not difficult to see that shellable pseudo manifolds are necessarily
combinatorial balls (Björner et al. 1999, Proposition 4.7.22). It is also known that
every ball of dimension less than or equal to 2 is shellable. Examples of non-shel-
lable 3-balls abound in the bibliography, the first one was discovered by Furch in
1924 (see Ziegler 1998 for a survey of non-shellable 3-balls). A way for constructing
non-shellable balls for every n ≥ 3 was presented by Lickorish in (1991).

Shellability in the non-homogeneous context was first considered by Björner and
Wachs (1996) in the 1990s. A finite (non-necessarily homogeneous) simplicial com-
plex is shellable if there is a linear order F1, . . . , Ft of its maximal simplices such
that Fk ∩ (F1 + · · · + Fk−1) is (dim Fk − 1)-homogeneous for all 2 ≤ k ≤ t .
A simplex Fk is said to be a spanning simplex if Fk ∩ (F1 + · · · + Fk−1) = ∂Fk .
It is not hard to see that the spanning simplices may be moved to any later position in
the shelling order (see Kozlov 2008). It is known that a shellable complex is homotopy
equivalent to a wedge of spheres, which are indexed by the spanning simplices (see
Kozlov 2008, Theorem 12.3). In particular, shellable N H -balls cannot have spanning
simplices and shellable N H -spheres have exactly one spanning simplex. In general,
a shellable N H -bouquet of index k must have exactly k spanning simplices.

Theorem 5.8 Let M be a shellable N H-manifold. Then, for every shelling order
F1, . . . , Ft of M and every 0 ≤ l ≤ t , Fl(M) = F1 + · · · + Fl is an N H-manifold.
Moreover, Fl(M) is an N H-bouquet of index �{Fj ∈ T | j ≤ l}, where T is the set
of spanning simplices. In particular, M is an N H-bouquet of index �T .

Proof We proceed by induction on n = dim M . Suppose n ≥ 1 and fix a shelling order
F1, . . . , Ft . Let 1 ≤ l ≤ t and let v ∈ M be a vertex. Since lk(v,M) is a shellable
N H -ball or N H -sphere with shelling order lk(v, F1), . . . , lk(v, Ft ) (some of them
possibly empty), then by induction F j (lk(v,M)) is an N H -bouquet of index at most
1 for all 1 ≤ j ≤ l. Since lk(v,Fl(M)) = Fl(lk(v,M)) then Fl(M) is an N H -man-
ifold. To see that Fl(M) is actually an N H -bouquet, reorder F1, . . . , Fl so that the
spanning simplices are placed at the end of the order. If Fp+1 is the first spanning
simplex in the order, then Fp(M) is a collapsible N H -manifold (see Kozlov 2008,
Theorem 12.3) and hence an N H -ball. Then, Fl(M) = Fp(M)+ Fp+1 + · · · + Fl is
an N H -bouquet of index �{Fj ∈ T | j ≤ l} by definition. ��

6 Regular collapses, elementary shellings and Pachner moves

Recall that a regular expansion in an n-combinatorial manifold M is a geometrical
expansion M → N = M + Bn such that M ∩ Bn ⊂ ∂M . As we mentioned before,

123

Author's personal copy



434 Beitr Algebra Geom (2013) 54:419–439

this move produces a new combinatorial n-manifold. In this section we prove a general
version of this result for N H -manifolds. We start with some preliminary results.

Lemma 6.1 Let B be a combinatorial n-ball and let L ⊂ ∂B be a combinatorial
(n − 1)-ball. Then, there exists a stellar subdivision s such that s B ↘ sL.

Proof By (Glaser 1970, Lemma III.8) there exists a derived subdivision δ and a sub-
division α such that δB = α�n and δL = α�n−1, where �n−1 is an (n − 1)-face of
�n . Now, by (Glaser 1970, Lemma III.7) there exists a stellar subdivision s̃ such that
s̃α�n ↘ s̃α�n−1 and therefore s̃δB ↘ s̃δL .

Corollary 6.2 Let B be a combinatorial n-ball and let K ⊂ ∂B be a collapsible
complex. Then, there exists a stellar subdivision s such that s B ↘ sK .

