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Abstract: We present results for the following singular perturbation problem:

∆p(x)u
ε := div(|∇uε(x)|p(x)−2∇uε) = βε(uε) + fε, uε ≥ 0 (Pε(fε))

in Ω ⊂ R
N , where ε > 0, βε(s) = 1

εβ( s
ε ), with β a Lipschitz function satisfying β > 0 in (0, 1), β ≡ 0 outside (0, 1)

and
∫

β(s) ds = M . The functions uε and fε are uniformly bounded. We prove uniform Lipschitz regularity, we pass
to the limit (ε → 0) and we show that limit functions are weak solutions to a free boundary problem.
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1 INTRODUCTION

The p(x)-Laplacian, defined as

∆p(x)u := div(|∇u(x)|p(x)−2∇u),

extends the Laplacian, where p(x) ≡ 2, and the p-Laplacian, where p(x) ≡ p with 1 < p < ∞. This
operator has been used in the modelling of electrorheological fluids ([16]) and in image processing ([6],
[1]).

We will present results for the following singular pertubation problem for the p(x)-Laplacian:

∆p(x)u
ε = βε(uε) + f ε, uε ≥ 0 (Pε(fε))

in a domain Ω ⊂ R
N . Here ε > 0, βε(s) = 1

εβ( s
ε), with β a Lipschitz function satisfying β > 0 in (0, 1),

β ≡ 0 outside (0, 1) and
∫

β(s) ds = M .
By a solution to Pε(fε) we mean a nonnegative function uε ∈ W 1,p(·)(Ω) ∩ L∞(Ω) such that∫

Ω
|∇uε(x)|p(x)−2∇uε · ∇ϕdx = −

∫
Ω

ϕ (βε(uε) + f ε) dx

for every ϕ ∈ C∞
0 (Ω).

We assume that the functions uε and fε are uniformly bounded. We prove uniform Lipschitz regularity,
we pass to the limit (ε → 0) and we show that limit functions are weak solutions to the following free
boundary problem: {

∆p(x)u = f in {u > 0}
u = 0, |∇u| = λ∗(x) on ∂{u > 0}, (1)

where u = limuε, f = lim fε, λ∗(x) =
(

p(x)
p(x)−1 M

)1/p(x)
and M =

∫
β(s) ds.

When p(x) ≡ 2 and fε ≡ 0, this problem arises in combustion theory to describe the propagation of
curved premixed equi-diffusional deflagration flames. The study of the limit (ε → 0) was proposed in the
1930s and was first rigorously studied in the pioneering work [2]. Since then, much research has been done
on this problem, see [5, 3, 4, 10, 7, 17, 15]. The inhomogeneous case, fε 	≡ 0, allows the treatment of more
general combustion models with nonlocal diffusion and/or transport (see [11], [12]).

For previous results in the literature on free boundary problems for the p(x)-Laplacian we refer to [9]
and [8].
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2 BASIC DEFINITIONS AND ASSUMPTIONS

ASSUMPTIONS ON p(x)

We will assume that the function p(x) verifies

1 < pmin ≤ p(x) ≤ pmax < ∞, x ∈ Ω.

We also assume that p(x) is continuous up to the boundary and that it has a modulus of continuity ω : R →
R, i.e. |p(x) − p(y)| ≤ ω(|x − y|) if |x − y| is small. For some results we need to assume further that p(x)
is Lipschitz continuous in Ω.

ASSUMPTIONS ON βε

We will assume that the functions βε are defined by scaling of a single function β : R → R satisfying:

i) β is a Lipschitz continuous function,

ii) β > 0 in (0, 1) and β ≡ 0 otherwise,

iii)
∫ 1
0 β(s) ds = M .

And then βε(s) := 1
εβ( s

ε).

Definition 1 We call u a weak solution of (1) in Ω if

1. u is continuous and nonnegative in Ω and ∆p(x) = f in Ω ∩ {u > 0}.

