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KORN INEQUALITY AND DIVERGENCE OPERATOR:

COUNTEREXAMPLES AND OPTIMALITY

OF WEIGHTED ESTIMATES

GABRIEL ACOSTA, RICARDO G. DURÁN, AND FERNANDO LÓPEZ GARCÍA

(Communicated by Walter Craig)

Abstract. The Korn inequality and related results on solutions of the diver-
gence in Sobolev spaces have been widely studied since the pioneering works
by Korn and Friedrichs. In particular, it is known that this inequality is valid
for Lipschitz domains as well as for the more general class of John domains.
On the other hand, a few known counterexamples show that those results are
not valid for certain bounded domains having external cusps.

The goal of this paper is to give very simple counterexamples for a class of
cuspidal domains in R

n. Moreover, we show that these counterexamples can
be used to prove the optimality of recently obtained results involving weighted
Sobolev spaces.

1. Introduction

This paper deals with two related results which are basic in the analysis of prob-
lems in continuum mechanics, namely, the existence of solutions of the divergence
in Sobolev spaces and the so-called Korn inequality.

Let us recall these two results. For a vector field v ∈ W 1,p(Ω)n, ε(v) denotes
the symmetric part of the differential matrix of v, namely,

εij(v) =
1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
.

Given a bounded domain Ω ⊂ R
n, n ≥ 2, we say that the Korn inequality is valid

in Ω for some p, 1 < p < ∞, if for any v ∈ W 1,p(Ω)n,

(1.1) ‖v‖W 1,p(Ω) ≤ C{‖v‖Lp(Ω) + ‖ε(v)‖Lp(Ω)},

where the constant C depends only on Ω and p. Actually this is not the original
statement of Korn (in particular, he considered only the case p = 2), but his results
can be derived in a simple way from this inequality. In what follows, if (1.1) is valid
in Ω we will say shortly that Ω satisfies Kornp.
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218 G. ACOSTA, R. G. DURÁN, AND F. LÓPEZ GARCÍA

On the other hand, we will say that Ω satisfies divp if, for any f ∈ Lp
0(Ω) (where

the subscript 0 indicates that
∫
Ω
f = 0), there exists u ∈ W 1,p

0 (Ω)n := C∞
0 (Ω)n

such that

divu = f in Ω

and

(1.2) ‖u‖W 1,p(Ω)n ≤ C‖f‖Lp(Ω)

with C depending only on Ω and p.
Since the pioneering works of Korn [K1, K2] and Friedrichs [F1, F2], there have

been many papers analyzing the validity of Kornp and divp under different assump-
tions on the domains. Moreover, the relationship between both results has been
widely studied (we refer to the review article [H] and its references). In particular,
it is well known that both results are valid for bounded Lipschitz domains and also
for the broader class of John domains (see [ADM, DRS]). Concerning the relation
between both results, it is known that, if Ω satisfies divp, then it also satisfies Kornp
(see for example [ADM, BS, C1]).

Moreover, in the two-dimensional case, when p = 2 and Ω is simply connected
and with smooth boundary, a precise relation between the best constant in (1.1)
and that in (1.2) was given in [HP]. In that paper the authors considered also the
following inequality for analytic functions due to Friedrichs [F1]. Suppose that

f(z) = ϕ(x, y) + iψ(x, y)

is an analytic function of the complex variable z = x+ iy in Ω ⊂ R
2, with ϕ and ψ

real functions and
∫
Ω
ϕ = 0. Then, Friedrichs proved in [F1] that, under suitable

assumptions on Ω, there exists a constant C depending only on Ω, such that

(1.3) ‖ϕ‖L2(Ω) ≤ C‖ψ‖L2(Ω).

In [HP] the authors also obtained a relation between the best constant for this
inequality and those in (1.1) and (1.2). It is not difficult to see that if Ω is simply
connected, the Friedrichs inequality can be derived from both div2 or Korn2.

On the other hand, it is known that there are bounded domains which do not
satisfy the inequalities introduced above. Indeed, a few counterexamples can be
found in the literature. The oldest counterexample is due to Friedrichs [F1], who
showed that the estimate (1.3) is not valid for some simply connected domains which
have a quadratic external cusp (see [F1, page 343]). Another counterexample for
the two-dimensional case was given in [GG], again using domains with external
cusps. For the three-dimensional case, a counterexample for the Korn inequality
was given in [W].

In view of these counterexamples, a natural question is whether it is possible
to obtain some weaker estimates similar to (1.2) and (1.1). Some results in this
direction have been obtained in [ADL, DL1, DL2] using weighted Sobolev norms.
The weights used in those papers are powers of d(x) (the distance of x ∈ Ω to ∂Ω)
for a general Hölder α domain, or powers of the distance to the set of singularities
M ⊂ ∂Ω, which we will denote with dM (x).