Proof Subdivide B baricentrically twice and consider a regular neighborhood N of
K ′′ in ∂B ′′ (see Glaser 1970, Corollary III.17). Since K ′′ is collapsible, then N is an
(n − 1)-ball. Since N ⊂ ∂B ′′, by the previous lemma, there is a stellar subdivision s̃
such that s̃ B ′′ ↘ s̃ N . We conclude that s̃ B ′′ ↘ s̃ N ↘ s̃K ′′. ��
Theorem 6.3 Let M be an N H-manifold and Br a combinatorial r-ball. Suppose
M ∩ Br ⊆ ∂Br is an N H-ball or an N H-sphere generated by ridges of M or Br

and that (M ∩ Br )◦ ⊆ ∂̃M. Then M + Br is an N H-manifold. Moreover, if M is an
N H-bouquet of index k and M ∩ Br �= ∅ for r �= 0, then M + Br is an N H-bouquet
of index k (if M ∩ Br is an N H-ball) or k + 1 (if M ∩ Br is an N H-sphere).

Proof We note first that M, Br ⊂ M + Br are top generated. Since M ∩ Br ⊆ ∂Br

then Br is top generated. On the other hand, if σ is a principal simplex in M which is
not principal in M+Br then σ must be in M∩Br . Since σ /∈ ∂̃M then σ /∈ (M∩Br )◦.
Hence, σ is not principal in M ∩ Br , which contradicts the maximality of σ in M .

We shall prove the result by induction on r . The case M ∩ Br = ∅ is clear, so let
r ≥ 1 and assume M ∩ Br �= ∅. We need to prove that every vertex in M + Br is
regular. It is clear that the vertices in (M − Br )+ (Br − M) are regular since Br and
M are N H -manifolds. Consider then a vertex v ∈ M ∩ Br . We claim that the pair
lk(v,M), lk(v, Br ) fulfills the hypotheses of the theorem. Note that lk(v,M) is an
N H -ball or N H -sphere, lk(v, Br ) is a combinatorial ball, since v ∈ M ∩ Br ⊆ ∂Br ,
and lk(v,M ∩ Br ) is an N H -ball or N H -sphere contained in ∂lk(v, Br ). Note also
that the inclusion (M ∩ Br )◦ ⊆ ∂̃M implies that lk(v,M ∩ Br )◦ ⊆ ∂̃lk(v,M). We
now check that lk(v,M ∩ Br ) is generated by ridges of lk(v,M) or lk(v, Br ). This
is easily seen if lk(v,M ∩ Br ) �= ∅. For the case lk(v,M ∩ Br ) = ∅ we need to show
that there is a principal 0-simplex in lk(v,M) or lk(v, Br ). Now, lk(v,M ∩ Br ) = ∅
implies that v is principal in M ∩ Br , so v ∈ (M ∩ Br )◦ ⊆ ∂̃M and lk(v,M) is an
N H -ball (and hence, collapsible). And since v ∈ M ∩ Br ⊆ ∂Br then lk(v, Br ) is a
ball. Now, if v is a ridge in Br then r = 1 and, hence, lk(v, B1) = ∗. If, on the other
hand, v is a ridge of M then there exists a principal 1-simplex σ with v ≺ σ . Since σ
is principal in M , ∗ = lk(v, σ ) is principal in lk(v,M). Since lk(v,M) is collapsible,
then lk(v,M) = ∗.

Therefore, by induction, lk(v,M + Br ) is an N H -manifold. Now, if lk(v,M ∩
Br ) �= ∅, then lk(v,M + Br ) is an N H -ball or an N H -sphere if lk(v,M) is an
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Fig. 6 The starrings of Theorem 6.3

N H -ball and it is an N H -sphere if lk(v,M) is an N H -sphere. If lk(v,M ∩ Br ) = ∅,
we showed above that lk(v,M) = ∗ and lk(v, Br ) is a ball or lk(v, Br ) = ∗ and
lk(v,M) is an N H -ball. In either case, lk(v,M + Br ) is an N H -sphere of homotopy
dimension 0. This proves that M + Br is an N H -manifold.