2. For D ⊂⊂ Ω there are constants 0 < cmin ≤ Cmax such that for balls Br(x) ⊂ D with x ∈ ∂{u > 0}

cmin ≤ 1
r

–
∫
–

Br(x)
udx ≤ Cmax.

3. For HN−1 a.e x0 ∈ ∂{u > 0} where there is a unit interior normal ν(x0) to ∂{u > 0} in the measure
theoretic sense, u has the asymptotic development

u(x) = λ∗(x0)〈x − x0, ν(x0)〉− + o(|x − x0|)

where λ∗(x) =
(

p(x)
p(x)−1 M

)1/p(x)
and

∫
β(s) ds = M .

4. For every x0 ∈ Ω ∩ ∂{u > 0},

lim sup
x→x0

u(x)>0

|∇u(x)| ≤ λ∗(x0).

If there is a ball B ⊂ {u = 0} touching Ω ∩ ∂{u > 0} at x0 then,

lim sup
x→x0

u(x)>0

u(x)
dist(x,B)

≥ λ∗(x0).

Here λ∗(x) is as above.
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3 MAIN RESULTS

We will present the following results:

Theorem 1 Let uε be a solution of

∆p(x)u
ε = βε(uε) + fε, uε ≥ 0 in Ω, (Pε(fε))

with ‖uε‖L∞(Ω) ≤ L1, ‖fε‖L∞(Ω) ≤ L2. Then, for Ω′ ⊂⊂ Ω, we have

|∇uε(x)| ≤ C in Ω′

with C = C(N,L1, L2, ‖β‖∞, p, dist(Ω′, ∂Ω)), if ε ≤ ε0(Ω, Ω′).

Proof. An essential tool in the proof is a Harnack Inequality result for the inhomogenous p(x)-Laplacian
equation. We refer to [13] for the detailed proof of this theorem. �

Theorem 2 Let uεj be a family of solutions to Pεj (f
εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly
on compact subsets of Ω, fεj → f ∗-weakly in L∞(Ω) and εj → 0. Then, under suitable assumptions, u is
a weak solution to the following free boundary problem:{

∆p(x)u = f in {u > 0}
u = 0, |∇u| = λ∗(x) on ∂{u > 0}

where λ∗(x) =
(

p(x)
p(x)−1 M

)1/p(x)
and M =

∫
β(s) ds.

Proof. In the proof we make use of an important auxiliary result, which says that, when uεj are solutions
to Pεj (f

εj ) with power pj(x), uεj → αx+
1 with α ∈ R, fεj → 0, pj → p0 with p0 constant and εj → 0,

then α = 0 or α =
(

p0

p0−1 M
)1/p0

. We refer to [13] for the complete proof of this theorem. �

4 FINAL REMARKS

We point out that in [12] it is shown that, in case p(x) ≡ 2, the assumptions required in the proof of
Theorem 2 above are fulfilled in case uεj are minimizers of a certain energy functional.

On the other hand, in the work [14], which applies to our problem in the particular case in which p(x) ≡ p
and f ε ≡ 0, it is studied the smoothness of the free boundary for weak solutions in the sense of Definition 1
above. There it is shown that the free boundary is a C1,α surface in a neighborhood of every free boundary
point where there is a normal in the measure theoretic sense.

We finally want to remark that, when fε 	≡ 0 and p(x) 	≡ 2, our results are new even in the case p(x) ≡ p.
Moreover, when p(x) is not constant, our results are new even if fε ≡ 0.
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[15] S. MARTÍNEZ, N. WOLANSKI, A singular perturbation problem for a quasi-linear operator satisfying the natural growth

condition of Lieberman, SIAM J. Math. Anal. 40 (1) (2009), 318–359.
[16] M. RUZICKA, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
[17] G.S. WEISS, A singular limit arising in combustion theory: fine properties of the free boundary, Calculus of Variations and

Partial Diff. Equations 17(3) (2003), 311–340.

���������	
�� ����������������������������������� !��

�


