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Abstract We associate an algebra �∞(A) to each bornological algebraA. Each sym-
metric ideal S of the algebra �∞ of complex bounded sequences gives rise to an ideal
IS(A) of�∞(A).We show that all ideals arise in this waywhenA is the algebra of com-
plex numbers. We prove that for suitable S, Weibel’s K -theory of IS(A) is homotopy
invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of
IS(A) to be an isomorphism is measured by cyclic homology.

Keywords Operator ideal · Calkin’s theorem · Crossed product · Karoubi’s cone ·
K-theory

1 Introduction

Let �2 = �2(N) be the Hilbert space of square-summable sequences of complex
numbers and B = B(�2) the algebra of bounded operators. Let Emb be the inverse
monoid of all partially defined injections
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460 B. Abadie, G. Cortiñas

N ⊃ dom f
f−→ N.

Each element f ∈ Emb defines a partial isometry U f ∈ B; for the canonical Hilbert
basis we have U f (en) = e f (n) if n ∈ dom f and 0 otherwise. Similarly, each
bounded sequence of complex numbers α ∈ �∞ defines an element diag(α) ∈ B
by diag(α)(en) = α(n)en . The subspace generated by all the U f and diag(α) with
f ∈ Emb and α ∈ �∞ is the subalgebra

B ⊃ �∞ := span{diag(α)U f : α ∈ �∞, f ∈ Emb}.

In this article we show that the algebra �∞ has several remarkable properties. One of
them is that the lattice of two-sided ideals of �∞ is isomorphic to the lattice of two-
sided ideals of B. A theorem of Calkin [2], as restated by Garling [16], establishes a
one-to-one correspondence between two-sided ideals of B and the ideals of �∞ that
are symmetric, that is, invariant under the action of Emb. Calkin’s correspondence
maps a symmetric ideal S � �∞ to the ideal JS of those operators whose sequence of
singular values belongs to S. Consider the subspace

�∞ ⊃ IS := span{diag(α)U f : α ∈ S, f ∈ Emb}.

Note that I�∞ = �∞; for all symmetric ideals S, IS � �∞ is a two-sided ideal. We
prove (see Theorem 4.2)

Theorem 1.1 The map J �→ J ∩ �∞ is a bijection between the sets of two-sided
ideals of B(�2(N)) and �∞. If S � �∞ is a symmetric ideal, then JS ∩ �∞ = IS.

More generally, we define for any bornological algebraA (in particular for a Banach
algebra A) an algebra �∞(A). The algebra �∞(A) contains an ideal IS(A) for any
symmetric ideal S � �∞, and S �→ IS(A) is a lattice homomorphism. Thus the
smallest nonzero IS(A) occurs when S is the symmetric ideal c f � �∞ of finitely
supported sequences; we get

Ic f (A) = M∞A =
⋃

n

MnA.

Hence the inclusion A→ M∞A into the upper left corner gives a stability homomor-
phism

ιS : A→ Ic f (A) ⊂ IS(A).

IfA is unital then ιc f induces an isomorphism in algebraic K -theory, bymatrix stability.
At the other extreme, I�∞(A) = �∞(A) is a ring with infinite sums in the sense of [22]
(see Proposition 5.1); this permits the Eilenberg swindle and we have

K∗(�∞(A)) = 0.

For c f � S � �∞, the K -theory of IS(A) is more interesting. We study it for

S ∈ {c0, �p−, �q , �q+ (p ≤ ∞, q <∞)}. (1.1)
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Homotopy invariance through small stabilizations 461

Here c0 is the ideal of sequences vanishing at infinity, �q consists of the q-summable
sequences, and

�p− =
⋃

r<p

�r , �q+ =
⋂

s>q

�s .

Let BAlg be the category of bornological algebras. We consider several variants of
K -theory. We write K for algebraic K -theory, KH for Weibel’s homotopy algebraic
K -theory and K top for topological K -theory. A bornological algebra is a bornolocal
C∗-algebra if it is a filtering union of C∗-algebras. The following result follows from
Theorem 8.2.