We prove now the second part of the statement. We proceed by induction on the
index k. Suppose first that k = 0, i.e. M is an N H -ball. Let α be a subdivision such
that αM ↘ 0, and extend α to all M + Br . If M ∩ Br is an N H -ball we can apply
Corollary 6.2 to α(M∩Br ) ⊂ α∂Br and find a stellar subdivision s such that sαBr ↘
sα(M ∩ Br ). This implies that sα(M + Br )↘ sαM ↘ 0 and therefore M + Br is an
N H -ball. If M∩Br is an N H -sphere S with decomposition S = G+L , take any maxi-
mal simplex τ ∈ L with an immediate face σ in ∂L and consider the starring (τ, τ̂ )S of
S (see Fig. 6). Let ρ = τ̂ ∗σ ∈ (τ, τ̂ )S. We claim that (τ, τ̂ )S−{ρ} is an N H -ball. On
one hand, it is clear that ((τ, τ̂ )S−{ρ})∩ρ = ∂ρ. On the other hand, (τ, τ̂ )L−{ρ, σ }
is a combinatorial ball because it is PL-homeomorphic to L . Since G is an N H -ball,
(τ, τ̂ )L − {ρ, σ } is a combinatorial ball and G ∩ ((τ, τ̂ )L − {ρ, σ }) = ∂L − {σ },
which is a combinatorial ball by Newman’s Theorem, it follows that (τ, τ̂ )S − {ρ}
is an N H -ball, as claimed. Now, since τ ∈ L ⊂ M ∩ Br is principal then it must
be a ridge of M or of Br . We analyze both cases. Suppose τ is a ridge of Br and let
τ ≺ η ∈ Br . Write η = w ∗ τ (see Fig. 6). Note that the starring (τ, τ̂ )S performed
earlier also subdivides η and the simplex ρ lies in the boundary of (τ, τ̂ )η. Consider
the simplex ν = w ∗ ρ, which is one of the principal simplices in which η has been
subdivided. Now make the starring (ν, ν̂) in (τ, τ̂ )η (see Fig. 6). By removing the
simplex ν̂ ∗ ρ from (ν, ν̂)(τ, τ̂ )Br , we obtain a complex which is PL-homeomorphic
to Br . Then

(ν, ν̂)(τ, τ̂ )Br − {ν̂ ∗ ρ}
is a combinatorial ball and it intersects M in (τ, τ̂ )S − {ρ}, which is an N H -ball. It
follows that

(ν, ν̂)(τ, τ̂ )(M + Br )− {ν̂ ∗ ρ} = (τ, τ̂ )M + (ν, ν̂)(τ, τ̂ )Br − {ν̂ ∗ ρ}
is again an N H -ball. If we now plug the simplex ν̂ ∗ ρ, (ν, ν̂)(τ, τ̂ )(M + Br ) is an
N H -sphere by definition. This completes the case where τ is a ridge of Br . The case
that τ is a ridge of M is analogous.

Suppose now that M is an N H -bouquet of index k ≥ 1. Write M = G+ L with G
an N H -bouquet of index k − 1 and L a combinatorial ball glued to G along its entire
boundary. If r = 0 we obtain an N H -bouquet. Suppose then that M ∩ Br �= ∅. We
claim that Br ∩ L ⊆ ∂L . Suppose (L − ∂L) ∩ Br �= ∅ and let η ∈ (L − ∂L) ∩ Br .
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Now, lk(η,M) = lk(η, L) is a combinatorial sphere and Corollaries 4.5 and 4.6 imply
that lk(η, Br ) ⊂ lk(η,M). But if τ ∈ Br is a principal simplex containing η then
lk(η, τ ) ∈ lk(η,M) and τ ∈ M ∩ Br ⊆ ∂Br , contradicting the maximality of τ
in Br . This proves that Br ∩ L ⊆ ∂L and, therefore M ∩ Br = G ∩ Br . Also,
(G ∩ Br )◦ ⊆ ∂̃M = ∂̃G − L ⊂ ∂̃G. By induction, G + Br is an N H -bouquet of
index k − 1 (if G ∩ Br = M ∩ Br is an N H -ball) or k (if G ∩ Br = M ∩ Br is
an N H -sphere). In either case, M + Br = G + L + Br = (G + Br ) + L with
(G + Br ) ∩ L = G ∩ L + Br ∩ L = ∂L . Thus, M + Br is an N H -bouquet of index
k or k + 1. This completes the proof. ��

Note that the previous theorem generalizes Alexander’s Theorem on regular expan-
sions (Lickorish 1999, Theorem 3.9) to the non-homogeneous setting. The condition
(M ∩ B)◦ ⊂ ∂̃M corresponds to M ∩ B ⊂ ∂M in the homogeneous case. We next
extend the notion of regular expansion to the non-homogeneous context. This will be
used to characterize the notion of shelling on N H -manifolds similarly as in the case
of manifolds.