The goal of this paper is to present simple counterexamples for a class of domains
with external cusps, and moreover to show that the results obtained for weighted
norms in [ADL, DL1, DL2] are optimal, in the sense that the powers of d(x) or
dM (x) involved in the estimates obtained in those papers cannot be improved. A
particular case of our counterexamples was presented in [D].
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KORN INEQUALITY AND DIVERGENCE OPERATOR 219

Section 2 deals with the case of domains with a power type cusp. First, coun-
terexamples for the Korn inequality (1.1) are given for planar domains. Then we
recall some weighted Korn inequalities obtained in [ADL, DL2] and use our exam-
ples to show that these results are optimal. Next we show that the techniques can
be generalized to treat higher-dimensional domains with different kinds of power
type singularities. We end this section showing that similar ideas can be applied to
construct counterexamples for the related divp problem and also to show that the
weighted results given in [DL1, DL2] are optimal. Finally in Section 3, we extend
the results for domains with more general cusps, i.e., cusps of nonpower type.

2. Some simple counterexamples

In this section we present very simple counterexamples for both problems Kornp
and divp for cuspidal domains. As we will see, these counterexamples can also be
used to prove optimality of the results in weighted norms obtained in [ADL, DL1,
DL2]. For the sake of clarity we present first the results in two dimensions and
explain afterwards how they can be extended for higher-dimensional domains.

For γ > 1 consider the domain (see Figure 1)

Ω :=
{
(x, y) ∈ R

2 : 0 < x < 1, |y| < xγ
}
,(2.4)

and the vector field w = (u, v) =
(
(s− 1)yx−s, x1−s

)
, with s ∈ R, s �= 1, to be

chosen below.

Figure 1. 2-Dimensional external cusp.

Let us notice that Ω is not a Lipschitz domain, but it is Hölder α, with α = 1
γ .

If Dw is the differential matrix of w we have

Dw =

(
−s(s− 1)yx−s−1 (s− 1)x−s

(1− s)x−s 0

)

while, on the other hand,

ε(w) =

(
−s(s− 1)yx−s−1 0

0 0

)
.
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A straightforward computation shows that

‖w‖pLp(Ω) ≤ C

(∫ 1

0

∫ xγ

0

(ypx−ps + xp(1−s))dydx

)

≤ C

(∫ 1

0

∫ xγ

0

xp(1−s)dydx

)
= C

∫ 1

0

xp−ps+γdx

and

‖ε(w)‖pLp(Ω) ≤ C

∫ 1

0

∫ xγ

0

ypx−p(s+1)dydx ≤ C

∫ 1

0

xγ(p+1)−p(1+s)dx;

hence
(2.5)

s < min

{
(γ + 1)

p
+ (γ − 1),

(γ + 1)

p
+ 1

}
⇒ ‖ε(w)‖Lp(Ω)p , ‖w‖Lp(Ω)p < ∞.

However, we have ∥∥∥∥∂u∂y
∥∥∥∥p
Lp(Ω)

= C

∫ 1

0

x−sp+γdx,

and so

(2.6)

∥∥∥∥∂u∂y
∥∥∥∥
Lp(Ω)

< ∞ ⇒ s <
γ + 1

p
.

But, since γ > 1, it is possible to take s such that

γ + 1

p
≤ s < min

{
(γ + 1)

p
+ (γ − 1),

(γ + 1)

p
+ 1

}
,

and therefore, it follows from (2.5) and (2.6) that the classical Korn inequality (1.1)
cannot be valid in Ω.

Moreover, let us show that the same example can be used to show that the
weighted results obtained for some nonsmooth domains in [ADL, DL1, DL2] cannot
be improved.

For example, for Ω ⊂ R
n, a Hölder α domain in any space dimension n ≥ 2, the

following weighted inequality holds for any 1 < p < ∞ [ADL, DL1],

(2.7) ‖d1−αDw‖Lp(Ω) ≤ C
{
‖ε(w)‖Lp(Ω) + ‖w‖Lp(B)

}
,

where d stands for the distance to the boundary of Ω and B is a fixed ball such that
B ⊂ Ω. The same field w used in our counterexample for the classical inequality
shows that (2.7) is sharp in the sense that the power of d appearing on the left
hand side cannot be reduced. Indeed, since the last term on the right hand side is
the norm of w on the ball B which satisfies B ⊂ Ω, the same computations given
above now give

(2.8) s <
(γ + 1)

p
+ (γ − 1) ⇒ ‖ε(w)‖Lp(Ω), ‖w‖Lp(B) < ∞

instead of (2.5). Introducing the subdomain Ω 1
2
⊂ Ω,

Ω 1
2
:=

{
(x, y) ∈ R

2 : 0 < x < 1, 0 < |y| < 1

2
xγ

}
,(2.9)
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KORN INEQUALITY AND DIVERGENCE OPERATOR 221

we have, for any β, ∥∥∥∥dβ ∂u∂y
∥∥∥∥p
Lp(Ω)

≥
∥∥∥∥dβ ∂u∂y

∥∥∥∥p
Lp(Ω 1

2
)

.

Now, it can be easily checked that for our domain Ω, d(x, y) 
 xγ−|y| and therefore,
for (x, y) ∈ Ω 1

2
, we obviously have d(x, y) 
 xγ − |y| ≥ 1

2x
γ . Hence∥∥∥∥dβ ∂u∂y

∥∥∥∥p
Lp(Ω)

≥ C

∫ 1

0

∫ xγ/2

0

xβγp−spdydx = C

∫ 1

0

xβγp−sp+γdx,

and so ‖dβ ∂u
∂y ‖Lp(Ω) is not finite if γ+1

p + βγ ≤ s. On the other hand, for any

β < 1− α = 1− 1
γ it is possible to take s such that

γ + 1

p
+ βγ ≤ s <

(γ + 1)

p
+ (γ − 1),

which, in view of (2.8), shows the optimality of (2.7) in the sense that it is not
possible to replace the power 1− α on the left hand side by any power β < 1− α.

Powers of the distance to the boundary considered as weights seem a natural
choice for general Hölder α domains since ∂Ω may have many singular points; in
particular, the set of singular points can be a dense subset of ∂Ω. However for
cuspidal type domains, such as the one under consideration, powers of the distance
to the cuspidal point might be used instead. In fact, the following result can be
found in [DL2]. For Ω as in (2.4), let dM be the distance to the cusp placed at
(0, 0). Then

(2.10) ‖dγ−1
M Dw‖Lp(Ω) ≤ C

{
‖ε(w)‖Lp(Ω) + ‖w‖Lp(B)

}
,

where, as before, B is a fixed ball satisfying B ⊂ Ω. Let us notice that for
this particular domain, (2.10) is stronger than (2.7). Indeed, for (x, y) ∈ Ω, we

have dM (x, y) = ‖(x, y)‖ 
 x and then d1−α(x, y) ≤ xγ(1−α) 
 dγ−1
M (x, y) while

dγ−1
M (x, y) cannot be bounded by positive powers of d(x, y). Moreover, it follows im-

mediately that (2.10) cannot be improved by taking on the left hand side a smaller

power of dM . Indeed, since for any β > 0, dαβ ≤ dβM in Ω, if we could replace γ− 1
by some β < γ − 1 in (2.10), we could also improve (2.7) by replacing α − 1 by
αβ < 1− α.

Before proceeding, let us mention that both (2.7) and (2.10) can be generalized
by taking some part of the weight to the right hand side. Indeed, in the first case
it was proved in [ADL] that, for any β such that α ≤ β ≤ 1,

‖d1−βDw‖Lp(Ω) ≤ C
{
‖dα−βε(w)‖Lp(Ω) + ‖w‖Lp(B)

}
while in the second case (see [DL2]), for any β ≥ 0,

‖dβMDw‖Lp(Ω) ≤ C
{
‖dβ−γ+1

M ε(w)‖Lp(Ω) + ‖w‖Lp(B)

}
.

We have considered the particular cases (2.7) and (2.10) in order to simplify
technical details. However, it can be seen that our counterexamples can be used to
show that the above general estimates are also optimal.

On the other hand, a simple generalization of the vector field introduced for our
counterexamples can be used to obtain similar results in arbitrary higher dimen-
sions. Indeed, let us now define (see Figure 2),

(2.11) Ω :=
{
(x,y) ∈ (0, 1)× R

n−1 : ‖y‖ < xγ
}
.
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222 G. ACOSTA, R. G. DURÁN, AND F. LÓPEZ GARCÍA

Figure 2. n-Dimensional external cusp.

Taking w = ((s− 1)(y1 + y2 + · · · yn−1)x
−s, x1−s, · · · , x1−s) we have

D11w = −s(s−1)(y1+ · · ·+yn−1)x
−s−1, D1jw = −Dj1w = (s−1)x−s for j > 1

and Dijw = 0 otherwise. Therefore, the only nonzero component of ε(w) is

ε11(w) = −s(s− 1)(y1 + · · ·+ yn−1)x
−s−1.

Then, a straightforward calculation yields

‖ε(w)‖pLp(Ω) = C

∫
Ω

|y1 + · · ·+ yn−1|px−p(s+1)dydx ≤ C

∫
Ω

‖y‖px−p(s+1)dydx

≤ C

∫ 1

0

∫ xγ

0

ρp+n−2x−p(s+1)dρdx ≤ C

∫ 1

0

xγ(p+n−1)−p(s+1)dx,

‖w‖pLp(Ω) ≤ C

∫
Ω

x(1−s)pdydx ≤ C

∫ 1

0

xγ(n−1)+(1−s)pdx

and

‖Dw‖pLp(Ω) ≥ C

∫
Ω

x−spdydx ≥ C

∫ 1

0

xγ(n−1)−spdx.

Then, if

(2.12)
γ(n− 1) + 1

p
≤ s < min

{
γ(n− 1) + 1

p
+ γ − 1,

γ(n− 1) + 1

p
+ 1

}
,

‖ε(w)‖Lp(Ω) and ‖w‖Lp(Ω) are finite while ‖Dw‖Lp(Ω) is not. But, since γ > 1, it
is possible to choose s satisfying (2.12), and therefore, (1.1) does not hold in Ω.

