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ABSTRACT 

Mollusca are a megadiverse phylum with an estimated number of 70,000 to 76,000 described 

species which can inhabit a wide variety of environments. Among them, land snails are a main 

component of terrestrial ecosystems and they play a pivotal role in ecosystem functioning. They 

are suffering habitat loss, overexploitation and competition from introduced species, but are 

regarded as a “non-charismatic” group for conservation purposes. Orthalicoidea is a dominant 

faunal element in the Neotropics and in Argentina includes 104 species that inhabit a variety of 

environments. Their abundance, diversity, comprehensive taxonomy and widespread 

representation in different ecoregions makes this molluscan group an excellent model for 

biodiversity assessments. The database used here consisted of 985 unique geographic records of 

104 species. Species distribution models were generated using the Maximum Entropy method 

and Zonation v 3.1 was used to evaluate the proposed conservation goals. Three analyses 

including species distributions, the current protected areas system (PAs) and the Human print 
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layer were carried out. This allowed the identification of priority areas for conservation, the 

percentage of the species distribution under PAs and analysis of the potential impacts under 

current land uses and in the priority areas detected above. Sixty-one species were modeled, and 

59 of them were included in the priority area selection process due to their high area under curve 

(AUC) scores. Five high priority areas located in the different ecoregions, were identified: 1-dry 

Chaco, 2-humid Pampas, 3-Southern Andean Yungas, 4-Alto Paraná Atlantic Forests and 5-high 

Monte. A small percentage of the average distribution range of Orthalicoidean species (3%) was 

within the current protected areas. Highest-ranked priority areas for land snails are outside the 

current protected areas system. When human impact is considered, the priority areas are reduced 

in size and appear as small patches. However, highest priority areas for conservation continue 

being those detected in the above analyses. Most of the areas detected are used for economic 

purposes, creating conflicts of interest between the development of human activities and 

conservation. This study represents one of the first attempts to identify ecoregion level priority 

areas for a terrestrial invertebrate group. Further analyses, including new predictors and other 

molluscan taxa, would improve planning the conservation of poorly known invertebrate groups. 

 

Keywords: Mollusca; Orthalicoidea; Protected areas; Species distribution modelling; Zonation. 

 

Introduction 

Invertebrates represent the largest proportion of terrestrial and freshwater biodiversity 

and, despite their minute size, they play a pivotal role in ecosystem functioning (Fontaine et al., 

2007; McGeoch et al., 2011; New, 2011). However, most conservation strategies focus on 

vertebrate protection and there is considerable uncertainty as to how these strategies translate to 

invertebrates (Kerr, 1997; Fontaine et al., 2007; McGeoch et al., 2011). Mollusks are considered 

a megadiverse group containing an estimated 70,000 to 76,000 described species (Rosenberg, 

2014) comprising about 25,000 terrestrial species worldwide (Bouchet, 2007). Land snails form 

an important component of terrestrial ecosystems by recycling nutrients, and many of them are 
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food resources for many small mammals, birds, reptiles, amphibians and other invertebrates, 

including carnivorous snails (Deepak et al., 2010). In calcium poor habitats land snails can form 

an important source of calcium for other animals (Jurickova et al., 2007) and play a key role in 

soil generation and water filtration (Cuttelod et al., 2011). Land snails also serve as an indicator 

of ecological condition, and are very sensitive to climatic and ecological change (Sen et al., 

2012). Globally, land snails are facing an unprecedented survival crisis resulting from habitat 

loss, overexploitation and competition with introduced species (Lydeard et al., 2004; Solymos & 

Feher, 2005; Regnier et al., 2009; Cowie et al., 2017). However, land snails have traditionally 

been considered a "non-charismatic" group and usually have not been included in lists of priority 

species for conservation. 

Biodiversity loss makes ecosystems vulnerable, alters processes and changes the 

resilience of ecosystems to environmental change (Chapin et al., 2000). The main drivers that 

cause biodiversity decline are climate change, land use change, invasive species, 

overexploitation, pollution and changes in human population (Sala et al., 2000). Aiming at 

halting biodiversity loss, the Convention on Biological Diversity (CBD, 2010) proposed that at 

least 17 per cent of terrestrial and inland waters, especially areas of special importance for 

biodiversity and ecosystem services, are conserved through effective and balanced management. 

The aim is to have ecologically representative and well-connected systems of protected areas and 

other effective area-based conservation measures globally by 2020 (CBD, 2010). 

Argentina has 360 protected areas that cover approximately 6.7% of the national territory 

(Tognelli et al., 2011). During 1934-1960 the territorial integrity and sovereignty were the main 

motivations for the establishment of the first protected areas. By the mid-60’s, the focus was 

redirected to protection of ecoregions and some charismatic vertebrate species (Marinaro et al., 
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2012) without taking into account invertebrate taxa as a priority for conservation. More recently 

the effectiveness of the current system of protected areas to conserve vertebrate species 

(Arzamendia & Giraudo, 2004; Tabeni et al., 2004; Tognelli et al., 2011; Corbalán et al., 2011; 

Nori et al., 2013) and plants (Ortega Baes et al., 2012) is being evaluated. 

The land snail superfamily Orthalicoidea is a dominant faunal element in the Neotropics 

(Breure & Mogollón, 2010). In Argentina, this superfamily includes 104 species that inhabit a 

variety of environments ranging from humid subtropical and cold forests to nearly desert areas 

(Cuezzo et al., 2013; Salas Oroño et al., 2007; Miranda & Cuezzo, 2010). The systematics, 

taxonomy and distribution of Argentinean Orthalicoidean are well known and have been studied 

by several authors over time (Parodiz, 1946; Cuezzo et al., 2013; Miranda & Cuezzo, 2014; 

Miranda, 2015). The abundance, diversity, comprehensive taxonomic information and 

widespread representation in different ecoregions make the Orthalicoidea an excellent model 

group for biodiversity assessments. Our goal was to: (1) test the effectiveness of the current 

protected areas network in safeguarding land snail species; (2) identify priority areas for land 

snail conservation; (3) analyze priority areas with respect to anthropogenic impacts. 

 

Methods 

 

Study area 

Argentina, located in southern South America (from 21º-55º S to 53º-73º W), has the 

ninth largest land mass in the world, with a total area of 2,791,810 km2 (Fig. 1A). It is divided 

into twenty-three political provinces and the Ciudad Autónoma de Buenos Aires (Fig. 1B). The 

latitudinal position of Argentina between Tropic of Capricorn and Antarctica confers the region a 
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great climatic and ecoregional diversity (Brown & Pacheco, 2006). According to Olson et al. 

(2001), the Argentinean territory is divided into seventeen ecoregions (Fig. 1A). An ecoregion is 

a relatively large unit of land or water containing a characteristic set of natural communities that 

share a large majority of their species, dynamics and environmental conditions. 

 

Data collection 

 

The database used for this study consisted of 985 unique geographic records of 104 

species (Table 1), obtained from the following malacological collections: Instituto de 

Biodiversidad Neotropical (IBN), Tucumán, Argentina; Instituto-Fundación Miguel Lillo 

(IFML-Moll), Tucumán, Argentina; Museo de La Plata (MLP), Buenos Aires, Argentina; Museo 

de Ciencias Naturales “Bernardino Rivadavia” (MACN-In), Buenos Aires, Argentina; Museo de 

Ciencias Naturales “José Lorca” (MCNL), Mendoza, Argentina; Field Museum of Natural 

History (FMNH), Chicago, USA; Academy of Natural Sciences of Philadelphia (ANSP), 

Philadelphia, USA, plus relevant literature. Extensive field work was conducted over the last 20 

years by Instituto de Biodiversidad Neotropical (IBN) where the sampling effort was 

standardized over time. The time window spanned 30 min at each site. 