Theorem 1.2 i) The functor BAlg → Ab, A �→ KH∗(Ic0(A)) is invariant under
continuous homotopy.

ii) If A is a bornolocal C∗-algebra and n ≥ 0, then there is a natural split monomor-
phism

K top
n (A) �� KHn(Ic0(A)) .

iii) If n ≤ 0, then the comparison map

Kn(Ic0(A)) → KHn(Ic0(A)) (1.2)

is an isomorphism for every A ∈ BAlg.

The results above should be compared with Karoubi’s conjecture (Suslin–Wodzicki’s
theorem [21, Theorem 10.9]) that for a C∗-algebra A, the comparison map

K∗(A
∼⊗K) → K top∗ (A

∼⊗K) ∼= K top∗ (A)

is an isomorphism. Hence we may think of A → Ic0(A) as a smaller version of

the stabilization A �→ A
∼⊗ K whose homotopy algebraic K -theory is continuously

homotopy invariant and contains K top∗ (A) as a direct summand. Next let p ≥ 1 and
consider the Schatten ideal Lp � B. Notice that Lp is the ideal corresponding to �p

under Calkin’s correspondence. We have

Lp = J�p .

Recall from [9, Theorem 6.2.1] that if A is a locally convex algebra and A⊗̂Lp is the
projective tensor product then

KH∗(A⊗̂L1)
∼=−→ KH∗(A⊗̂Lp)

∼=−→ K top∗ (A⊗̂Lp).

In the present article (Theorem 8.1) we prove the following analogue of the latter
result.
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462 B. Abadie, G. Cortiñas

Theorem 1.3 Let S be one of �p, �p+ (0 < p <∞) or �p− (0 < p ≤ ∞).

i) The functor BAlg → Ab, A �→ KH∗(I�1(A)) is invariant under Hölder-
continuous homotopies and we have KH∗(IS(A)) = KH∗(I�1(A)) for all S as
above.

ii) If A is a local Banach algebra and n ≥ 0, then there is a natural split monomor-
phism

K top
n (A) �� KHn(I�1(A)) .

iii) If n ≤ 0, then the comparison map

Kn(IS(A)) → KHn(IS(A)) (1.3)

is an isomorphism for every A ∈ BAlg.

Both these theorems rely on a homotopy invariance theorem (Theorem 7.8) which
we think is of independent interest. The theorem says that if F : C−Alg→ Ab is an
M2-stable, split exact functor and S ∈ {c0, �p}, then the functor

BAlg→ Ab, A �→ F(IS(A))

is homotopy invariant. For S = c0 it is continuous homotopy invariant, while for
S = �p it is invariant under Hölder continuous homotopies, with Hölder exponent
depending on p. For F = KH∗ we have KH∗(I�p(A)) = KH∗(I�1(A)), and so it is
invariant under arbitrary Hölder continuous homotopies. Furthermore, we have the
following general result (see Theorem 8.5) about the comparison map K → KH. Its
proof uses the homotopy invariance theoremmentioned above applied to infinitesimal
K -theory.

Theorem 1.4 Let A be a bornological algebra and let S be c0, �p, �p+ (0 < p <∞)
or �p− (0 < p ≤ ∞). Then there are long exact sequences (n ∈ Z)

KHn+1(IS(A)) �� HCn−1(IS(A))

��
KHn(IS(A)) Kn(IS(A))��

(1.4)

and

KHn+1(IS(A)) �� HCn−1(�∞(A) : IS(A))

��
KHn(IS(A)) Kn(�

∞(A) : IS(A))��

(1.5)

123
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It is shown in the companion paper [6] that HC∗(�∞(A) : IS(A)) = 0 when either
S = c0 and A is a C*-algebra or S = �∞ and A is a unital Banach algebra. Therefore,
the comparison map K∗(IS(A)) −→ KH∗(IS(A)) is an isomorphism in these cases.
In addition, the groups HCn(�∞ : IS) are computed in [6] for all S, and it is shown
that for S ∈ {�p, �p±} the map HCn(�∞ : IS) −→ HCn(B : JS) is an isomorphism
for those values of n for which HCn(B : JS) was computed by Wodzicki [24]. In
summary, the ideals IS � �∞ and JS � B and their corresponding stable algebras
have very similar properties in what K -theory and cyclic homology are concerned,
and the cyclic homology of the former seems to be easier to describe.

