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Abstract We investigate Whitehead’s asphericity question from a new perspective,
using results and techniques of the homotopy theory of finite topological spaces. We
also introduce a method of reduction to investigate asphericity based on the interaction
between the combinatorics and the topology of finite spaces.
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1 Introduction

In 1941 Whitehead [13] stated the following question:
Is every subcomplex of an aspherical 2-dimensional complex itself aspherical?

Recall that a path connected space X is called aspherical if its homotopy groups πn(X)

are trivial for all n ≥ 2. By the Hurewicz theorem applied to the universal cover, a
connected 2-dimensional CW-complex X is aspherical if π2(X) is trivial. Whitehead’s

Communicated by Tim Porter.

The authors’ research is partially supported by CONICET.

M. A. Cerdeiro · E. G. Minian (B)
Departamento de Matemática, IMAS, FCEyN, Universidad de Buenos Aires., Buenos Aires, Argentina
e-mail: gminian@dm.uba.ar

M. A. Cerdeiro
e-mail: cerdeiro@dm.uba.ar

123



340 M. A. Cerdeiro, E. G. Minian

asphericity question is still unanswered, although some interesting advances have been
obtained along the last seventy years. In 1954 Cockcroft [5] proved that the answer
to the question is positive if the subcomplex K ⊂ L is finite, L is obtained from K
by adding 2-cells and the group π1(K ) is either Abelian or free. In 1983 Howie [7]
reduced the problem to the following two particular cases.

Theorem 1.1 (Howie) If the answer to Whitehead’s question is negative, then there
exists a counterexample K ⊂ L of one of the following two types:

(a) L is finite and contractible, K = L − e for some 2-cell e of L, and K is non-
aspherical.

(b) L is the union of an infinite chain of finite non-aspherical subcomplexes K =
K0 ⊂ K1 ⊂ · · · such that each inclusion map Ki → Ki+1 is nullhomotopic.

In 1996 Luft [9] proved that the existence of a counterexample of type (a) actually
implies the existence of a counterexample of type (b).

In this paper we investigate Whitehead’s asphericity question from a new per-
spective, using some of the tools of the homotopy theory of finite topological spaces
developed in [1,2]. We restate the problem in terms of finite topological spaces (see
Conjecture 3.1 below) and prove that certain classes of finite spaces (and conse-
quently, of compact complexes) satisfy the conjecture. There is a connection between
Whitehead’s asphericity question and the Andrews–Curtis conjecture (see [7]). In
fact, Howie proved that if the Andrews–Curtis conjecture and the ribbon disc com-
plements conjecture are true, then there are no counterexamples of type (a). Recently
Barmak introduced the notion of a quasi-constructible 2-complex and proved that the
class of these 2-complexes, which contains all constructible 2-complexes, satisfies
the Andrews–Curtis conjecture [1]. In this article we show that this extensive class
contains no counterexamples of type (a).

We also introduce a method of reduction to study asphericity using the interaction
between the combinatorics and the topology of finite spaces.

For a comprehensive exposition on Whitehead’s asphericity question we refer the
reader to [4].

2 Preliminaries

In this section we will review some basic notions and results on finite topological
spaces. For further details on the theory of finite spaces and its applications we refer
the reader to [1,2,10–12].

There is a natural connection between finite topological spaces and finite posets.
Given a finite set X and a topology on X , one can define a relation on the set X by

x ≤ y ⇔ x ∈ U for every open set U containing y.

It is easy to see that this relation is a preorder, i.e. it is reflexive and transitive. Note
that it is antisymmetric if and only if the topology satisfies the T0 axiom: for any given
pair of points of X , there is an open set which contains one and only one of them.
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Fig. 1 The order complex of a
finite space

Conversely, given a preorder ≤ and an element x ∈ X , we set

Ux := {y ∈ X : y ≤ x} ⊆ X.

The sets Ux (for x ∈ X ) form a basis for a topology on X . These applications
are mutually inverse and give rise to a one-to-one correspondence between finite T0-
spaces and finite posets. From now on we will only consider finite spaces which satisfy
the T0 axiom. In order to represent a finite T0-space, we will use the Hasse diagram
of the corresponding poset. Recall that the Hasse diagram of a finite poset X is the
digraph whose vertices are the points of X and whose edges are the pairs (x, y) such
that x ≺ y. Here x ≺ y means that x is covered by y, i.e. x < y and there is no z ∈ X
such that x < z < y. In the graphical representation of the Hasse diagram, instead of
drawing the edge (x, y) with an arrow, we simply put y over x .

It is easy to see that a map f : X → Y is continuous if and only if it is order
preserving, so this correspondence extends to the morphisms. It is also clear that a
finite space is connected if and only if it is path connected (see [1, Prop. 1.2.4]). The
length of a chain x0 < x1 < · · · < xn in a finite space X is n. The height h(X) is the
maximum length of the chains of X .

Given a finite space X , the order complex K(X) is the simplicial complex defined as
follows. The vertices of K(X) are the elements of X and the n-simplices of K(X) are
the chains in X of n+1 elements. There is also an application in the opposite direction,
which assigns to any simplicial complex K the face poset X (K ) of simplices of K
ordered by inclusion. It is clear that h(X) = dim(K(X)) for every finite space X and
h(X (K )) = dim(K ) for every simplicial complex K . Figure 1 shows a finite space X
of 6 points, represented by its Hasse diagram, and the associated 2-complex K(X).

A continuous function f : X → Y gives rise to a simplicial map K( f ) : K(X) →
K(Y ) in the obvious way, and a simplicial map between complexes ϕ : K → L
induces a continuous function X (ϕ) : X (K ) → X (L).

The functors K and X are not mutually inverse. In fact, if K is a simplicial complex,
then K(X (K )) is the barycentric subdivision K ′ of K . McCord [11] proved that there
are weak homotopy equivalences K(X) → X and K → X (K ). Given two finite
spaces X and Y , they are weak homotopy equivalent if and only if their associated
complexes are homotopy equivalent. Moreover, two finite simplicial complexes are
homotopy equivalent if and only if their face posets are weak equivalent (viewed
as finite spaces). Therefore the weak homotopy types of finite spaces cover all the
homotopy types of compact polyhedra. At this point, it is important to notice that the
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Whitehead theorem does not hold for finite spaces. Counterexamples can be found
in [1,2]. Concretely, there are finite spaces which are homotopically trivial (i.e. weak
homotopy equivalent to the singleton) but not contractible.

We recall now some of the main results of the homotopy theory of finite spaces.
A point x ∈ X is called a down beat point if Ûx = {y ∈ X : y < x} has maximum

and an up beat point if F̂x = {y ∈ X : y > x} has a minimum. In both cases the
subspace X − x ⊂ X is a strong deformation retract. Furthermore, two finite spaces
X and Y have the same homotopy type if and only if Y can be obtained from X by
removing and adding beat points. The characterization of homotopy types of finite
spaces in terms of beat points is due to Stong [12].

A point x ∈ X is called a weak point if Ûx or F̂x is a contractible finite space,
or equivalently, if Ĉx = {y ∈ X : y < x or y > x} is contractible. In this case the
inclusion X −x ↪→ X is a weak homotopy equivalence. This notion was introduced in
[2] to study simple homotopy theory of finite spaces and its applications to problems
of simple homotopy theory of polyhedra (see [1,2]).

Since finite spaces with maximum or minimum are contractible, the notion of weak
point generalizes that of beat point. The process of removing a weak point is called
an elementary collapse, and a space X is called collapsible if there is a sequence of
elementary collapses that transforms X into a single point. Contractible finite spaces
are collapsible and collapsible spaces are homotopically trivial. None of the converse
implications hold (see [1,2] for more details).

QC-reducible spaces and quasi-constructible complexes. The notions of qc-
reduction and qc-reducible space were introduced by Barmak to investigate the
Andrews–Curtis conjecture using finite spaces. We recall here these notions and we
refer the reader to [1] for a detailed exposition on qc-reducible spaces and the Andrews–
Curtis conjecture.

Definition 2.1 Let X be a finite space of height 2 and let a, b ∈ X be two maximal
points. If Ua ∪ Ub is contractible, we will say that there is a qc-reduction from X to
Y − {a, b}, where Y = X ∪ {c} with a, b < c. The point c, which replaces a and b in
Y − {a, b}, is called a relative of a and b. Figure 2 illustrates a qc-reduction.

Fig. 2 A qc-reduction
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Fig. 3 A collapsible and
non-qc-reducible space

Definition 2.2 A finite space X of height 2 is called qc-reducible if one can obtain a
space with maximum by performing a sequence of qc-reductions.