Locations without geographical coordinates were georeferenced using GEOLocate 

(http://www.museum.tulane.edu/geolocate/web/webgeoref.aspx). Digital layers of ecoregions 

were obtained from Olson et al. (2001); the National System of Protected Areas was taken from 

protectedplanet.net and www.parquesnacionales.gob.ar, Biosphere reserves were not considered 

in the analyses as their focus is on managing ecosystem changes linked to human activity. All 

data obtained were analyzed using QGIS 2.8 software (http://qgis.osgeo.org) to evaluate the 

distribution of the species included in the analysis. Species records were plotted and overlapped 
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with layers of different types of information such as political subdivisions and ecoregions. The 

Human Influence Index (HII) dataset of 1-kilometer grid cells was used in Zonation. This dataset 

was created from nine global data layers covering human population pressure (population 

density), human land use and infrastructure (built-up areas, nighttime lights, land use/land 

cover), and human access (coastlines, roads, railroads) (WCS & CIESIN, 2005). 

 

Species Distribution Modeling 

 

Species distribution models were generated using the Maximum Entropy method 

(MaxEnt version 3.3.3k; Phillips et al., 2006, 2009). Default parameters for MaxEnt were used, 

including a maximum of 500 iterations, with a convergence threshold of 0.00001, and 10,000 

randomly generated background localities. The logistic output format was chosen for the selected 

model value because it provides an estimated probability of presence between 0 (unsuitable for 

species presence) and 1 (highly suitable for species presence). A layer corresponding to 

topographic variable (altitude) was obtained from DIVA resource (http://www.diva-

gis.org/gdata). Additionally, nineteen bioclimatic variables were used in the algorithm. The 

bioclimatic information was derived from monthly min/max temperature and precipitation data 

taken from the WorldClim database (Hijmans et al., 2005) averaged to calculate annual trends 

for the period 1950–2000 with a spatial resolution of 2.5 arc min (4.65 km). 

As the lower limit strongly depends on the species’ prevalence and the specific features 

of the targeted study area (Proosdij et al., 2015), we did not model those species with ≤ three 

geographical records and the remaining species were divided into two groups: Low - four to ten 

records; High - ≥11 records. The validation of the models in the first group was performed using 

the Jackknife validation approach (Pearson et al., 2007; Corbalán et al., 2011; Rinnhofer et al., 
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2012). The jackknife validation approach proposed enabled assessment of the predictive ability 

of models built using very small sample sizes (Pearson et al., 2007). The number of iterative runs 

was set as equal to the number of records available and resulting models were tested using 

ValueCompute software (Pearson et al., 2007). For the second group, we used a random 

percentage test, in which 75% of the records were randomly selected to generate models and the 

remaining 25% were used to test them. The performance of each model was also assessed using 

the Area Under the Curve (AUC) method of the Receiver Operating Characteristic (ROC). The 

AUC is a threshold independent index used to assess prediction maps, which is expressed in 

values between 0.5 (no predictability) and 1 (perfect prediction). This study followed the 

parameters established in Elith et al. (2006) and Loo et al. (2007), in which models that have an 

AUC value of > 0.75 are considered to have a useful amount of discrimination. 

 

Conservation prioritization analysis 

 

Zonation v 3.1 (Moilanen & Kujala, 2008) was used to identify priority areas for the 

conservation of Orthalicoidean species. This software uses large grids of probabilistic data as 

input files and provides a correlation between species distribution modeling data and spatial 

conservation prioritization (Moilanen et al., 2005; Taberlet et al., 2012). Also, it produces a 

hierarchical prioritization of the landscape based on the occurrence levels of biodiversity features 

(species, land cover types, etc.) in grid cells (a pixel on a map). Zonation uses a raster for each 

biodiversity feature, where each cell (pixel) contains a number for the occurrence level of that 

feature. The way loss of conservation value is aggregated across features (occurring in a cell) 

depends on the so-called cell-removal rule. Iterative priority ranking starts from the full 
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landscape and removes cells stepwise, minimizing loss, until no more remain. Least valuable 

cells (e.g. a few common species occurring) are removed first, while the most important cells for 

biodiversity (e.g. high species richness and species occurrence) are kept till last. The ranking 

enables easy identification and visualization as a prioritized rank map with colors indicating 

different rank values (Lehtomäki & Moilanen, 2013). 

To established the priority ranking, the Core-area Zonation (CAZ) removal rule was 

selected. This procedure bases ranking on "the most important occurrence of a feature in the 

cell". Therefore, it is able to identify those areas that have a high occurrence level for a single 

rare and/or highly weighted feature as high-priority (Moilanen et al., 2012; Di Minin et al., 

2014). Differential weights were assigned to analyzed species; endemic species (selected by their 

condition at country level) were assigned a weight of two, while the remaining species were 

given a weight of one. An “unconstrained” analysis was carried out considering only the species 

distribution to identify the areas with the highest priority conservation areas. We used the 

following ranking in the priority map: top 1.47% (equivalent to percentage of the area protected 

by National Parks), top 6.7% (equivalent to percentage of the total PAs in the country) and top 

17% (equivalent to that 17% target recommended by CBD). A second analysis included the 

existing PAs using a hierarchical mask, and we tested the proportion of Orthalicoidean species 

distribution within them. Finally, we used as negative variable the Human Footprint V 2.0 (WCS 

& CIESIN, 2005) “penalizing” the pixels with high human influence according the proposal of 

Nori et al. (2016). This variable was included in Zonation the same way as the layers of the 

species distribution and was weighted as a negative value, while species distribution had a 

positive weight so that the sum of the individual weights of each species and negative variable 

equals zero. 
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Endemic species that were not modeled, together with those not found statistically 

significant using the Jackknife validation approach, were categorized in the prioritization 

analysis as Species of Special Interest (SSI) (Table 1, 2). For each performed analysis, the only 

predicted distributions that were used were those of the Orthalicoidean species that had been 

validated in their primary input. 

After running the prioritization analysis, performance curves were plotted which quantify 

the proportion of the original occurrences retained for each biodiversity feature (Di Minin et al., 

2014; Moilanen et al., 2014) at each top fraction of the landscape chosen for conservation. This 

allowed us to determine the representativeness of the current PAs network and the top priority 

17% of the available territory. 

 

Results 

Based on the current distribution of Orthalicoidea (Fig. 1A), 56 species (55 %) are 

ecologically rare, meaning endemic species restricted to a single ecoregion, and 72 (70 %) are 

geographically rare, meaning species endemic to Argentina with restricted distributional areas. 

The dry Chaco is the ecoregion with the highest endemism, with 39 endemic species (36 %). On 

the other hand, only 37 species (35%) were recorded within the current protected areas system, 

including four species considered as SSI in our analyses (Table 1, 2). 

Models that were evaluated with the Jackknife validation method (average success 

rate=0.71; p<0.05) demonstrated that almost all species with a low number of records obtained 

statistically significant results, as well as an excellent discrimination of occurrence, including an 

average AUC score of 0.954 (range:0.758 -0.998). Species with a high number of records (n>11) 

also obtained a high average AUC score (0.967; range 0.892 - 0.996). Consequently, all modeled 
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species were included in the priority area selection process. Sixty-one species were modeled, and 

59 of them were included in the priority area selection process due to their high AUC scores. 

The “unconstrained” analysis showed five areas with highest priority for conservation located in 

the different ecoregions, 1-dry Chaco (mainly north-western Córdoba province), 2-humid 

Pampas (southeastern Buenos Aires province), 3-Southern Andean Yungas (northwestern portion 

of the country), 4-Alto Paraná Atlantic Forests (northeastern portion of the country) and 5-high 

Monte (central part of La Rioja and eastern San Juan provinces) (Fig. 2A). In this initial analysis, 

considering the top 1.47% fraction area (equivalent to the percentage of the National Parks 

system area) would protect, on average, 6.44% (range: 1.2–17.4%) of the geographic range of 

the analyzed Orthalicoidean species (Fig. 2B). Species with limited distribution ranges would 

receive greater protection than species with wider distribution areas (Fig. 2B). Similarly, non-

endemic species made up a higher percentage of protection than endemics (Fig. 2B). Among 

endemic species, Clessinia tucumanensis (Parodiz, 1941) and Plagiodontes daedaleus 

(Deshayes, 1851) would have the highest percentage of protection coverage (15.9%), followed 

by Clessinia martensii (Doering, 1874b [1875]) (12.4%) (Fig. 2B). For the remaining endemic 

species, less of the 10% of their distribution would be protected under this scenario (Fig. 2B). 

When we take into account the 6.7% top fraction of the landscape (percentage of total protected 

areas), the average species’ ranges protected increased to 23.9% (range: 5.5–52.7) (Fig. 2C). 

Less than 30% of the distribution of most endemic species would be protected (Fig. 2C). 

Considering the 17% target, the number of priority areas does not increase relative to the 

previous analysis (considering the 1.47%) but an expansion of those areas covering more 

territory was observed. In the top fraction of the landscape, the average species distribution 
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protection would increase to 45% (Fig. 2D). The distribution of nineteen endemic species would 

be between 40% to close to 60% protected (Fig. 2D). 

When we consider the existing protected areas in Argentina, only a small percentage of 

the average distribution range of Orthalicoidean species (3%) is within the current protected 

areas. Highest-ranked priority areas for land snails in the unconstrained analyses are outside of 

most PAs (Fig. 3A). In Northwestern Argentina there are seven National Parks that protect part 

of the ecoregions of Southern Andean Yungas and dry Chaco (Baritú, Calilegua, Copo, Pizarro 

and El Rey), Monte and Central Andean dry Puna (Los Cardones) and Southern Andean Yungas 

and Central Andean Puna (Campo de Los Alisos) (Fig. 1B). In the central part of Argentina 

(Córdoba province) there is only one National Park (Quebrada del Condorito) that protects the 

dry Chaco while in southwestern Buenos Aires one national park (Campos del Tuyú) protects 

part of Humid Pampas ecorregion (Fig. 1B). The priority areas obtained in the “unconstrained” 

analysis and those considering the existing protected areas analysis, occupy the same total area, 

although a high level of fragmentation of these areas in the “unconstrained” analysis can be seen 

(Fig. 3A). 

To protect 17% of the study area, the current protected areas would require an increase of 

7.6% in their total surface. Under this scenario, an average of 45.9% (range: 78.5–14.1) of all 

species distributions would be represented. As an example, Plagiodontes daedaleus, would have 

almost 78.5% of its distribution range under protection. On the other hand, the endemic 

Discoleus ameghinoi von Ihering, 1908, would only have 16.4% of its distribution range under 

protection (Fig. 3B). 

The human footprint superimposed on species distribution significantly modified the 

previous analyses. Surprisingly, the priority areas suffered a dramatic reduction in their extension 
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in comparison with the previous results. Many of the areas appear isolated from each other, 

mainly located in the Northwestern Argentina (Fig. 3C) and the species distributions are also 

affected (Fig. 3D). Despite this, the highest priority areas continue to be within the dry Chaco, 

Southern Andean Yungas, Alto Paraná Atlantic Forests and humid Pampas (Fig. 3C). A 

significant portion of these ecoregions are currently occupied by agriculture and cattle 

production creating a potential conflict of interest between the development of economic activity 

and the protection of mollusks.  

 

DISCUSSION 

 

Conservation prioritization areas in different ecoregions 

 

All the conservation prioritization analyses carried out showed areas that protect part of 

five ecoregions of Argentina. Some of these ecoregions are treated as “Vulnerable” or 

“Critical/Endangered” by World Wide Fund for Nature (WWF) such as the dry Chaco, Southern 

Andean Yungas and humid Pampas (Olson et al., 2001). The cloud forests of Yungas, as well as 

the dry Chaco, are being destroyed at one of the fastest rates in the world and dry Chaco is the 

ecoregion with the lowest level of protection (Izquierdo & Grau, 2008; Persson et al., 2014). The 

dry Chaco has suffered from the effects of human population increase (Roig, 1991), the advance 

of the agricultural frontier, especially soya beans, wheat and other crops that have replaced 

native forests; domestic animal populations have also remained high (Izquierdo & Grau, 2008; 

Gasparri et al., 2013). The situation in the Southern Andean Yungas is also critical as it has been 

estimated that more than one-half of the original forest has disappeared due to logging, 
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agriculture and urbanization. The humid Pampas is one of the most highly human populated 

areas in Argentina and is extensively used for agriculture and cattle grazing (Dinerstein et al., 

1995). The northwestern portions of the country are being affected by climate change and 

anthropogenic activities and the presence of cattle (grazing), erosion, industrial activity, mining 

and contamination of water supplies (Gonzales, 2009; Godoy-Bürki et al., 2013). 

Areas within the Southern Andean Yungas and dry Chaco (Chaco Serrano sub-ecoregion) 

identified here as having high priority for land snail conservation are consistent with previous 

studies, both for groups of vertebrates and invertebrates. For example, for the protection of 

several xenarthra species, the Southern Andean Yungas and the Alto Paraná Atlantic Forests 

ecoregions were set up as priority areas (Tognelli et al., 2011) in the same way they were to 

macroinvertebrates, the basins located in the Southern Andean Yungas (Nieto et al., 2017).  

Land gastropods of the dry Chaco merit special attention because they comprise a highly 

diverse group of mostly endemic species to this ecoregion. Clessinia inhabits the dry Chaco of 

Argentina and contains endemic rare species (Cuezzo et al., 2018). Also, Bostryx peristomatus 

(Doering, 1879) (Bulimulidae) is endemic to north western Córdoba. Nori et al. (2011, 2013) 

also identified that these dry Chaco areas are of significant conservation value for amphibians 

and reptiles. At the same time, the dry Chaco of Córdoba has high crop production and yields per 

planted area and suffers uncontrolled deforestation; frequent forest fires are also causing 

significant losses of habitats (Britos & Barchuk, 2008; Izquierdo et al., 2011). Within the high 

Monte in the central part of La Rioja and eastern San Juan provinces, priority areas for 

conservation identified here are coincident with priority areas for vascular plants (Godoy-Bürki 

et al., 2013). 
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Current Protected Areas 

 

A small percentage of the Orthalicoidean land snail average distribution ranges are 

safeguarded within current protected areas, showing that the existing protected areas system is 

not effective at all for the protection of land snail species. Some large priority areas for 

conservation occur adjacent to (or in buffer) areas of current PAs, mainly in the Northwestern 

Argentina (Fig. 2A). Several studies carried out in Argentina have shown strong evidence that 

the existing protection system of Argentina is not effective for safeguarding vertebrates 

(Arzamendia & Giraudo, 2004; Tabeni et al., 2004; Corbalán et al., 2011; Tognelli et al., 2011; 

Nori et al., 2013), plants (Chehebar et al., 2013; Godoy-Bürki et al., 2013) or invertebrate species 

(Chehebar et al., 2013; Nieto et al., 2017).  

When considering the percentage recommended by CBD (2010) for conservation, the 

analyses identified the same areas of interest as the “unconstrained” analysis (Fig. 2A). The only 

difference was an expansion of the priority areas when calculating the ideal percentage of 

protection (17%). However, a mere increase in the extent of terrestrial Protected Areas does not 

necessarily guarantee the protection of more species. Despite the increase in the extent of 

terrestrial PAs in the last decade, the proportion of animal species outside PAs has also increased 

(Nori et al., 2015). 

 

Human footprint and conservation 

The impact of the growing extent and intensity of human influences on landscapes is 

reflected in of loss and degradation of natural habitats and in the species that they contain 

(McGowan, 2016). The analysis identified that some areas continue to be classified within the 

ACCEPTED M
ANUSCRIP

T



 

15 

 

 

highest conservation priorities, despite the fact that they are under the human pressure. The 

reduction in the extension of the priority areas and fragmentation into small disconnected patches 

could bring about a decrease in dispersion rates, population survival and species richness in these 

areas as a consequence. Also, we highlighted how the dearth of protected areas and excess 

human pressure may lead to the extinction of both SSIs and species with limited distribution 

ranges that inhabit these areas. Patches of land that are not currently under agriculture could be 

used for conservation and serve as a refuge for molluscs and other invertebrates. For example, 

some small patches of dry Chaco in Córdoba (from the Northwestern to the southwestern) and 

close to the political limits with Santiago del Estero province are areas of high conservation 

value that still hold many living endemic species. To the south, in the low Monte ecoregion, land 

patches close to the limit between Córdoba and San Luis provinces are still available for 

conservation purposes. New strategies for invertebrate conservation should focus on the 

protection of these small patches and, if possible, restore those modified habitats that are a 

priority for the conservation of Orthalicoidean species. 

Habitat fragmentation is considered as one of the major drivers of biodiversity loss 

world-wide (Bailey et al., 2010). When a continuous habitat is transformed into many smaller 

patches a reduction in migration rates, dispersal success, abundance and species richness follow 

(Fischer & Lindenmayer, 2010). A real conflict exists between the human development and 

conservation and some authors have proposed strategies to reconcile such conflicts (Henle at al., 

2008). However agricultural policies, expansion in the agricultural activities and interests 

(mostly geared towards economic gains) clash with the conservation of biodiversity in 

agricultural landscapes (Henle et al., 2008). 
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In Argentina, the following ecoregions suffer strong impact of agriculture: humid Chaco 

and Espinal, located in the central-eastern part of the country, from Corrientes and Entre Rios to 

southern Buenos Aires province; the dry Chaco, from Formosa to northern Córdoba; the 

Southern Andean Yungas ecoregion, from Jujuy to Tucumán provinces (Cabido et al., 2005; 

Britos & Barchuk, 2008; Gonzáles, 2009). On the contrary, the Low Monte and the Patagonian 

Steppe ecoregions within the central-southern portions of the country are more affected by 

livestock production (Guevara et al., 2009). 

A narrow strip was identified as priority for conservation in Northwestern Argentina, as it 

has the largest continuous area of Yungas in the country and hosts a high diversity, including 

endemic and endangered species. It is coincident with the “Reserva de Biosfera de Las Yungas” 

recognized by UNESCO, with the aim is to promote solutions reconciling the conservation of 

biodiversity with its sustainable use in the Yungas Area (Le Ster et al., 2015). Only national 

parks and provincial reserves included in it truly constitute areas with total protection (also 

known as the “Core area”), among them the Baritú and Calilegua National Parks and Pintascayo 

and Potrero de Yala Provincial Parks (Lomáscolo et al., 2010). In buffer areas the main activities 

are sustainable forestry, livestock and agriculture (potato, corn, peanuts, chili) in small areas. 

Most peripheral areas correspond to transition areas, mostly within private properties. These are 

used for large scale agriculture (sugar cane, soybean, corn, banana, citrus and vegetable 

plantations), livestock, forestry, industrial activities and human settlements (Lomáscolo et al., 

2010). Orthalicoidean species are, however, also distributed outside the core areas, which makes 

them vulnerable to continued economic activities in those areas without protected status. 

When land uses are taken into account, small areas of the humid Pampas ecoregion of 

southern Buenos Aires have high conservation priority for land snails. The Humid Pampas is 
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almost completely affected by agriculture, but contain a rich endemic fauna and are inhabited by 

various SSIs (i.e. Plagiodontes rocae Doering, 1881, P. patagonicus and Cyclodontina 

(Ventania) avellanedae) that should be protected. Furthermore, these areas are located in two 

mountainous systems identified as areas of endemism for other invertebrate groups (Ferretti et 

al., 2012). 

This study represents one of the first attempts to identify priority areas, at the ecoregion 

level, for a terrestrial invertebrate group, also analyzing the influence of land uses on biodiversity 

conservation. Although our results pinpoint potential areas for mollusks conservation, it is 

important to recognize some limitations of our analyses. Our results are based on distribution 

modelling and we focused on those rare and endemic species, which are generally the strongest 

predictors of the extinction risk of species (Isik, 2011), but we cannot know how well other 

species are represented. Thus, we believe that two steps are central to the evaluation of 

biodiversity conservation in order to obtain robust conclusions: first, the application of expertise 

of taxonomists and natural history museums that offer a wealth of data suitable for the study; 

second, the availability of reproducible Model-based analyses that can be rigorously evaluated. 

Additional studies, including new information regarding other mollusks groups, should 

be performed. It is clear from our results that areas currently protected, mainly designed for 

vertebrates, are not effective in protecting biodiversity, especially in the light of mollusks. 

Moreover, global climatic change, together with changing land use, are affecting the distribution 

areas of invertebrates in a way not yet completely understood. For these reasons, analyses 

including new predictors and the refinements of models would be useful tools for future 

conservation decisions in order to protect the poorly known groups. 

 

ACCEPTED M
ANUSCRIP

T



 

18 

 

 

Acknowledgements 

We would like to thank the curators and collection managers from the following malacological 

collections: Alejandro Tablado and Sergio Miquel (MACN, Argentina), Gustavo Darrigran and 

Mónica Tassara (MLP, Argentina) and Benjamín J. Bender (MCNL, Argentina). Thanks, are 

also extended to the Argentine National Park Service (APN), especially to the northwestern 

regional office, for providing several working permits to collect and carry out research within 

national protected areas. We also thank Federico Montesino Pouzol (Finnish Centre of 

Excellence in Metapopulation Biology, Finland) for his useful contributions in the Zonation 

analyses. Thanks, are also extended to Barry Roth who read and corrected English from a 

preliminary draft. Thanks to Jorge Fabricant (Grupo de Trabajo sobre Áreas Protegidas 

GeoInformación, Ministerio de Medio Ambiente, Argentina) for providing information and 

layers of Protected Areas from Argentina. Special thanks to Joel C. Creed (native speaker), who 

corrected the English in the final version of the manuscript. This study was financed by PIP 0055 

(CONICET) awarded to M.G. Cuezzo (IBN, CONICET-UNT) and PICT 1067 (ANPCyT) 

awarded to E. Dominguez (IBN, CONICET-UNT). XCO is a professor and researcher in the 

Programa de Apoio à Docência at the Universidade do Estado do Rio de Janeiro. MJM is a 

researcher at the Universidad Nacional de Tucumán. RL’s research has been constantly funded 

by CNPq (grants #308532/2014-7, 479959/2013-7, 407094/2013-0, 563621/2010-9) and O 

Boticário Group Foundation for the Protection of Nature (grant #PROG_0008_2013). MGC is 

research of the Argentine National Council of Scientific Research (CONICET). 

 

References 

ACCEPTED M
ANUSCRIP

T



 

19 

 

 

Arzamendia, V., & Giraudo, A. R. (2004). Usando patrones de biodiversidad para la evaluación 

y diseño de áreas protegidas: las serpientes de la provincia de Santa Fe (Argentina) como 

ejemplo. Revista Chilena de Historia Natural, 77, 335–348. 

Bailey, D., Schmidt‐ Entling, M. H., Eberhart, P., Herrmann, J. D., Hofer, G., Kormann, U. & 

Herzog, F. (2010). Effects of habitat amount and isolation on biodiversity in fragmented 

traditional orchards. Journal of Applied Ecology, 47, 1003–1013. 

Bouchet, P. 2007 Inventorying the molluscan fauna of the world: how far to go? In: K. Jordaens, 

N. van Houtte, J. Van Goethem, and T. Backeljau. (eds) Abstracts of the World Congress 

of Malacology, Antwerp, Belgium 

Breure, A. S. H., & Mogollon, V. (2010). Well-known and little-known: miscellaneous notes on 

Peruvian Orthalicidae (Gastropoda, Stylommatophora). Zoologische Mededelingen, 84, 

15–35. 

Britos, A. H., & Barchuk, A. H. (2008). Cambios en la cobertura y en el uso de la tierra en dos 

sitios del Chaco Árido del noroeste de Córdoba, Argentina. Agriscientia, 25, 97–110. 