Definition 6.4 A regular expansion on an N H -manifold M is a geometrical expan-
sion M → M + B (i.e. B is a ball and M ∩ B ⊂ ∂B is a ball of dimension dim B− 1)
such that (M ∩ B)◦ ⊂ ∂̃M .

Recall that an inverse shelling in a combinatorial n-manifold M corresponds to a
(classical) regular expansion M → M + σ involving a single n-simplex σ . An ele-
mentary shelling is the inverse move (Whitehead 1939). We investigate now shellable
N H -balls. First we need the following result.

Proposition 6.5 Let M → M + B be a geometrical expansion in an N H-mani-
fold M. If M + B is an N H-manifold and M, B ⊂ M + B are top generated then
(M ∩ B)◦ ⊂ ∂̃M (i.e. M → M + B is a regular expansion).

Proof Take ρ ∈ (M ∩ B)◦. Since lk(ρ,M ∩ B) is a sphere contained in the sphere
∂lk(ρ, B), then lk(ρ,M ∩ B) = ∂lk(ρ, B). Suppose ρ /∈ ∂̃M . Then lk(ρ,M +
B) = lk(ρ,M)+ lk(ρ, B) is an N H -bouquet of index 2 since lk(ρ,M), lk(ρ, B) ⊂
lk(ρ,M + B) are top generated by hypothesis. This contradicts the fact that M + B
is an N H -manifold. ��
Definition 6.6 Let M be an N H -manifold. An inverse shelling is a regular expansion
M → M+σ where σ is a single simplex. An elementary shelling is the inverse move.

By Proposition 6.5 and Theorem 5.8, we obtain the following characterization of
shellable N H -balls in terms of elementary shellings.

Corollary 6.7 An N H-ball B is shellable if and only if B can be transformed into a
single maximal simplex by a sequence of elementary shellings.

A stellar exchange κ(σ, τ ) is the move that transforms a complex M into a new
complex κ(σ, τ )M by replacing st (σ,M) = σ ∗ ∂τ ∗ L with ∂σ ∗ τ ∗ L , for σ ∈ M
and τ /∈ M (see Lickorish 1999; Pachner 1991). Note that elementary starrings and
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welds are particular cases of stellar exchanges (when τ or σ is a vertex). When L = ∅
the stellar exchange is called a bistellar move. Also, since κ(σ, τ ) = (τ, b)−1(σ, a),
two simplicial complexes are PL-homeomorphic if and only if they are related by a
sequence of stellar exchanges. In the case of PL-homeomorphic combinatorial man-
ifolds without boundary, all the moves in this sequence can be taken to be bistellar
moves (see Lickorish 1999; Pachner 1991 for more details). This discussion motivates
the following definition.

Definition 6.8 Let M be a combinatorial n-manifold and let σ ∈ M be a simplex
such that lk(σ,M) = ∂τ ∗ L with τ /∈ M . An N H-factorization is the move M →
M + σ ∗ τ ∗ L . We write F(σ, τ )M = M + σ ∗ τ ∗ L . When L = ∅, we call it a
bistellar factorization.

Note that, in fact, N H -factorizations can be defined for arbitrary complexes. When
τ is a single vertex b /∈ M , we will denote M+σ = F(σ, b)M . Note that M+σ is the
simplicial cone of the inclusion st (σ,M) ⊆ M . Note also that, since st (σ,M) is
collapsible, M+σ ↘ M .

By definition, the following diagram commutes (this justifies the term “factoriza-
tion”).

M
κ(σ,τ ) ��

F(σ,τ ) ������������� κ(σ, τ )M

F(τ,σ )��������������

M + σ ∗ τ ∗ L

.