Remark 2.3 In the first step of a qc-reduction, the point c added to X is a weak point
of Y . The points a, b removed in the second step are beat points of Y . It follows
that the qc-reductions preserve the weak homotopy type and that qc-reducible spaces
are homotopically trivial. Of course, not every homotopically trivial finite space is
qc-reducible. However one can show that any contractible finite space of height 2 is
qc-reducible.

Example 2.4 The finite space X of Fig. 3, which was introduced in [1], is collapsible
and therefore weak equivalent to a point. However no qc-reduction can be performed
on X .

The proof of the following result, which will be used in the next section, can be
found in [1].

Proposition 2.5 Let X be a finite space of height at most 2 and such that H2(X) = 0.
Let a, b be two maximal elements of X. Then the following are equivalent.

1. Ua ∪ Ub is contractible.
2. Ua ∩ Ub is nonempty and connected.
3. Ua ∩ Ub is contractible.

Here H2(X) denotes the second homology group of X with integer coefficients.
Note that in fact the equivalence between assertions 1 and 3 of the last proposition
doesn’t need any assumption on height or homology of the finite space, since Ua ∪Ub is
homotopy equivalent to S(Ua ∩Ub), the non-Hausdorff suspension of the intersection
(see [1]).

By [1, Thm 11.2.10], the associated finite space X (K ) of a 2-complex K is
qc-reducible if and only if K is contractible and quasi-constructible. The class of quasi-
constructible complexes contains all constructible complexes. We refer the reader to
[3,8] for more details on constructible complexes.

3 Main results

We will use the homotopy theory of finite spaces to investigate Whitehead’s asphericity
question. We will focus our attention on the finite case [i.e. counterexamples of type
(a)] of Howie’s Theorem 1.1 and restate the question in terms of finite spaces.
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Suppose that there exists a counterexample of type (a). Since every finite CW-
complex is homotopy equivalent to a finite simplicial complex of the same dimension
(see [6, (7.2)]), it follows that there is a contractible simplicial complex L of dimension
2 and a subcomplex K = L − σ with σ a 2-simplex of L , such that K is connected
and non-aspherical. Let X (L) and X (K ) be their face posets. Then X (L) is a homo-
topically trivial space of height 2 and X (K ) is a connected, non-aspherical subspace
of X (L), obtained by removing the maximal point σ ∈ X (L). This motivates the
following conjecture.

Conjecture 3.1 Let X be a homotopically trivial finite space of height 2 and let a ∈ X
be a maximal point such that X − a is connected. Then X − a is aspherical.

It is clear that if Conjecture 3.1 is valid, then there are no counterexamples of type
(a). On the other hand, suppose that the answer to Whitehead’s question is positive.
Given a homotopically trivial finite space X of height 2 and a maximal point a ∈ X
such that X − a is connected, the associated simplicial complex K(X) is aspherical
(in fact, it is contractible) and the subcomplex K(X −a) of K(X) is connected. Hence
K(X − a), and therefore also X − a, are aspherical. This means that, in this case,
Conjecture 3.1 is also valid.

Note that Whitehead’s original question is equivalent, in the case of compact poly-
hedra, to asking whether every subspace of an aspherical finite space of height two is
itself aspherical.

Sometimes it is convenient to work with spaces which are not necessarily path
connected. In general we will say that a space X is aspherical if every path connected
component of X is aspherical.

Remark 3.2 Let x, y ∈ X be two maximal points. If X ′ is obtained from X by
performing a qc-reduction that does not involve x nor y, then x, y ∈ X ′ and
U X

x ∪ U X
y = U X ′

x ∪ U X ′
y . Here we write U X

x , U X ′
x in order to distinguish whether the

open subsets are considered in X or X ′.

Lemma 3.3 Let X be a qc-reducible finite space and let a ∈ X be a maximal point.
Then the qc-reductions can be reordered and split into two phases such that

(i) in the first phase, the point a and its relatives are not involved in any reduction,
(ii) in the second phase every reduction involves a or one of its relatives.