We expect that these results will help shed light on the various characters and
regulators which take values in the relative K -theory and cyclic homology of operator
ideals [9,24]. This was our original motivation to study the ideals IS .

The rest of this paper is organized as follows. In Sect. 2 we establish some notation
about sequence spaces, the inverse monoid Emb and the partial isometries U f . The
algebra �∞(A) and the ideals IS(A) are introduced in Sect. 3. In this section we also
recall the definition of Karoubi’s cone �(R) which is R-linearly generated by the U f

( f ∈ Emb). Proposition 3.5 identifies IS(A) with a ring formed by certain N × N

matrices with coefficients in A. The two-sided ideals of �∞ are studied in Sect. 4;
Theorem 1.1 is contained in Theorem 4.2. We prove in Sect. 5 that if A is unital, then
�∞(A) is a ring with infinite sums in the sense ofWagoner (Proposition 5.1). In Sect. 6
we show that IS(A) can be written as a crossed product of � = �(Z) and S(A), by
using the conjugation action of Emb in S(A) via the partial isometriesU f (Proposition
6.4). Section 7 deals with the homotopy invariance theorem mentioned above, proved
in Theorem 7.8. Applications to K -theory are given in Sect. 8; see Theorems 8.1, 8.2
and 8.5.

2 Preliminaries

2.1 Sequence ideals

Throughout this paper we work in the setting of bornological spaces and bornological
algebras; a quick introduction to the subject is given in [12, Chapter 2]. Recall a
(complete, convex) bornological vector space over the field C of complex numbers is
a filtering union V = ∪DVD of Banach spaces, indexed by the disks of V such that
the inclusions VD ⊂ VD′ are bounded. A subset of V is bounded if it is a bounded
subset of some VD . A sequence N → V is bounded if its image is a bounded subset of
V. We write �∞(N, V) or simply �∞(V) for the bornological vector space of bounded
sequences where X ⊂ �∞(V) is bounded if

⋃
x∈X x(N) is. We consider the following

subspace

�∞(V) ⊃ c0(V) =
{
α : lim

n
α(n) = 0

}
(2.1)

We equip c0(V) with the bornology induced by that of �∞(V); thus c0(V) ⊂ �∞(V)

is a closed bornological subspace. We also consider the subspace (p > 0)

123



464 B. Abadie, G. Cortiñas

c0(V) ⊃ �p(V) =
{

α : N → V : (∃ a disk D ⊂ V)
∑

n

||α(n)||pD <∞
}

If p ≥ 1,we equip �p(V)with the followingbornology:we say that a subset S ⊂ �p(V)

is bounded if there is a disk D and a constant C such that
∑

n ||α(n)||pD < C for all
α ∈ S. Notice that the inclusion �p(V) → �∞(V) is bounded for p ≥ 1. Recall a
bornological algebra is a bornological vector space A with an associative bounded
multiplication. If A is a bornological algebra, then pointwise multiplication makes
�∞(A) into a bornological algebra, c0(A) � �∞(A) is a closed bornological ideal,
and �p(A) � �∞(A) is an algebraic ideal for all p > 0.

Notation 2.1 When A is C, we shall omit it from our notation. Thus we shall write
�∞, �p, c0, etc, for �∞(C), �p(C), c0(C), etc.

The spaceB(�2(V)) of bounded operators �2(V) → �2(V) on a bornological vector
space V is a bornological algebra with the uniform bornology [12, Def. 2.4]. If A is a
bornological algebra, then

diag : �∞(A) → B(�2(A)), diag(α)(ξ) = (α(n)ξn)n≥1. (2.2)

is a bounded representation. It is faithful if and only if the left annihilator of A is
trivial:

ann(A) = {a ∈ A : a · b = 0 (∀b ∈ A)} = 0,

This happens, for instance, when A is unital.

2.2 The monoid Emb

Webegin by recalling somedefinitions from [14].Wedenote byEmb the set of injective
functions

Emb = { f : A � N : A ⊂ N}.