Proposition 6.9 Let M be a combinatorial n-manifold and let M −→ N = F(σ, τ )M
be an N H-factorization. Then N is an N H-manifold.

Proof Let N = M+σ ∗τ ∗L with τ /∈ M . Since (τ, b)N = M+b∗∂τ ∗σ ∗L = M+σ ,
by Theorem 3.9 it suffices to prove that M+σ is an N H -manifold. We prove by induction
on n that the simplicial cone M+B of the inclusion of any combinatorial ball B ⊆ M is
an N H -manifold.

Denote M+B = M +b ∗ B and let v be a vertex of M+B . If v /∈ B, then lk(v,M+B ) =
lk(v,M). If v ∈ ◦B then lk(v,M+B ) = b ∗ lk(v,M), which is a combinatorial n-ball.
If v ∈ ∂B then lk(v,M+B ) = lk(v,M) + b ∗ lk(v, B) is an N H -manifold by induc-
tion. Since lk(v, B) is collapsible then lk(v,M+B ) ↘ lk(v,M), so lk(v,M+B ) is an
N H -ball if v ∈ ∂M . If v /∈ ∂M then lk(v, B) is strictly contained in lk(v,M). It
follows that there is an n-simplex η ∈ M − B containing v. By Newman’s Theorem,
lk(v,M)− lk(v, η) is an (n−1)-ball. It follows that lk(v,M+B ) is an N H -sphere with
decomposition

(lk(v,M − η)+ b ∗ lk(v, B))+ lk(v, η)

since lk(v,M − η)+ b ∗ lk(v, B) is an N H -ball by the previous case and

(lk(v,M − η)+ b ∗ lk(v, B)) ∩ lk(v, η) = (lk(v,M)− lk(v, η)) ∩ lk(v, η)

= ∂lk(v, η).

��
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Lemma 6.10 Let M1,M2 be combinatorial n-manifolds without boundary and let
Bi ⊂ Mi be combinatorial n-balls. Suppose M1 − B1 = M2 − B2. Then, M1 �P L

M2.

Proof Note that Mi − Bi is a combinatorial n-manifold and that ∂Bi = Mi − Bi ∩Bi .
Since ∂B2 = M2 − B2∩B2 = M1 − B1∩B2 and M2 = M2 − B2+B2 = M1 − B1+
B2, then B2 ∩ M1 − B1 ⊆ ∂(M1 − B1) = ∂B1. Hence, ∂B2 ⊆ ∂B1. Analogously,
∂B1 ⊆ ∂B2. The result now follows from the fact that every ball may be starred (see
Glaser 1970, Theorem II.11). ��
Theorem 6.11 Let M, M̃ be combinatorial n-manifolds (with or without boundary).
If M and M̃ are PL-homeomorphic then there exists a sequence

M = M1 → N1 ← M2 → N2 ← M3 → · · · ← Mr−1 → Nr−1 ← Mr = M̃

where the Ni ’s are N H-manifolds, the Mi ’s are n-manifolds, and Mi ,Mi+1 → Ni

are N H-factorizations. Moreover, if M and M̃ are closed then the converse holds.
Also, in this case the N H-factorizations may be taken to be bistellar factorizations.

Proof Let κ(σ1, τ1), . . . , κ(σr , τr ) be a sequence of stellar exchanges taking M to M̃ .
Then for each i , the sequence

Mi
F(σi ,τi )−→ Ni

F(τi ,σi )←− Mi+1 = κ(σi , τi )Mi

is a factorization and Ni is an N H -manifold by Lemma 6.9.

For the second part of the proof, assume that M
F(σ,τ )−→ N

F(ρ,η)←− M̃ are N H -
factorizations, with M and M̃ n-manifolds and M closed. Since M + σ ∗ τ ∗ L =
M̃ + ρ ∗ η ∗ T , by a dimension argument and the homogeneity of M and M̃ , it
follows that σ ∗ τ ∗ L = ρ ∗ η ∗ T . Hence, M − σ ∗ ∂τ ∗ L = N − σ ∗ τ ∗ L =
N − ρ ∗ η ∗ T = M̃ − ρ ∗ ∂η ∗ T . The result now follows from Lemma 6.10. ��
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