Brown, A.D., & Pacheco, S. (2006). Propuesta de actualización del mapa ecorregional de la 

 Argentina. In A. D., Brown, U., Martinez Ortiz, Acerbi, & J. Corcuera (Eds.), La 

 situación ambiental argentina 2005. Fundación Vida Silvestre Argentina. Buenos 

 Aires, pp 1–587. 

Cabido, Marcelo & Zak, Marcelo & Cingolani, Ana & Cáceres, Daniel M. & Diaz, Sandra. 

(2005). Cambios en la cobertura de la vegetación del centro de Argentina. ¿Factores 

directos o causas subyacentes?. 

CBD (2010). Convention on Biological Diversity. https://www.cbd.int/2010-target/ 

ACCEPTED M
ANUSCRIP

T



 

20 

 

 

Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Rosamond, L. N., Vitousek, P. M., Reynolds, H. L., 

Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., & Díaz, S. (2000). 

Consequences of changing biodiversity. Nature, 405, 234–42. 

Chehebar, C., Novaro, A., Iglesias, G., Walker, S., Funes, M., Tammone, M., & Didier, K. 

(2013). Identificación de áreas de importancia para la biodiversidad en la estepa y el 

monte de Patagonia-Valoración en base a distribución de especies y ecosistemas, pp. 

112. APN/WCS/TNC. 

Corbalán, V., Tognelli, M. F., Scolaro, J. A., & Roig-Juñent, S. A. (2011). Lizards as 

conservation targets in Argentinean Patagonia. Journal of Nature Conservation, 19, 60–

67. 

Cowie, R. H., Regnier, C., Fontaine, B., & Bouchet, P. (2017). Measuring the Sixth Extinction: 

what do mollusks tell us?. The Nautilus, 131(1), 3–41. 

Cuezzo, M. G., Miranda, M. J., & Ovando, X. C. M. (2013). Catalogue of the nominal taxa of 

Orthalicoidea in Argentina (Gastropoda: Stylommatophora). Malacologia, 56, 135–191. 

Cuezzo, M. G., Miranda, M. J., Vogler, R. E., & Beltramino, A. A. 2018. From morphology to 

molecules: A combined source approach to untangle the taxonomy of Clessinia 

(Gastropoda, Odontostomidae), endemic land snails from the Dry Chaco ecoregion.  

 PeerJ  6:e5986 DOI  10.7717/peerj.5986 

Deepak, V., Vasudevan, K., & Pandav, B. (2010). Preliminary observation on the diet of the cane 

turtle (Vijayachelys silvatica). Hamdaryad, 34, 166–168. 

Di Minin, E., Veach, V., Lehtomäki, J., Pouzols, F.M. & Moilanen, A. (2014). A quick 

introduction to Zonation. Unigrafia OY, Helsinki. 

ACCEPTED M
ANUSCRIP

T



 

21 

 

 

Dinerstein, E., Olson, D. M., Graham, D. J., Webster, A. L., Primm, S. A., Bookbinder, M. P., & 

Ledec, G. (1995). Conservation Assessment of the Terrestrial Ecoregions of Latin 

America and the Caribbean. The World Bank: Washington, D.C, USA. 

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Robert, A. G., Hijmans, J., 

Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., 

Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. Overton, J., Townsend 

Peterson, A., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., 

Soberón, J., Williams, S., Wisz, M. S., & Zimmermann, N. E. (2006). Novel methods 

improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–

151. 

Ferretti, N. E., Gonzalez, A., & Perez-Miles, F. (2012). Historical biogeography of mygalomorph 

spiders from the peripampasic orogenic arc based on track analysis and PAE as a 

panbiogeographical tool. Systematics and Biodiversity, 10: 179–193. 

Fontaine, B., Bouchet, P., Van Achterberg, K., Alonso-Zarazaga, M. A., Araujo, R., Asche, M., 

Aspöck, U., Audisio, P., Aukema, B., Bailly, N., Balsamo, M., Bank, R. A., Barnard, P., 

Belfiore, C., Bogdanowicz, W., Bongers, T., Boxshall, G., Burckhardt, D., Camicas, J. L., 

Chylarecki, P., Crucitti, P., Deharveng, L., Dubois, A., Enghoff, H., Faubel, A., Fochetti, 

R., Gargominy, O., Gibson, D., Gibson, R., Gómez López, M. S., Goujet, D., Harvey, M. 

S., Heller, K.-G., Van Helsdingen, P., Hoch, H., De Jong, H., De Jong, Y., Karsholt, O., 

Los, W., Lundqvist, L., Magowski, W., Manconi, R., Martens, J., Massard, J. A., 

Massard-Geimer, G., Mcinnes, S. J., Mendes, L. F., Mey, E., Michelsen, V., Minelli, A., 

Nielsen, C., Nieto Nafría, J. M., Van Nieukerken, E. J., Noyes, J., Pape, T., Pohl, H., De 

Prins, W., Ramos, M., Ricci, C., Roselaar, C., Rota, E., Schmidt-Rhaesa, A., Segers, H., 

ACCEPTED M
ANUSCRIP

T



 

22 

 

 

Zur Strassen, R., Szeptycki, A., Thibaud, J. M., Thomas, A., Timm, T., Van Tol, J., 

Vervoort, W., & Willmann, R. (2007). The European union´s 2010 target: Putting rare 

species in foccus. Biological Conservation, 139, 167–185. 

Fischer, J. & Lindenmayer, D.B. (2007). Landscape modification and habitat fragmentation: a 

synthesis. Global Ecology and Biogeography, 16, 265–280. 

Gasparri, I., Grau, H. R., & Gutierrez Angonese, J. (2013). Linkages between soybean and 

neotropical deforestation: Coupling and transient decoupling dynamics in a multi-decadal 

analysis. Global Environmental Change, 23, 1605–1614. 

Godoy-Bürki, A. C., Ortega-Baes, P., Sajama, J. M., Aagesen, L. (2013). Conservation priorities 

in the Southern Central Andes: mismatch between endemism and diversity hotspots in the 

regional flora. Biodiversity and Conservation, 23(1), 81–107 

Gonzales, J. A. (2009). Climatic change and other anthropogenic activities are affecting 

environmental services on the Argentina Northwest (ANW). Earth and Environmental 

Science, 6, 1–2. 

Guevara, J., Grünwaldt, E., Estevez, O., Bisigato, A., Blanco, L., Biurrun, F. N., Ferrando, C., 

Chirino, C., Morici, E., Fernández, B., Allegretti, L. I., & Passera, C. (2009). Range and 

livestock production in the Monte Desert, Argentina. Journal of Arid Environments, 73, 

228–237. 10.1016/j.jaridenv.2008.02.001. 

Henle, k., Alardb, D., Clitherowc, J., Cobbd, P., Firbanke, L., Kullf, T., McCrackeng, D., 

Moritzh, R. F. A., Niemeä, J., Rebanej, M., Wascherk, D., Wattl, A. & Young, J. (2008), 

Identifying and Managing the Conflicts between Agriculture and Biodiversity 

Conservation in Europe—A Review. Agriculture, Ecosystems and Environment, 124, 60–

71. 

ACCEPTED M
ANUSCRIP

T



 

23 

 

 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high-

resolution interpolated climate surfaces for global land areas. International Journal of 

Climatology, 25, 1965–978. 

Isik, K. (2011). Rare and endemic species: Why are they prone to extinction?. Turkish Journal of 

Botany, 35, 411–417. 

Izquierdo, A. E., & Grau, H. R. (2008). Agriculture adjustment, land-use transition and protected 

areas in Northwestern Argentina. Journal of Environmental Management, 90, 858–865. 

Izquierdo, A. E., Grau, H. R., & Mitchel Aide, T. (2011). Implications of Rural–Urban migration 

for Conservation of the Atlantic Forest and Urban growth in Misiones, Argentina (1970–

2030). Ambio, 40, 98–309. doi 10.1007/s13280-010-0095-3. 

Jurickova, L., Horsák, M., Cameron, R., Hylander, K., Míkovcová, A., Hlaváčfg, J. C. & 

Rohovec, J. (2007). Land snail distribution patterns within a site: The role of different 

calcium sources. European Journal of Soil Biology, 44(2), 172-179. 