Even more, similar arguments can be applied to show that the classic Korn
inequality (1.1) is not valid in more general cusps. Indeed, for k ≥ 1, define (see
Figure 3)

(2.13) Ω :=
{
(x,y, z) ∈ (0, 1)× R

k × (0, 1)n−k−1 : ‖y‖ < xγ
}
.

We can generalize our counterexample by taking

w = ((s− 1)(y1 + y2 + · · · yk)x−s,

k︷ ︸︸ ︷
x1−s, · · · , x1−s,

n−k−1︷ ︸︸ ︷
0, · · · , 0).

Licensed to Worcester Polytechnic Institute. Prepared on Thu Jan 17 15:26:42 EST 2013 for download from IP 130.215.56.140.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



KORN INEQUALITY AND DIVERGENCE OPERATOR 223

Figure 3. Flat cusp.

Now we have

‖ε(w)‖pLp(Ω) = C

∫
Ω

|y1 + · · ·+ yk|px−p(s+1)dydxdz ≤ C

∫
Ω

‖y‖px−p(s+1)dydxdz

≤ C

∫ 1

0

∫ xγ

0

ρp+k−1x−p(s+1)dρdx ≤ C

∫ 1

0

xγ(p+k)−p(s+1)dx,

‖w‖pLp(Ω) ≤ C

∫
Ω

x(1−s)pdydx ≤ C

∫ 1

0

xγk+(1−s)pdx,

and

‖Dw‖pLp(Ω) ≥
∫
Ω

x−spdydx ≥ C

∫ 1

0

xγk−spdx.

Therefore, now taking s such that

γk + 1

p
≤ s < min

{
γk + 1

p
+ γ − 1,

γk + 1

p
+ 1

}
,

which is possible for any γ > 1, we conclude that (1.1) is not valid for the class of
domains defined in (2.13).

Let us mention that the vector fields introduced for the counterexamples can be
used to show the optimality of the powers in the weighted estimates (2.7) and (2.10)
for the domains (2.11) and (2.13) (in this last case, and for (2.10), dM is defined as
the distance to the singular set of the boundary placed at (0,0, z), 0 < z < 1).

As we have mentioned in the introduction, it is known that if a domain satisfies
divp, then it also satisfies Kornp. Therefore, the counterexamples given for (1.1)
show immediately that the cuspidal domains defined above do not satisfy divp.

Although, in some particular cases, it was shown in [DL2] that weighted Korn
inequalities can be derived from weighted versions of divp, it is not clear whether
this can be done in general.

However, it is not difficult to see by direct computations that the same vector
fields introduced above can be used to show that cuspidal domains, such as those
given in (2.11) and (2.13), do not satisfy divp. Moreover, as for the weighted Korn
inequalities, it is possible to show the optimality of the weighted versions of divp
obtained in [DL1, DL2].

Let us consider, for example, the weighted version of divp proved in [DL2]. To
state a result obtained in that paper we first introduce some notation for weighted
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Sobolev spaces. Let ω, ω1 and ω2 be nonnegative functions defined in a domain Ω.
For 1 < p < ∞, we denote with Lp(Ω, ω) the Banach space with norm given by
‖f‖pLp(Ω,ω) =

∫
Ω
|f |pω and define

W 1,p(Ω, ω1, ω2) := {f ∈ Lp(Ω, ω1) : ∇f ∈ Lp(Ω, ω2)
n}

and the corresponding norm,

‖f‖pW 1,p(Ω,ω1,ω2)
:= ‖f‖pLp(Ω,ω1)

+
n∑

j=1

∥∥∥∥ ∂f

∂xj

∥∥∥∥p
Lp(Ω,ω2)

.

Also, we define W 1,p
0 (Ω, ω1, ω2) := C∞

0 (Ω), and if ω is such that Lp(Ω, ω) ⊂ L1(Ω),

Lp
0(Ω, ω) :=

{
f ∈ Lp(Ω, ω) :

∫
Ω

f = 0

}
.

In what follows, q will denote the dual exponent of p. For the family of domains
defined in (2.13), and recalling that dM denotes the distance to the cusp, we have
the following result proved in [DL2, Theorem 4.1].

Theorem 2.1. Let Ω be as in (2.13) for a fixed γ > 1, and 1 < p < ∞. If

(2.14) β ∈
(
−γ(k + 1)

p
− γ − 1

q
,
γ(k + 1)

q
− γ − 1

q

)
and η ≥ β + γ − 1, then, for any f ∈ Lp

0(Ω, d
pβ
M ) there exists w ∈ W 1,p

0 (Ω, d
p(η−1)
M ,

dpηM )n such that
divw = f

and
‖w‖

W 1,p(Ω,d
p(η−1)
M ,dpη

M )
≤ C‖f‖Lp(Ω,dpβ

M ),

where the constant C depends only on β, η, p, and Ω.

Remark 2.1. It is not difficult to check that the condition on β in the statement

of the theorem implies that Lp(Ω, dpβM ) ⊂ L1(Ω), and therefore, Lp
0(Ω, d

pβ
M ) is well

defined.