Proof Let X = X0, X1, X2, . . . , Xn be a sequence of finite spaces starting with X
where each Xi is obtained from Xi−1 by a qc-reduction qi and such that Xn has
maximum. Let qi1 , qi2 , . . . , qik be the reductions involving a and its relatives. Con-
cretely, qi1 involves a = a0 and a′

0 ∈ Xi1−1, which are replaced by a1 in Xi1 , qi2

involves a1 and a′
1 ∈ Xi2−1 which are replaced by a2 in Xi2 and so on. We will now

perform all the reductions which don’t involve the relatives of a. In order to do that,
set ˜X0 = X0, ˜X1 = X1, . . . , ˜Xi1−1 = Xi1−1, then skip the reduction qi1 and set
˜Xi1 = ˜Xi1−1. By the previous remark, the next reduction qi1+1 can be performed on
˜Xi1 , because it does not involve a1 (unless i1 +1 = i2, in which case we keep skipping
reductions). In this way we obtain ˜Xi1+1. Analogously, we can perform the reductions
qi1+2, . . . , qi2−1 and skip qi2 . We proceed similarly with every qi j and obtain ˜Xn when
the first phase of reductions is over.
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Again by the previous remark, it is easy to see that the reductions qi1 , qi2 , . . . , qik

can now be performed on ˜Xn to obtain a space with maximum. This is the second
phase. �
Lemma 3.4 Let X be a qc-reducible finite space of height 2 and let a ∈ X be a
maximal point such that X − a is connected. If the sequence of qc-reductions can be
chosen so that every reduction involves a or one of its relatives, then Ûa is connected
and the inclusion Ûa ↪→ X − a induces an isomorphism π1(Ûa) → π1(X − a).

Proof Similarly as in the previous lemma, let X = X0, X1, X2, . . . , Xn be a sequence
of finite spaces where each Xi is obtained from Xi−1 by a qc-reduction qi which
replaces ai−1 and a′

i−1 with ai , where a = a0, and such that Xn has maximum. The

elements a′
i are exactly the maximal points of X other than a. Thus X = Ua∪⋃n−1

i=0 Ua′
i

and X − a = Ûa ∪ ⋃n−1
i=0 Ua′

i
.

Since Ûa ∩ Ua′
0

= Ua ∩ Ua′
0

is nonempty and connected, by the van Kampen

theorem it follows that the inclusion Ûa ↪→ Ûa ∪ Ua′
0

induces an isomorphism of the
fundamental groups. Since a second reduction, involving a1 and a′

1, can be performed,
we know that (Ûa ∪Ua′

0
)∩Ua′

1
= (Ûa ∪ Ûa′

0
)∩Ua′

1
= Ûa1 ∩Ua′

1
= Ua1 ∩Ua′

1
is also

nonempty and connected. Again by van Kampen, it follows that Ûa ↪→ Ûa ∪Ua′
0
∪Ua′

1
induces an isomorphism of the fundamental groups. The result now follows by iterating
this reasoning.

Note that, since the intersections Uai ∩ Ua′
i

are connected, Ûa is also connected.

Otherwise Ûa ∪ Ua′
0

could not be connected, neither could Ûa ∪ ⋃k
i=0 Ua′

i
for any

1 ≤ k ≤ n − 1. �
We are now ready to prove one of the main results of the article.

Theorem 3.5 Let X be a qc-reducible finite space of height 2 and let a ∈ X be a
maximal point such that X − a is connected. Then X − a is aspherical.

Proof Applying Lemma 3.3, let Y be the last space obtained in the first phase of the
reductions. Note that X − a is weak equivalent to Y − a by performing the same
qc-reductions. Note also that Y is qc-reducible by reductions that involve a and its
relatives. By Lemma 3.4, π1(Y −a) = π1(Ûa) and this group is free, since h(Ûa) ≤ 1.

Let us now consider the associated complexes of these spaces. K(X) is contractible
and K(X −a) is a connected subcomplex of K(X) with free fundamental group. More
precisely, K(X) = K(X − a) ∪ st a with K(X − a) ∩ st a = lk a. Here st a denotes
the (closed) star of the vertex a ∈ K(X) and lk a denotes its link. Therefore the CW-
complex K(X) is obtained from K(X − a) by attaching one 0-cell, and some 1-cells
and 2-cells. Let (st a)(1) be the 1-skeleton of st a and let L = K(X − a) ∪ (st a)(1)

be the complex between K(X − a) and K(X) missing only the 2-cells of st a. Then
L is also connected and π1(L) is also free. By [5, Thm 1], L is aspherical. Since L is
obtained from K(X −a) by attaching only 0-cells and 1-cells, it follows that K(X −a)

is also aspherical. �
As an immediate consequence of this result we deduce the following.
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Corollary 3.6 There are no counterexamples of type (a) in the class of quasi-
constructible and contractible 2-complexes.