Note that Emb is a monoid for the composition law:

f g : dom(g) ∩ g−1(dom( f ))→ N, ( f g)(n) = f (g(n)). (2.3)

In (2.3) and elsewhere, we shall omit the composition sign ◦, except when strictly
necessary to avoid confusion. The monoid Emb is pointed, i.e. it has a zero element,
namely, the empty function ∅ → N. The antipode map † : Emb→ Emb is defined by

dom( f †) = ran( f ), f †(n) = f −1(n).

If A ⊂ N, we write PA for the inclusion A ↪→ N. It is easily checked that

f † f = Pdom f , f f † = Pran f , (2.4)
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Homotopy invariance through small stabilizations 465

for any f ∈ Emb. Observe that f † is characterized as the unique element of Emb
which satisfies simultaneously

f f † f = f and f † f f † = f †.

Thus the monoid Emb together with its antipode is a pointed inverse monoid that is, a
pointed inverse semigroup with identity element. Note that Emb is the object usually
denoted I(N) in the literature on semigroups (see [15, Def. 4.2], for instance).

If V is a bornological vector space, the monoid Emb acts on �∞(V) via:

f∗(α)n =
{

α( f †(n)) if n ∈ ran( f )

0 otherwise.
(2.5)

The subspaces c0(V) and �p(V) defined in 2.1 are symmetric, i.e. they are invariant
under the action ofEmb. Indeed, this follows from the fact that c0 and �p are symmetric,
and that if D is a bounded disk and the image ofα is contained inVD , then the following
sequences of real numbers are identical

|| f∗(α)||D = f∗(||α||D).

More generally, if S ⊂ �∞ is any symmetric subspace, then

S(V) := {α ∈ �∞(V) : (∃D) α(N) ⊂ VD and ||α||D ∈ S}

is symmetric. We denote by U the representation of Emb by partial isometries on
�2(V):

U f (ξ)m =
{

ξn if f (n) = m

0 if m /∈ ran( f )
(ξ ∈ �2(V)). (2.6)

Straightforward computations show that

U f g = U f Ug. (2.7)

Observe that U f is a partial isometry whose initial and final space are, respectively,
the closed subspaces

span{v : supp(v) ⊂ dom( f )} and span{v : supp(v) ⊂ ran( f )}.

This follows from (2.4), (2.7), and from the fact that if A ⊂ N, then

UPA(v)n =
{

vn if n ∈ A

0 otherwise.
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466 B. Abadie, G. Cortiñas

Remark 2.2 We will often work with sequences indexed by infinite countable sets
other than N. A bijection u : N → X gives rise to a bounded isomorphism α �→ αu
between the bornological vector space �∞(X, V) of bounded maps from X to the
bornological space V and the space �∞(V) = �∞(N, V). If S ⊂ �∞ is a symmetric
subspace, we define S(X, V) = {su−1 : s ∈ S(V)}. Because S is symmetric by
assumption, this definition does not depend on the choice of u. If A ∈ MN×N(V), we
will write A ∈ S(N× N, V) to indicate that {Ai j : i, j ∈ N} ∈ S(N× N, V).

Notation 2.3 Let S ⊂ �∞ be a symmetric subspace, X an infinite countable set and V

a bornological vector space. We use the following abbreviated notation: S = S(N, C),
S(X) = S(X, C) and S(V) = S(N, V).

3 The algebras �∞(A) and �(R)

Throughout this section, A will be a fixed bornological algebra, which, except in
Definition 3.7, will be assumed unital. It follows straightforwardly from equations
(2.2), (2.5), and (2.6) that

diag( f∗(α))U f = U f diag(α) and U f diag(α)U f † = diag( f∗(α)), (3.1)

where α ∈ �∞(A) and f ∈ Emb. Set

�∞(A) = span{diag(α)U f : α ∈ �∞(A), f ∈ Emb}. (3.2)

Notice that, by Eqs. (2.7) and (3.1), �∞(A) is a subalgebra of the algebra B(�2(A)).
For each symmetric ideal S � �∞, we write IS(A) for the ideal of �∞(A) generated by
diag(S(A)). Because S is invariant under the action of Emb, then by equations (3.1)
we have

IS(A) = span{diag(α)U f : α ∈ S(A), f ∈ Emb}. (3.3)

Note that �∞(A) = I�∞(A). If X is any infinite countable set, we may also consider
the subalgebra �∞(X,A) ⊂ B(�2(X,A)) spanned by diag(�∞(X,A)) and UEmb(X).
Thus �∞(A) = �∞(N,A). In keeping with our notational conventions 2.1 and 2.3,
we write �∞ = �∞(C) and �∞(X) = �∞(X, C).