Kerr, J. T. (1997). Species Richness, Endemism, and the Choice of Areas for Conservation. 

Conservation Biology, 11, 1094–1100. 

Lehtomäki, J., & Moilanen, A. (2013). Methods and workflow for spatial conservation 

prioritization using Zonation. Environmental Modelling & Software, 47, 128–137. 

Le Ster, A., Reid Rata, Y., Bergesio, L. & Malizia, L. R. (2015). Las reservas de biosfera como 

instrumentos de gestión territorial: el caso de RBYungas (Argentina). Revista de Estudios 

Regionales, 11, 61–79. 

Lomáscolo, T., Brown, A. D., & Malizia, L. R. (2010). Guía visual de la Reserva de biosfera de 

las Yungas. Argentina: Tucumán, Yerba Buena. 

ACCEPTED M
ANUSCRIP

T



 

24 

 

 

Loo, S.E., Mac Nally, R., & Lake, P.S. (2007). Forecasting New Zealand mud snail invasion 

range: Model comparisons using native and invaded ranges. Ecological Applications, 17, 

181–189. 

Lydeard, C, Cowie, R. H., Ponder, W. F., Bogan, A. E., Bouchet, P., Clark, S. A., Cummings, K. 

S., Frest, T. J., Gargominy, O., Herbert, D. G., Hershler, R., Perez, K. E., Roth, B., 

Seddon, M., Strong, E. E., & Thompson, F. G. (2004). The Global Decline of Nonmarine 

Mollusks. BioScience, 54, 321–330. 

Marinaro, S., Grau, H. R., & Aráoz, E. (2012). Extensión y originalidad en la creación de 

parques nacionales en relación a cambios gubernamentales y económicos de la Argentina. 

Ecologia Austral, 22, 1–10. 

McGeoch, M. A., Sithole, H., Samways, M. J., Simaika, J. P., Pryke, J. S., Picker, M., Uys, C., 

Armstrong, A. J., Dippenaar-Schoeman, A. S., Engelbrecht, I. A., & Hamer, M. (2011). 

Conservation and monitoring of invertebrates in terrestrial protected areas. Koedoe, 53, 

1–13. doi:10.4102/koedoe.v53i2.1000. 

Miranda, M. J., & Cuezzo, M. G. (2010). Biodiversidad de gasterópodos terrestres (Mollusca) en 

el Parque Biológico Sierra de San Javier, Tucumán, Argentina. Revista de Biología 

Tropical, 58, 1009–1029. 

Miranda, M. J., & Cuezzo, M. G. (2014). Taxonomic revision of the Bostryx stelzneri species 

complex (Gastropoda, Orthalicidae, Bulimulidae). American Malacological Bulletin, 32, 

74–93. 

Miranda, M. J. (2015). Bostryx tortoranus (Doering, 1879) species complex (Gastropoda: 

Stylommatophora: Bulimulidae), a review of taxonomy and distribution of endemic 

ACCEPTED M
ANUSCRIP

T



 

25 

 

 

species from Argentina. Journal of Natural History, 49, 995–1022. doi: 

10.1080/00222933.2014.981313. 

Moilanen, A., Franco, A. M. A., Early, R., Fox, R., Wintle, B., & Thomas, C. D. (2005). 

Prioritizing multiple use landscapes for conservation: methods for large multi species 

planning problems. Procceedings of the Royal Society B, 272, 1885–1891. 

Moilanen, A., & Kujala, H. (2008). Zonation Spatial conservation planning framework 

andsoftware. User manual. Version 2. www.helsinki.fi/BioScience/ConsPlan 

Moilanen, A., Anderson, B. L., Eigenbrod, F., Heinemeyer, A., Roy, D. B., Gillings, S., 

Armsworth, P. R., Gaston, K. J., & Thomas, C. D. (2011). Balancing alternative land uses 

in conservation prioritization. Ecological Applications, 21, 1419–1426. 

Moilanen, A., Meller, L., Leppänen, J., Montesino, Pouzol, F., Arponen, A., & Kujala, H. 

(2012). Zonation Spatial conservation planning framework and software. User manual. 

Version 3.1 

New, T.R. (2011). Strategic planning for invertebrate species conservation-how effective is it?. 

JoTT Essays, 3, 2033–2044. 

Nieto, C., Ovando, X. M. C., Loyola, R., Izquierdo, A., Romero, F., Molineri, C., Rodríguez, J., 

Rueda Martín, P., Fernández, H., Manzo, V., Miranda, M. J. (2017). The role of 

macroinvertebrates for conservation of freshwater systems. Ecology and Evolution, 7(14), 

5502-5513. doi: 10.1002/ece3.3101. 

Nori, J., Diaz Gomez, J. M., & Leynaud, G. C. (2011). Biogeographic regions of Central 

Argentina based on snake distribution: evaluating two different methodological 

approaches. Journal of Natural History, 45, 1005–1020. ACCEPTED M
ANUSCRIP

T



 

26 

 

 

Nori, J., Lescano, J. N., Illoldi Rangel, P., Frutos, N., Cabrera, M. R., & Leynaud, G. C. (2013). 

The conflict between agricultural expansion and priority conservation areas: Making the 

right decisions before it is too late. Biological Conservation, 159, 507–513. 

Nori, J., Lemes, P., Urbina-Cardona, N., Baldo, D., Lescano, J., & Loyola, R. (2015). Amphibian 

conservation, land-use changes and protected areas: A global overview. Biological 

Conservation, 191, 367–374. 

Nori, J., Torres, R. Lescano1, J. N., Cordier, J. M., Periago, M. E. &and Baldo, D. (2016). 

Protected areas and spatial conservation priorities for endemic vertebrates of the Gran 

Chaco, one of the most threatened ecoregions of the world. Diversity and Distributions, 

1–8. 

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess Neil, D., Powel, G. V. N., 

Underwood, E. C., D’Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., 

Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & 

Kassem, K. R. (2001). Terrestrial Ecoregions of the world: a new map of life on earth. 

Bioscience, 51, 933–938. 

Ortega Baes, P., Bravo, S., Sajama, J., Sühring, S., Arrueta, J., Sotola, E., Alonso-Pedano, M., 

Godoy-Bürki, A. C., Frizza, N. R., Galíndez, G., Gorostiague, P., Barrionuevo, A., & 

Scopel, A. (2012). Intensive field surveys in conservation planning: Priorities for cactus 

Diversity in the Saltenian Calchaquíes Valleys (Argentina). Journal of Arid 

Environments, 82, 91–97. 

Parodiz, J. J. (1946). Los géneros de los Bulimulinae Argentinos. Revista Museo de La Plata, 4, 

303–371. 

ACCEPTED M
ANUSCRIP

T



 

27 

 

 

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species 

distributions from small numbers of occurrence records: A test case using cryptic geckos 

in Madagascar. Journal of Biogeography, 34, 102–117. 

Persson, M., Henders, S., & Kastner, T. (2014). Trading forest: Quantifying the contribution of 

global commodity markets to emissions from Tropical deforestation. CGD Working 

Paper 384. Washington, DC: Center for Global Development. 

Phillips, S.J., Anderson, R.P., & Schapire, R.E. (2006). Maximum entropy modeling of species 

geographic distributions. Ecological Modelling, 190, 231–259. 

Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. 

(2009). Sample selection bias and presence-only distribution models: implications for 

background and pseudo-absence data. Ecological Applications, 19, 181–197. 

Quantum GIS Development Team (2009). Quantum GIS Geographic Information System. Open 

Source Geospatial Foundation Project. http://qgis.osgeo.org 

Regnier, C., Fontaine, B., & Bouchet, P. (2009). Not knowing, not recording, not listing: 

numerous unnoticed mollusk extinctions. Conservation Biology, 23, 1214–1221. 

Rinnhofer, L. J., Roura Pascual, N., Arthofer, W., Dejaco, T., Thaler-Knoflach, B., Wachter, G. 