Aspherical reductions. We investigate now a method of reduction which preserves
the asphericity of finite spaces. Recall that, given a point x ∈ X , we denote by Ĉx the
subspace Ĉx = {y ∈ X : y < x or y > x}.
Definition 3.7 Let X be a finite space. A point x ∈ X is called an a-point if Ĉx

is a disjoint union of contractible spaces (possibly empty). In that case, the move
X → X − x is called an a-reduction. A finite space X is called strong aspherical if
there is a sequence of a-reductions which transforms X into the singleton.

Note that the notion of a-point generalizes that of weak point (see Sect. 2). In par-
ticular, collapsible finite spaces are strong aspherical. Note also that strong aspherical
spaces are not necessarily homotopically trivial. In fact, every finite space of height
one is strong aspherical.

Proposition 3.8 Let X be a finite space and let a ∈ X be an a-point. Then X is
aspherical if and only if X − a is aspherical. In particular, strong aspherical spaces
are aspherical.

Proof Since K(X) = K(X −a)∪aK(Ĉa) and K(Ĉa) is a disjoint union of contractible
spaces, the space K(X) is homotopy equivalent to a space obtained from K(X − a)

by attaching a cone of a discrete subspace. Since attaching cells of dimensions 0 and
1 does not change the asphericity, it follows that K(X) is aspherical if and only if
K(X − a) is. �

The following two examples illustrate how to use this result as a method of reduction
to investigate asphericity of finite spaces. Note that, in both cases, the original spaces
have no weak points.

Example 3.9 In the space X of Fig. 4, the elements a and d are a-points. The space
Y which one obtains removing these points has only two maximal elements, b and c.
Therefore Y is homotopy equivalent to the non-Hausdorff suspension of Ub∩Uc. Since
Ub∩Uc is not acyclic, it follows that Y is non-aspherical (in fact its associated complex
is homotopy equivalent to S2). This shows that the space X (and consequently, the
associated complex K(X)) is non-aspherical.

Fig. 4 A non-aspherical space
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Fig. 5 An aspherical space

Example 3.10 In the space X of Fig. 5, the elements a, b, c and d are a-points. If we
remove these points, we obtain a space with minimum, and therefore contractible. It
follows that X (and consequently, K(X)) is aspherical.

We concentrate now on strong aspherical spaces of height 2.

Theorem 3.11 Let X be a strong aspherical space of height 2 and let a ∈ X. Then
X − a is strong aspherical.

Proof We proceed by induction on the cardinality of X . Choose a sequence of
a-reductions from X to the singleton. If a is the first a-point to be removed, then
X − a is strong aspherical by definition. Otherwise, let b ∈ X be the first reduction,
with b �= a. Then X − b is strong aspherical and, by induction, X − {a, b} is strong
aspherical.

On the other hand, since Ĉb is a disjoint union of contractible subspaces, and it
is of height at most 1, then Ĉb − a is also a disjoint union of contractible subspaces
(possibly empty). This implies that b is also an a-point of X − a. Since (X − a) − b
is strong aspherical, it follows that X − a is strong aspherical. �
Corollary 3.12 The answer to Whitehead’s original question is positive for strong
aspherical finite spaces of height 2.

Definition 3.13 A simplicial complex K is called strong aspherical if its face poset
X (K ) is strong aspherical.

By Corollary 3.12, the answer to Whitehead’s question is positive for strong aspher-
ical 2-complexes. We can also use Theorem 3.11 to give the following characterization
of strong aspherical simplicial complexes of dimension 2.

Proposition 3.14 A two-dimensional simplicial complex L is strong aspherical if and
only if L collapses to a one-dimensional subcomplex.

Proof It is clear that if L collapses to a one-dimensional subcomplex K , then X (L)

a-reduces to X (K ), which in turn a-reduces to a point.
Conversely, suppose that X (L) is strong aspherical and that L collapses to a two-

dimensional subcomplex K on which no more collapses can be performed. Since K
has no collapses, the only possible a-points of X (K ) are minimal points. Given such
an a-point v ∈ X (K ), F̂v must be discrete, since it is a space of height at most 1 in
which every component is contractible and it does not have beat points. This implies
that no element σ ∈ X (K ) of height 2 can become an a-point and be removed in a
process of a-reductions. This contradicts the fact that, by Theorem 3.11, the subspace
X (K ) of X (L) is strong aspherical. �
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