Notation 3.1 Since A is assumed to be unital, every sequence a = {an} in �2(A) can
be written uniquely as a = ∑

n anen , where en ∈ �2(A) is defined by (en)i = δn,i .
Notice that the elements of �∞(A) are A-linear operators on the right A-module
�2(A). As usual, we identify an A-linear operator A ∈ B(�2(A)) with the infinite
matrix (Ai j )i, j∈N with entries in A defined by

Aen =
∑

k

Aknek .
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We denote by Ei j the matrix (Ei j )kl = δikδ jl . Given a matrix A = (Ai j )i, j∈N with
entries in A, and i, j ∈ N, we set:

Ji (A) = { j : Ai j �= 0}, I j (A) = {i : Ai j �= 0},
ri (A) = #Ji (A), c j (A) := #I j (A),

r(A) := max
i

ri (A), c(A) := max
i

ci (A),

N (A) := max{r(A), c(A)},

where ri (A), c j (A), N (A) ∈ N ∪ {∞}. If R is a ring, we write �(R) for Karoubi’s
cone

�(R) = {A ∈ RN×N : N (A) <∞ and {Ai, j : i, j ∈ N} is finite}. (3.4)

It was shown in [8, Lemma 4.7.1] that �(R) is isomorphic to R ⊗ �(Z), for any ring
R. We shall write

� = �(Z).

Observe that definition (3.4) extends to matrices indexed by any countable infinite set
X ; if f : N → X is a bijection, �(X, R) ⊂ RX×X is the image of �(R) under the
map A �→ U f AU f −1 . Thus �(R) = �(N, R); we shall write �(X) = �(X, Z).

The following lemmaswill be useful in obtaining characterizations of�∞(A), IS(A)

and �(R) as rings of matrices acting on �2(A) and R(N), respectively. If A ∈ RN×N
is such that N (A) <∞, we write �(R)A�(R) to denote the set

�(R)A�(R) :=
⎧
⎨

⎩

n∑

j=1
Pj AQ j : Pj , Q j ∈ �(R) for all j = 1, . . . , n and n ∈ N

⎫
⎬

⎭ .

Lemma 3.2 Let R be a unital ring, A = (Ai j )i, j∈N ∈ RN×N a matrix such that
N (A) <∞ and r(A) > 1. Then

(1) A = A1 + A2 + · · · + Ak, where Ai ∈ �(R)A�(R), r(Ai ) < r(A) and c(Ai ) ≤
c(A) for all i = 1, . . . , k.

(2) If in addition R is a unital bornological algebra and S � �∞ is a symmetric ideal
such that A ∈ S(N× N, R), then Al ∈ S(N× N, R), for all l = 1, . . . , k.

Proof (1) We first establish some notation and make some reductions. Let

r = r(A)

I = {i ∈ N : the i th row of A has r nonzero entries}.

For i ∈ I , let

hi (1) < hi (2) < · · · < hi (r)
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468 B. Abadie, G. Cortiñas

be the columns where the nonzero entries of row i occur. Let Ar denote the matrix
obtained from A upon multiplying by zero those rows that have less than r nonzero
entries. Then Ar ∈ �(R)A�(R), and

r(Ar ) = r, r(A − Ar ) < r, c(Ar ) ≤ c(A), and c(A − Ar ) ≤ c(A).

Thus it suffices to prove (1) for Ar . Hence we may assume that A = Ar , that is,
that all nonzero rows of A have exactly r nonzero entries. Furthermore, since there
are at most c(A) nonzero entries in each column of A, the set I can be written as a
disjoint union I = I1 � I2 � · · · � Is with s ≤ c(A) and such that each It (1 ≤ t ≤ s)
satisfies the following property:

i �= j ∈ It ⇒ hi (1) �= h j (1).