A., Florian, E. C., Steiner, M., & Schlick-Steiner, B. C. (2012). Iterative species 

distribution modelling and ground validation in endemism research: an Alpine jumping 

bristletail example. Biodiversity and Conservation, 21, 2845–2863. 

Roig, V. G. (1991). Desertification and distribution of mammals in the Southern Cone of South 

America. In: M. A. Mares, & D. J. Schmidly (Eds.), Latin American Mammalogy: 

History, Biodiversity and Conservation, pp. 239-279. Norman: University of Oklahoma 

Press. 

ACCEPTED M
ANUSCRIP

T



 

28 

 

 

Rosenberg, G. (2014). A new critical estimate of named species-level diversity of the recent 

Mollusca. American Malacological Bulletin, 32(2), 308–322. 

Sala, O. E., Chapin III, F. S., Armesto, J. J., Berlow, R., Bloomfield, J., Dirzo, R., Huber-

Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D., 

Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., & 

Wall, D. H. (2000). Global Biodiversity Scenarios for the Year 2100. Science, 287, 1770–

1774. 

Salas Oroño, E., Cuezzo, M. G., & Romero, F. (2007). Land snail diversity in subtropical 

rainforest mountains (Yungas) of Tucumán, northwestern Argentina. American 

Malacolacological Bulletin, 22, 17–26. 

Secretariat of the Conservation on Biological Diversity .2010. Global Biodiversity Outlook 3. 

Montréal. http://www.cbd.int 

Sen, S., Ravikanth, G., & Aravind, N. A. (2012). Land Snails (Mollusca: Gastropoda) of India: 

Status, Threats and Conservation Strategies. Journal of Threatened Taxa, 4, 3029–3037. 

Solymos, P., & Fehér, Z. (2005). Conservation prioritization based on distribution on land snails 

in Hungary. Conservation Biology, 19, 1084–1094. 

Tabeni, M. S., Bender, J. B., Ojeda, R. A. (2004). Puntos calientes para la conservación de 

mamíferos en la provincia de Tucumán, Argentina. Mastozoologia Neotropical, 11, 55–

67. 

Taberlet, P., Zimmermann, N. E., Englisch, T., Tribsch, A., Holderegger, R., Alvarez, N., 

Niklfeld, H., Coldea, G., Mirek, Z., Moilanen, A., Ahlmer, W., Marsan, P. A., Bona, E., 

Bovio, M., Choler, P., Cieślak, E., Colli, L., Cristea, V., Dalmas, J. P., Frajman, B., 

Garraud, L., Gaudeul, M., Gielly, L., Gutermann, W., Jogan, N., Kagalo, A. A., 

ACCEPTED M
ANUSCRIP

T

http://www.cbd.int/


 

29 

 

 

Korbecka, G., Küpfer, P., Lequette, B., Letz, D. R., Manel, S., Mansion, G., Marhold, K., 

Martini, F., Negrini, R., Niño, F., Paun, O., Pellecchia, M., Perico, G., Piękoś-Mirkowa, 

H., Prosser, F., Puşcaş, M., Ronikier, M., Scheuerer, M., Schneeweiss, G. M., 

Schönswetter, P., Schratt-Ehrendorfer, L., Schüpfer, F., Selvaggi, A., Steinmann, K., 

Thiel-Egenter, C., van Loo, M., Winkler, M., Wohlgemuth, T., Wraber, T., Gugerli, F., & 

Vellend, M. (2012). Genetic diversity in widespreadspecies is not congruent with species 

richness in alpine plant communities. Ecology Letters, 15, 1439–1448. 

Tognelli, M. F., Abba, A. M., Bender J. B., & Seitz, V. P. (2011). Assessing conservation 

priorities of xenarthrans in Argentina. Biodiversity and Conservation, 20, 141–151. 

Wildlife Conservation Society - WCS, and Center for International Earth Science Information 

Network - CIESIN - Columbia University. 2005. Last of the Wild Project, Version 2, 

2005 (LWP-2): Global Human Footprint Dataset (Geographic). Palisades, NY: NASA 

Socioeconomic Data and Applications Center (SEDAC). 

https://doi.org/10.7927/H4M61H5F. Accessed 23 January 2019. 

 

Figure legends 

 

 

ACCEPTED M
ANUSCRIP

T



 

30 

 

 

 

Figure 1. (A) Map showing the known distribution for Orthalicoidea in the seventeen ecoregions 

present in Argentina. The white points correspond to the known distribution of Orthalicoidean 

species in the study area. (B). Adminitrative division and protected areas of Argentina. Legend: 

BA: Buenos Aires, Ca: Catamarca, Co: Corrientes, Ch: Chaco, Cor: Córdoba, ER: Entre Ríos, 

Ju: Jujuy, LR: La Rioja, Mi: Misiones, Sa: Salta, Sg: Santiago del Estero, SJ: San Juan, SL: San 

Luis, Tu: Tucumán. 
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Figure 2. Priority Maps (A) “Unconstrained” map showing priority areas considering species 

distribution and assuming a ranking of 1.47% (areas in orange tone), 6.7% (areas in green tone) 

and 17% respectively (areas in grey tone), (B) Comparisons between the distributional range 

protection for species percentages (y-axis) versus distributional range size percentage in the 

study area (x-axis) considering 1.47% of priority of the total area, (C) the same comparations 

considering 6.7%, (D) the comparation 17% respectively. In (B) number 1 corresponds to 

Clessinia tucumanensis, number 2 to Plagiodontes daedaleus, and number 3 Clessinia martensii. 
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Figure 3. (A) Map showing the protected areas (as green polygons) and priority areas for 

conservation, (B) Comparisons between the distributional range protection for species 

percentages (y-axis) versus distributional range size percentage in the study area (x-axis) 

considering 17%. In (G) number 1 corresponds to Plagiodontes daedaleus and number 2 

Discoleus ameghinoi, (C)Map with the results of land uses analyses (human footprint) and 

species distributions, (D) Histogram with the proportion of the distributions per species when 

land uses are considered. 
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Table 1 

Distribution per Ecoregion, altitudinal range and endemisms (ee= ecologic endemism, E= 

endemic of Argentina) of the Bothriembryontidae, Simpulopsidae and Bulimulidae species from 

Argentina. In the table, species marked with (*) are species considered as SSI in the Zonation 

Analyses, n correspond to number of records for each and PAs point out the species recorded in 

Protected Area. 

 

Genus Species Ecoregion Altitudinal 

range (m) 

ee E PAs n 

Discoleus aguirrei Humid Pampas, Low 

Monte 

135-415  X X     5 

Discoleus ameghinoi Humid Pampas, Low 

Monte, Patagonian Steppe 

60-160  X X     5 

Plectostylus mariae* Valdivian Temperate 

Forests 

460-740 X  X     3 

Simpulopsis citrinovitrea Alto Parana Atlantic Forest, 

Southern Andean Yungas 

308-950        4 

Simpulopsis eudioptus Alto Parana Atlantic Forest, 

Araucaria Moist Forest, 

Southern Andean Yungas 

170-480   X     4 

Bostryx birabenorum Central Andean Puna 3000-3042  X X      2 

Bostryx catamarcanus Dry Chaco, High Monte   X      2 

Bostryx cordillerae High Monte, Southern 

Andean steppe 

1900-3500  X X     9 

Bostryx costellatus High Monte  X X      1 

Bostryx cuyanus High Monte, Southern 

Andean steppe 

2000-5000  X      7 

Bostryx famatinus* High Monte 2000 X X      1 

Bostryx martinezi Dry Chaco 600-1440 X X X     9 

Bostryx mendozanus High Monte, Southern 

Andean steppe 

1500-1800  X      4 

Bostryx pastorei Dry Chaco, Espinal, Low 

Monte 

555-1600  X      5 

Bostryx peristomatus Dry Chaco 920-1300 X X X     6 

Bostryx reedi* High Monte 3000-3400 X X      3 

Bostryx roselleus Dry Chaco, Central Andean 

Puna 

1550-3200  X      5 

Bostryx rudisculptus High Monte 1630-2760 X X      2 

Bostryx scaber High Monte 2160-3200 X X      3 

Bostryx stelzneri Central Andean Puna, Dry 

Chaco, Espinal, High 

Monte, Southern Andean 

Steppe 

555-4000   X 120 
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Bostryx strobeli Dry Chaco, Espinal 1500  X      3 

Bostryx torallyi Dry Chaco, High Monte, 

transition with Southern 

Andean Yungas 

259-1500   X   43 

Bostryx tortoranus Central Andean Puna, Dry 

Chaco, High Monte 

944-3200  X X   27 

Bostryx willinki High Monte 1210 X X      2 

Bulimulus apodemetes Dry Chaco, Espinal, High 

Monte, Parana flooded 

savanna, Southern Andean 

Yungas 

200-2000   X   66 

Bulimulus bonariensis Alto Parana Atlantic forest, 

Araucaria moist forest, Dry 

Chaco, Espinal, Humid 

Chaco, Humid Pampas, 

Parana flooded savanna, 

Southern Andean Yungas, 

Southern Cone 

Mesopotamian Savanna 

100-900   X   59 

Bulimulus elatior* Dry Chaco 200-350 X X      2 

Bulimulus fourmiersi Alto Parana Atlantic Forest  X X      2 

Bulimulus gracilis* Dry Chaco  X X      1 

Bulimulus prosopidis Humid Chaco 100-400 X       1 

Bulimulus rushii Espinal, Humid Pampas 100        4 

Bulimulus vesicalis Espinal, Humid Pampas 50-100        2 

Drymaeus abyssorum Southern Andean Yungas 1450-1780 X  X     7 

Drymaeus flossdorfi Dry Chaco, Southern 

Andean Yungas 

  X      2 

Drymaeus hygrohylaeus  Dry Chaco, Southern 

Andean Yungas 

355-1980   X   11 

Drymaeus hyltoni Southern Andean Yungas 495 X X      4 

Drymaeus interpunctus Alto Parana Atlantic Forest, 

Southern Cone 

Mesopotamian Savanna 

105-260   X     6 

Drymaeus papyraceus Alto Parana Atlantic Forest, 

Espinal, Humid Chaco, 

Southern Cone 

Mesopotamian Savanna 

1-250   X   11 

Drymaeus poecilus Dry Chaco, High Monte, 

Southern Andean Yungas 

160-1180   X   49 

Naesiotus calchaquinus* Dry Chaco 1268 X X      2 

Naesiotus crepundia Dry Chaco, Southern 

Andean Yungas 

290-710        3 

Naesiotus deletangi Dry Chaco, Southern 

Andean Yungas 

290-1090   X   13 
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Naesiotus montivagus Dry Chaco, Southern 

Andean Yungas 

297-1075   X     9 

Naesiotus munsterii Dry Chaco, Southern 

Andean Yungas 

290-600        5 

Naesiotus oxylabris Dry Chaco, Espinal 110-1340      22 

Naesiotus pollonerae Southern Andean Yungas  X       1 

Naesiotus rocayanus Dry Chaco 360-1950 X       1 

Naesiotus willinki* Dry Chaco  X X      2 

Scutalus tupacii Dry Chaco, High Monte, 

Southern Andean Yungas 

180-2400   X   50 

 

 

Table 2 

Distribution per Ecoregion, altitudinal range and endemisms (ee= ecologic endemism, E= 

endemic of Argentina) for Odontostomidae species in Argentina. In the table, species marked 

with (*) are species considered as SSI in the Zonation Analyses, n correspond to number of 

records for each and  PA point out the species recorded in Protected Area. 

 

Genus species Ecoregion Altitudinal 

range (m) 

ee E PA n 

Clessinia cordovana Dry Chaco 279-1231 X X  10 

Clessinia stelzneri Dry Chaco 900 X X    3 

Clessinia nattkemperi Dry Chaco 645-1900 X X    2 

Clessinia 

Clessinia 

pagoda* 

tulumbensis 

Dry Chaco 

Dry Chaco 

600-900 

628-645 

X 

X 

X 

X 

   4 

  3 

Clessinia achalana Dry Chaco, High 

Monte, Espinal 

750-850  X  10 

Clessinia aconjigastana Dry Chaco 600-1050 X X X   9 

Clessinia albostriata Dry Chaco 694-870 X X    2 

Clessinia  alvarezii Dry Chaco 241-970 X X    5 

Clessinia  bergii Dry Chaco 688-755 X X    2 

Clessinia  cala Dry Chaco 870 X X    2 

Clessinia  champaquiana Dry Chaco, High Monte 500-850  X X 27 

Clessinia  chancanina Dry Chaco 373-1230 X X X   5 

Clessinia  charpentieri Dry Chaco 800-1200 X X    9 

Clessinia  columellaris  Dry Chaco 870 X X    2 

Clessinia  costellifer Dry Chaco 620-950 X X    4 

Clessinia cuezzoae Dry Chaco 795-944 X X    8 

Clessinia doellojuradoi Dry Chaco, Espinal 620-1050   X 20 

Clessinia dubia Dry Chaco 550 X X    1 

Clessinia holmbergi Dry Chaco 750-977 X X    5 

Clessinia kobeltiana* Dry Chaco 370-770 X X X   4 
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Clessinia marmorata Dry Chaco  X X    2 

Clessinia martensii Dry Chaco, Espinal, 

High Monte 

600-1225  X  29 

Clessinia minor Dry Chaco 819-1178 X     9 

Clessinia multispirata Dry Chaco 393-1058 X X X   9 

Clessinia olainensis Dry Chaco  X X    1 

Clessinia parodizi Dry Chaco 682 X X    3 

Clessinia paucidenta Dry Chaco 200 X X    2 

Clessinia pervarians Dry Chaco 650 X X    2 

Clessinia philippii Dry Chaco, Espinal 556-913  X    6 

Clessinia profundidens Dry Chaco, Espinal 593-1130  X  10 

Clessinia pucurana Dry Chaco, Espinal 663-910  X    4 

Clessinia pyrgula Dry Chaco 702-928 X X    4 

Clessinia pyriformis* Dry Chaco 700-1100 X X    4 

Clessinia reticulata Dry Chaco 760-1030 X X    7 

Clessinia riojana High Monte, Dry Chaco 745-1725  X    5 

Clessinia striata Alto Parana Atlantic 

forest, Espinal 

      1 

Clessinia subsexdentata Dry Chaco 597-777 X   10 

Clessinia tridens Dry Chaco 623 X X    3 

Clessinia tucumanensis Dry Chaco 700-1150 X X    9 

Clessinia tumulorum Dry Chaco 258-1969 X X  11 

        

Cyclodontina guarani Alto Parana Atlantic 

forest  

140-200 X X    2 

Cyclodontina avellanedae* Humid Pampas 250-380 X X    2 

Odontostomus gargantua Alto Parana Atlantic 

forest 

150-350 X     6 

Pilsbrylia paradoxa Southern Andean 

Yungas 

300-1300 X X    7 

Pilsbrylia hyltonae Southern Andean 

Yungas 

1000 X X X   1 

Plagiodontes brackebuschii Dry Chaco, Southern 

Andean Yungas 

650-1300  X    3 

Plagiodontes daedaleus Dry Chaco, Espinal, 

Southern Andean 

Yungas 

500-1500  X  32 

Plagiodontes dentatus Humid Pampas, Paraná 

flooded savanna 

9-100   X   6 

Plagiodontes multiplicatus High Monte, Dry Chaco 200-1000  X  15 

Plagiodontes patagonicus Humid Pampas, Espinal 25-200  X  10 

Plagiodontes rocae* Humid Pampas 200-550 X X    2 

Plagiodontes  strobelii Dry Chaco, Espinal   X  17 

Plagiodontes weyenberghii Dry Chaco, Humid 

Pampas 

200-1200  X X   5 
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Plagiodontes weyrauchi High Monte, Dry 

Chaco, Southern 

Andean Yungas 

800-1455  X    4 
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