Let us show that the condition η ≥ β + γ − 1 in Theorem 2.1 is sharp. As in
that theorem, we assume that β satisfies (2.14). We will also assume that constant

functions belong to Lp(Ω, dpβM ), which leads to the condition

(2.15) 0 <
γk + 1

p
+ β.

For any f ∈ L1(Ω) we denote with fΩ its average over Ω. Consider the function
f(x,y, z) = x−s, where 0 < s < γk + 1 will be chosen below. Observe that, under
this condition on s, we have f ∈ L1(Ω) and so fΩ is well defined.

Now, for ε > 0 small, we define

fε(x,y, z) =

{
f(x,y, z) if x > ε,

ε−s if x ≤ ε.

It follows from (2.15) that fε ∈ Lp(Ω, dpβM ).
Assume that the statement of Theorem 2.1 holds for some η < β+γ−1. Then, for

each ε, there exists wε = (wε,1,wε,n−1) such that divwε = fε − fε,Ω and satisfying

(2.16) ‖Dwε‖Lp(Ω,dpη
M ) ≤ C‖fε − fε,Ω‖Lp(Ω,dpβ

M ).

Licensed to Worcester Polytechnic Institute. Prepared on Thu Jan 17 15:26:42 EST 2013 for download from IP 130.215.56.140.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



KORN INEQUALITY AND DIVERGENCE OPERATOR 225

Then, recalling that dM 
 x, we have

‖fε − fε,Ω‖pLp(Ω,dpβ
M )



∫
Ω

(fε − fε,Ω)
2|fε − fε,Ω|p−2xpβdxdydz

=

∫
Ω

divwε(fε − fε,Ω)|fε − fε,Ω|p−2xpβdxdydz,

and therefore, integrating by parts we obtain

(2.17) ‖fε − fε,Ω‖p
Lp(Ω,dpβ

M )

 −

∫
Ω

wε,1
∂((fε − fε,Ω)|fε − fε,Ω|p−2xpβ)

∂x
dxdydz.

To simplify notation let us define

hε :=
∂((fε(x)− fε,Ω)|fε(x)− fε,Ω|p−2xpβ)

∂x
.

Recalling that (x,y, z) = (x, y1, . . . , yk, z1, . . . , zn−k−1), we can write hε =
∂(y1hε)

∂y1
.

Then, replacing in (2.17) and integrating by parts again, we obtain

(2.18) ‖fε − fε,Ω‖pLp(Ω,dpβ
M )



∫
Ω

∂wε,1

∂y1
y1hε dxdydz.

But, it is not difficult to see that, for x < f
− 1

s

Ω /2, we have

|hε| ≤ Cx−s(p−1)+pβ−1.

Let us mention that we have considered x small enough to be away from the point
where fε(x)− fε,Ω = 0, because at that point hε blows up in the case p < 2.

Then, applying the Hölder inequality in (2.18), we obtain

‖fε − fε,Ω‖pLp(Ω,dpβ
M )

≤ C‖Dwε‖Lp(Ω,dpη
M )‖y1x−s(p−1)+pβ−1‖Lq(Ω,d−qη

M ).

Therefore, using (2.16) and again dM 
 x, we conclude that

(2.19) ‖fε − fε,Ω‖pLp(Ω,dpβ
M )

≤ C‖y1x−s(p−1)+pβ−1x−η‖qLq(Ω).

However, a straightforward computation shows that a choice of a positive s in the
range

(2.20)
γk + 1

p
+ β ≤ s <

γk + 1

p
+ β + (β + γ − η − 1)

q

p

leads to ‖f−fΩ‖Lp(Ω,dpβ
M ) = +∞ and ‖y1x−s(p−1)+pβ−1x−η‖Lq(Ω) < ∞. But, taking

the limit ε → 0 in (2.19) we get a contradiction. Since η < β + γ − 1 such an s
exists. Recall that we also need s < γk+1, but, an s satisfying this restriction and
(2.20) exists because γk+1

p + β < γk + 1. Indeed, this inequality follows from the

assumption (2.14). Therefore, we conclude that a result such as that in Theorem 2.1
is not valid under this relation on the exponents.

To finish this section let us make some comments on solutions of the divergence
for general Hölder-α domains. For this case, results analogous to Theorem 2.1, but
with weights which are powers of the distance to the boundary, have been obtained
in [DL1, DMRT]. Using arguments similar to those given above, one can show that
the results obtained in those papers are optimal in the sense that the powers in
the weighted estimates cannot be improved. We refer the reader to Theorem 4.2 in
[DL1], where a particular case was considered.
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3. Domains with a general external cusp

In this section we consider the case of domains with more general external cusps.
We have not been able to obtain a straightforward extension of the counterexamples
given in the previous section, and therefore, we use here a different idea.

Let ϕ : [0, 1] → R be a C1 function such that ϕ(0) = 0, ϕx(0) = 0 and ϕx is
strictly increasing. Two examples are

i) ϕ(x) = xγ , with γ > 1.

ii) ϕ(x) = e−1/x2

in (0, 1] and ϕ(0) = 0.

In particular, the arguments developed below give a different approach to con-
struct counterexamples for the power type cusps considered in the previous section.

Associated with ϕ we introduce the cuspidal domain Ωϕ ⊂ R
n given by

Ωϕ =
{
(x,y, z) ∈ (0, 1)× R

k × (0, 1)n−k−1 : ‖y‖ < ϕ(x)
}
,(3.1)

where k ≥ 1.
Since ϕx is a strictly increasing function, there is a monotone sequence (xm)m≥m0

⊂ (0, 1] such that

(3.2) ϕx(xm) = 2−m.

We will also use the notation rm := xm − xm+1 and, without loss of generality, we
assume that m0 = 1 and x1 = 1.

In the next lemma we prove two elementary properties of ϕ(x).

Lemma 3.1. If (xm)m≥1 is the sequence defined in (3.2), then ϕ satisfies:

(3.3) 2−(m+2) ≤ ϕ(x)

rm
if

xm+1 + xm

2
≤ x ≤ xm

and

(3.4)
ϕ(x)

rmj

≤ 2−(mj−1) if xmj+1 ≤ x ≤ xmj
,

for an appropriate subsequence (xmj
) of (xm).

Proof. For x ∈ (xm+1, xm] we have

ϕ(x) = ϕ(x)− ϕ(xm+1) + ϕ(xm+1) ≥ ϕ(x)− ϕ(xm+1)

= ϕx(ξ)(x− xm+1) ≥ 2−(m+1)(x− xm+1),

where ξ ∈ (xm+1, x). So, if x ∈ [xm+1+xm

2 , xm], it follows that (x − xm+1) ≥ rm
2

and (3.3) is proved.
On the other hand, using that ϕ(0) = 0 and an inductive argument, we have

ϕ(xm) ≤ ϕ(xm+1) + 2−m(xm − xm+1)

≤ ϕ(xm+2) + 2−(m+1)(xm+1 − xm+2) + 2−m(xm − xm+1)

...

≤
∞∑

i=m

2−i (xi − xi+1) =

∞∑
i=m

2−iri.
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Now, we choose a subsequence (rmj
) of (rm) such that ri

rmj
≤ 1 for all i ≥ mj . For

example, we can take rm1
as the maximum of ri over all i and rmj

as the maximum
of ri over all i > mj−1. Then, it follows that

ϕ(xmj
)

rmj

≤
∞∑

i=mj

2−i = 2−(mj−1).

Therefore, using that ϕ is increasing, we obtain (3.4). �

In the next theorem we will prove some necessary conditions for weighted Korn
type inequalities in Ωϕ. Although generalizations for nonpower type ϕ of the results
given in [ADL, DL1, DL2] have not been proved, we believe that powers of ϕx are
the natural weights to be considered. In the construction given in the following
theorem we use some ideas from [Do].

Theorem 3.1. Let Ωϕ ⊂ R
n be the domain defined in (3.1), β1, β2 ∈ R, 1 < p < ∞

and B a ball compactly contained in Ωϕ. If there exists a positive constant C such
that

‖Dv‖
Lp(Ωϕ,ϕ

pβ1
x )

≤ C
{
‖ε(v)‖

Lp(Ωϕ,ϕ
pβ2
x )

+ ‖v‖Lp(B)

}
,(3.5)

for all v ∈ W 1,p(Ωϕ, ϕ
pβ1
x )n, then β1 ≥ β2 + 1.

Proof. Let χm(x) be the characteristic function of the interval [xm+1, xm]. For each

m ≥ 1 we define v = (v1, v2, . . . , vk+1,

n−k−1︷ ︸︸ ︷
0, · · · , 0) ∈ W 1,p(Ωϕ, ϕ

pβ1
x )n (we omit the

dependence on m to simplify notation) by

v1(x,y, z) = χm(x) sin

(
2π

rm
(x− xm+1)

)
2π

rm
(y1 + · · ·+ yk)

and

vi(x,y, z) = χm(x)

(
cos

(
2π

rm
(x− xm+1)

)
− 1

)

for 2 ≤ i ≤ k + 1.
It is easy to check that εi,j(v) vanishes for (i, j) �= (1, 1). So, since B is compactly

contained in Ωϕ, it follows from (3.5) that

∥∥∥∥∂v2∂x

∥∥∥∥
Lp(Ωϕ,ϕ

pβ1
x )

≤ C‖ε1,1(v)‖Lp(Ωϕ,ϕ
pβ2
x )

,(3.6)

for m sufficiently large.
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Now, using that the weight in the left hand side of (3.6) is equivalent to 2−mpβ1 ,
if x belongs to [xm+1, xm], and property (3.3) we obtain
(3.7)∥∥∥∥∂v2∂x

∥∥∥∥p
Lp(Ωϕ,ϕ

pβ1
x )


 2−mpβ1

∫
Ωϕ

∣∣∣∣sin
(
2π

rm
(x− xm+1)

)∣∣∣∣p
(
2π

rm

)p

χm(x)dxdydz


 2−mpβ1

rp−k−1
m

∫ xm

xm+1

∣∣∣∣sin
(
2π

rm
(x− xm+1)

)∣∣∣∣p
(
ϕ(x)

rm

)k
2π

rm
dx

≥ 2−mpβ1

rp−k−1
m

∫ xm

(xm+1+xm)/2

∣∣∣∣sin
(
2π

rm
(x− xm+1)

)∣∣∣∣p
(
ϕ(x)

rm

)k
2π

rm
dx

≥ 2−m(pβ1+k)

4k rp−k−1
m

∫ 2π

π

|sin t|p dt


 2−m(pβ1+k)

rp−k−1
m

.

Analogously, if m = mj for some j, now using (3.4) we have

‖ε1,1(v)‖p
Lp(Ωϕ,ϕ

pβ2
x )

(3.8)


 2−mpβ2

∫
Ωϕ

∣∣∣∣∣cos
(
2π

rm
(x− xm+1)

)(
2π

rm

)2

(y1 + · · ·+ yk)

∣∣∣∣∣
p

χ(x)


 2−mpβ2

∫ xm

xm+1

∫ ϕ(x)

0

∣∣∣∣cos
(
2π

rm
(x− xm+1)

)∣∣∣∣p
(
2π

rm

)2p

ρp+k−1dρ dx


 2−mpβ2

rp−k−1
m

∫ xm

xm+1

∣∣∣∣cos
(
2π

rm
(x− xm+1)

)∣∣∣∣p
(
ϕ(x)

rm

)p+k
2π

rm
dx

≤ 2−m(pβ2+p+k)

rp−k−1
m

2p+k

∫ 2π

0

|cos t|p dt


 2−m(pβ2+p+k)

rp−k−1
m

.

Now, it follows from (3.6), (3.7) and (3.8) that there exists a positive constant
C which does not depend on m such that

2−m(pβ1+k)

rp−k−1
m

≤ C
2−m(pβ2+p+k)

rp−k−1
m

,

for all m = mj . Thus, we have 2−mjp(β1−β2−1) ≤ C for all j ≥ 1, and therefore,
β1 ≥ β2 + 1 as we wanted to prove. �

We end this section with an optimality result on solutions of the divergence in
Ωϕ. As in the previous theorem we will consider weights which are powers of ϕx.

Theorem 3.2. Let Ωϕ ⊂ R
n be the domain defined in (3.1), β1, β2 ∈ R, and

1 < p < ∞. If for any f ∈ Lp(Ωϕ, ϕ
pβ2
x )∩L1

0(Ωϕ) there exists v ∈ W 1,p
0 (Ωϕ, ϕ

pβ1
x )n

such that divv = f and

‖v‖
W 1,p

0 (Ωϕ,ϕ
pβ1
x )

≤ C‖f‖
Lp(Ωϕ,ϕ

pβ2
x )

,(3.9)

where C depends only on Ωϕ, β1, β2 and p, then β1 ≥ β2 + 1.
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Proof. We will use again the sequence xm introduced in (3.2). Defining am =
(xm+1 + xm)/2, we introduce for each m ∈ N the domain

Ωm = {(2am − x,y, z) : (x,y, z) ∈ Ωϕ}.

Observe that Ωm is obtained from Ωϕ by symmetry and translation. Therefore,
under the hypothesis of the theorem we know that, for any g ∈ Lp(Ωm, ω2)∩L1

0(Ωϕ),

there exists v ∈ W 1,p
0 (Ωm, ω1)

n such that divv = g and

(3.10) ‖v‖W 1,p
0 (Ωm,ω1)

≤ C‖g‖Lp(Ωm,ω2),

where ω1(x) = ϕpβ1
x (2am−x) and ω2(x) = ϕpβ2

x (2am−x). It is important to remark
that the constant in (3.10) is equal to the one in (3.9), and therefore independent
of m.

Now, let us define Um ⊂ Ωϕ and U ′
m ⊂ Ωm as

Um = {(x,y, z) ∈ Ωϕ : xm+1 < x < xm},
U ′
m = {(x,y, z) ∈ Ωm : xm+1 < x < xm},

and

Dm = Um ∪ U ′
m.

Observe that Dm is a Lipschitz domain. Recalling the definition of xm and that
ϕx is an increasing function, we have that, in Dm, ω1 
 2−mpβ1 and ω2 
 2−mpβ2 .
Moreover, Dm is symmetric with respect to x = am.

Figure 4. The Lipschitz domains Dm

Using an argument introduced in [B], we can decompose any g ∈ Lp
0(Dm) as a

sum of functions g1, g2 ∈ Lp
0(Dm), where g1 and g2 are supported in Um and U ′

m

respectively. In fact, we define

g1(x,y, z) =

⎧⎨
⎩

g(x,y, z)− χ(x,y,z)
|Um∩U ′

m|
∫
Um

g in Um,

0 in Dm \ Um,

where χ is the characteristic function of Um ∩ U ′
m, and g2 := g − g1. Moreover, we

extend g1 and g2 by zero outside Dm.
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Then, using the Hölder inequality, we have

‖g1‖Lp(Ωϕ,ϕ
pβ2
x )


 2−mβ2‖g1‖Lp(Dm) ≤ 2−mβ2

(
‖g‖Lp(Dm) +

1

|Um ∩ U ′
m|1/q

∫
Um

|g|
)

≤ 2−mβ2‖g‖Lp(Dm)

(
1 +

|Um|1/q
|Um ∩ U ′

m|1/q

)
.

If m = mj for some j, it is easy to check, using Lemma 3.1, that

1 ≤ |Um|
|Um ∩ U ′

m| ≤ C,

where the constant C does not depend on m. Thus, we have

(3.11) ‖g1‖Lp(Ωϕ,ϕ
pβ2
x )

≤ C2−mβ2‖g‖Lp(Dm),

and consequently,

(3.12) ‖g2‖Lp(Ωm,ω2) 
 2−mβ2‖g2‖Lp(Dm) ≤ C2−mβ2‖g‖Lp(Dm).

Now, from (3.9), (3.10), (3.11), and (3.12) it follows that, for any g ∈ Lp
0(Dm),

there exists u ∈ W 1,p(Dm)n such that divu = g, u = 0 in ∂Dm∩{|x−am| �= rm/2}
and

(3.13) ‖u‖W 1,p(Dm) ≤ C2−m(β2−β1)‖g‖Lp(Dm).

Now, take g ∈ Lp
0(Dm) and u as above and let f ∈ Lq(Dm) be defined by

f(x,y, z) = sin( 2π
rm

(x− am)). Then, integrating by parts and using (3.13), we have∫
Dm

f g =

∫
Dm

f divu

= −
∫
Dm

2π

rm
cos

(
2π

rm
(x− am)

)
u1 +

∫
∂Dm

=0︷ ︸︸ ︷
sin

(
2π

rm
(x− am)

)
u .ν

= − 2π

rm

∫
Dm

∂y1
∂y1

cos

(
2π

rm
(x− am)

)
u1

=
2π

rm

∫
Dm

y1 cos

(
2π

rm
(x− am)

)
∂u1
∂y1

− 2π

rm

∫
∂Dm

y1 cos

(
2π

rm
(x− am)

) =0︷︸︸︷
u1ν2

≤ 2π

rm

∥∥∥∥y1 cos

(
2π

rm
(x− am)

)∥∥∥∥
Lq(Dm)

‖Du‖Lp(Dm)

≤ C
2−m(β2−β1)

rm

∥∥∥∥y1 cos

(
2π

rm
(x− am)

)∥∥∥∥
Lq(Dm)

‖g‖Lp(Dm).

But, since f and Dm are symmetric with respect to x = am, we have
∫
Dm

f = 0,

and so

‖f‖Lq(Dm) = sup
0�=g∈Lp

0(Dm)

∫
Dm

f g

‖g‖Lp(Dm)
≤ C

2−m(β2−β1)

rm

∥∥∥∥y1 cos

(
2π

rm
(x− am)

)∥∥∥∥
Lq(Dm)

.
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Finally, computing the norms we obtain that, for all m = mj ,

r(k+1)/q
m 2−mk/q ≤ C

2−m(β2−β1)

rm
r(q+k+1)/q
m 2−m(k+q)/q,

and therefore,

2−m(β1−β2−1) ≤ C.

Thus β1 ≥ β2 + 1. �

Remark 3.1. In the particular case β2 = 0, the result in Theorem 3.2 can be deduced
from Theorem 3.1 with β1 = 0. Indeed, this follows from [DL2, Theorem 6.1].
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[DL2] R. Durán and F. Lopez Garćıa, Solutions of the divergence and Korn inequalities on
domains with an external cusp, Annales Academiae Scientiarum Fennicae Ser. A I Math.
35, pp. 421–438, 2010. MR2731700 (2011k:35180)

[F1] K. O. Friedrichs, On certain inequalities and characteristic value problems for analytic
functions and for functions of two variables, Trans. Amer. Math. Soc., 41, pp. 321-364,
1937. MR1501907

[F2] K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn’s
inequality, Ann. of Math. (2), 48, pp. 441-471, 1947. MR0022750 (9:255b)

[GG] G. Geymonat and G. Gilardi, Contre-exemples à l’inégalité de Korn et au Lemme de
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Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universi-

dad de Buenos Aires, 1428 Buenos Aires, Argentina

E-mail address: flopezg@dm.uba.ar
Current address: Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachu-

setts 01609-2280
E-mail address: flopezgarcia@wpi.edu

Licensed to Worcester Polytechnic Institute. Prepared on Thu Jan 17 15:26:42 EST 2013 for download from IP 130.215.56.140.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1258259
http://www.ams.org/mathscinet-getitem?mr=1258259

	1. Introduction
	2. Some simple counterexamples
	3. Domains with a general external cusp
	References