Proceeding as abovewe see thatwemay assume that s = 1.Notice that if A′ is obtained
from A by permuting its rows, then A′ = U f A for some bijection f : N → N.
Therefore, �(R)A�(R) = �(R)A′�(R), r(A′) = r(A), and c(A′) = c(A), so we
may assume that A = A′. Thus we will assume that the rows of A are ordered so that
if i, j ∈ I , then hi (1) < h j (1) if and only if i < j .

Thus, it only remains to show (1) for matrices A such that for I and hi as above:

(a) All nonzero rows of A have exactly r nonzero entries. (3.5)

(b) i < j ⇐⇒ hi (1) < h j (1) for all i, j ∈ I. (3.6)

We shall proceed by induction on

MA = max
j∈I

#{i ∈ I : Aih j (1) �= 0}.

Notice that the right-hand side of the equation above is bounded by c(A), so MA ∈ N.
First assume that MA = 1. Then for all i, j ∈ I we have that Aih j (1) �= 0 if and only
if i = j . Set

A1 =
∑

i∈I

Aihi (1)Eihi (1) =
(

∑

i∈I

Eii

)
A

⎛

⎝
∑

j∈I

Eh j (1)h j (1)

⎞

⎠ ∈ �(R)A�(R).

Then

r(A1) < r, r(A − A1) < r, c(A1) ≤ c(A), and c(A − A1) ≤ c(A),

so the statement in (1) holds for A. Assume now that MA > 1 and that (1) holds for
matrices B satisfying 3.5 and 3.6, and such that MB < MA. Let

i1 := min I, K1 := { j ∈ I : Ai1h j (1) �=0}.

123



Homotopy invariance through small stabilizations 469

For n ≥ 1 such that
⋃n−1

j=1 K j �= I , let

in := min I\
n−1⋃

j=1
K j , and Kn :=

{
j ∈ I\

n−1⋃

l=1
Kl : Ainh j (1) �= 0

}
.

Let

J =
{
{1, 2, . . . , n}, if

⋃n
j=1 K j = I.

N, otherwise.

We claim that

a) in > in−1 ∀n ∈ J and b) I =
⋃

j∈J
K j . (3.7)

In fact a) follows from the inequality

in = min I\
n−1⋃

1

K j ≥ min I\
n−2⋃

1

K j = in−1

and the fact that in �= in−1 because in /∈ Kn−1 and in−1 ∈ Kn−1. It is clear that b)
holds when J is finite. Assume now that J infinite. If k ∈ I , then either k ∈ {in : n ∈
J } ⊂⋃

K j or, by a), there exists n ∈ J such that

k < in = min I\
n−1⋃

1

K j .

This implies that k ∈ ⋃n−1
1 K j . Thus b) holds also when J is infinite, and both

claims are proven. Now set

B :=
∑

n∈J , j∈N
Ain j Ein j =

⎛

⎝
∑

n∈J
Einin

⎞

⎠ A ∈ �(R)A�(R).

Notice that B is obtained from A by multiplying by zero the i th row whenever i /∈
{in : n ∈ J }. Therefore B satisfies 3.5 and 3.6, r(B) = r , and c(B) ≤ c(A). We next
show that MB = 1. We begin by noting that Bimin(1) �= 0 implies that Aimin(1) �= 0.
Then in(1) ≥ im(1), which implies by 3.6 that in ≥ im , which in turn implies, by part
a) of Eq. (3.7), that n ≥ m. Now, if n > m we would have

in /∈
n−1⋃

1

K j ⊇
m⋃

1

K j .
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Then in /∈ Km and in /∈ ⋃m−1
1 K j , which implies that Aimin(1) = 0, a contradiction.

Thus n = m and MB = 1, as claimed. Set C = A − B; we have r(C) = r and
c(C) ≤ c(A). Notice thatC is obtained from A uponmultiplying by zero the i th

n row for
all n ∈ J . Besides, the i th row ofC is nonzero if and only if i ∈ IC := I\{in : n ∈ J },
and in that case it is equal to the i th row of A. Therefore, C satisfies 3.5 and 3.6. We
next prove that MC < MA, which will conclude the proof of part (1). If i, j ∈ IC , then
Aih j (1) = 0 implies that Cih j (1) = 0. On the other hand, by part b) of Eq. (3.7), we can
choose n ∈ J such that j ∈ Kn . Then Ainh j (1) �= 0, whereas Cinh j (1) = 0. It follows
that MC ≤ MA − 1. This concludes the proof of part (1). Part (2) holds because for
l = 1, . . . , k, {(Al)i j } is obtained upon multiplication of {Ai j } by bounded sequences
and by permutations of terms. ��

Lemma 3.3 Let A = (Ai j )i, j∈N be a matrix with entries in a unital ring R such that
N (A) <∞. Then

(1) A = A1 + A2 + · · · + Ak, where Ai ∈ �(R)A�(R), and N (Ai ) ≤ 1, for all
i = 1, . . . , k.

(2) If in addition R is a bornological algebra and S � �∞ is a symmetric ideal such
that A ∈ S(N× N, R), then Al ∈ S(N× N, R), for all l = 1, . . . , k.

Proof Use Lemma 3.2 and proceed by induction on r(A) to write

A =
k∑

1

Bi , where r(Bi ) = 1, c(Bi ) ≤ c(A), and Bi ∈ �(R)A�(R).

Next apply the same procedure to each transposematrix Bt
i to get the decomposition

in (1). The second statement follows from the second part of Lemma 3.2. ��

Proposition 3.4 Let A = (Ai j )i, j∈N be a matrix with entries in a ring R. Then
N (A) ≤ 1 if and only if A = diag(α)U f , where f ∈ Emb and α ∈ RN are defined as
follows:

f ( j) = i ⇐⇒ Ai j �= 0 α(i) =
{

Ai j , if i = f ( j)

0, otherwise.

Proof For f and α as in the proposition, the nth column of A is

(diag(α)U f )(en) =
{

α(n)e f (n), if n ∈ dom( f )

0, otherwise.

=
{

A f (n)ne f (n), if n ∈ dom( f )

0, otherwise.

��
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Proposition 3.5 Let A be a unital bornological algebra, S � �∞ a symmetric ideal,
and IS(A) � �∞(A) the ideal defined in Eq. (3.3). Then

IS(A) = {A = (Ai j )i, j∈N : A ∈ S(N× N,A) and N (A) <∞}. (3.8)

Proof Let DS denote the set on the right hand side of equation (3.8). By Lemma 3.3
and Proposition 3.4, a matrix A belongs to DS if and only if A = ∑

Ak , with Ak =
diag(αk)U fk ∈ DS . Further, we may choose αk and fk such that supp(αk) = ran( fk).
Under these conditions, Ak ∈ DS if and only if αk ∈ S. This shows that A ∈ DS if
and only A ∈ IS . ��
Corollary 3.6 Let A be a unital bornological algebra. Then Karoubi’s cone �(A) is
a subalgebra of �∞(A).

Definition 3.7 If A is a not necessarily unital bornological algebra, and S � �∞ is a
symmetric ideal, IS(A) is defined by (3.8).

Example 3.8 Let

c f = {α ∈ �∞ : supp(α) is finite}.

Then

Ic f (A) = M∞(A) = {A : ∃n ∈ N such that Ai j = 0 if either i > n or j > n}.

We shall write M∞ = M∞Z.

Remark 3.9 LetA be a unital bornological algebra, I � �∞(A) a two-sided ideal and
T ∈ I . Then by Lemma 3.3 and Remark 3.4, we can write

T =
n∑

i=1
diag(αi )U fi with diag(αi )U fi ∈ I, (3.9)

where fi ∈ Emb and αi ∈ �∞(A). Similarly, if R is a unital ring and T ∈ I � �(R),
then we can also write T as in (3.9) but now with αi such that the set {αi (n) : n ∈
N} ⊂ R is finite.

4 The two-sided ideals of �∞ and those of B(�2(N))

Calkin’s theorem [2, Theorem 1.6]), as restated by Garling [16, Theorem 1], estab-
lishes a bijective correspondence between the set of proper two-sided ideals of
B = B(�2) and the set of proper symmetric ideals of �∞. Calkin defined this cor-
respondence in terms of the sequence of singular values of a compact operator. It can
also be described as follows: an ideal J � B is mapped to the symmetric ideal

S(J ) = {α ∈ �∞ : diag(α) ∈ J }. (4.1)

123



472 B. Abadie, G. Cortiñas

The inverse correspondence maps a symmetric ideal S in �∞ to the two-sided ideal

B � JS = 〈diag(α) : α ∈ S〉 (4.2)

We refer the reader to [20, Theorem 2.5] for further details. Recall that, by another
result of Calkin [2, Theorem 1.4], the Calkin algebra B/K is simple. On the other
hand, it is easily checked that c0 � �∞ is maximal among proper symmetric ideals.
Thus, by mapping �∞ toB we extend the correspondence above to a bijection between
the family of symmetric ideals of �∞ and that of two-sided ideals of B. In Theorem
4.2 below we show that Calkin’s correspondence carries over to ideals in �∞. We will
make use of the following lemma.

Lemma 4.1 Let α ∈ �∞, f ∈ Emb and let I � �∞ a two-sided ideal. Consider the
operator

T = diag(α)U f .

Then

T ∈ I ⇐⇒ |T | ∈ I.

Proof We have

T ∗T = U∗
f diag(|α|2) U f = diag( f †∗ (|α|2)) = diag(| f †∗ (α)|2).

Therefore, |T | = diag(| f †∗ (α)|), and the polar decomposition of T is T = V |T |,
where

V = diag(να)U f ,

for

να(n) =
{
0, ifα(n) = 0
α(n)
|α(n)| , otherwise.

(4.3)

It is now clear that V ∈ �∞. Thus T ∈ I if and only if |T | ∈ I , since �∞ is a
∗-algebra and |T | = V ∗T . ��
Theorem 4.2 i) The map S �→ IS is a bijection between the set of symmetric ideals

of �∞ and the set of two-sided ideals of �∞. Its inverse maps an ideal I � �∞
to the symmetric ideal S(I ) defined as in (4.1).

ii) The map J �→ J ∩ �∞ is a bijection between the sets of two-sided ideals of B
and those of �∞. Its inverse maps an ideal I � �∞ to the two-sided ideal of B it
generates.

iii) If S � �∞ is a symmetric ideal, then JS ∩ �∞ = IS.
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Proof Let I � �∞; write S = S(I ). It is clear that IS ⊆ I . On the other hand, if
T = diag(α)U f ∈ I , for some α ∈ �∞ and f ∈ Emb, then, by Lemma 4.1,

diag( f †∗ (|α|)) = |T | ∈ IS .

Hence T ∈ IS , again by Lemma 4.1. In view of Remark 3.9, this implies that I = IS .
We have shown that IS(I ) = I . Let now S � �∞ be a symmetric ideal. Then

S ⊂ S(IS) ⊂ S(JS) ⊂ S,

the last inclusion being due to Calkin’s theorem. It follows that S = S(IS), completing
the proof of part i). Next, since the ideal 〈IS〉 � B(�2) generated by IS is also generated
by diag(S)we have 〈IS〉 = JS , by Calkin’s theorem. Now, again by Calkin’s theorem,

S ⊂ S(JS ∩ �∞) ⊂ S(JS) = S.

Thus JS∩�∞ = IS , by part i).Wehaveprovenpart iii) and also shown that 〈IS〉∩�∞ =
IS . Moreover, by parts i) and iii) we have

diag(�∞) ∩ JS = diag(�∞) ∩ JS ∩ �∞ = diag(�∞) ∩ IS = diag(S).

It follows that 〈JS ∩ �∞〉 = JS , which ends the proof. ��
It follows from Proposition 3.5, Example 3.8 and Theorem 4.2 that

I ∩ �(C) = M∞(C)

for every proper ideal I � �∞. The next proposition shows that in fact M∞(C) is the
only proper ideal of �(C).

Proposition 4.3 Let k be a field. Then M∞(k) is the only proper two-sided ideal of
�(k).

Proof It is well known and easy to check that M∞(R) � �(R) for any ring R. Let
I �= 0 be a two-sided ideal of �(k), and let A �= 0, A ∈ I . If i0 and j0 are such that
Ai0 j0 �= 0, then

Ei j = (Ai0 j0)
−1Eii0 AE j0 j ∈ I ∀i, j (4.4)

This shows that M∞(k) ⊆ I . Assume that the inclusion is strict. Let A ∈ I\M∞(k).
By Remark (3.9), we may assume that A = diag(α)U f for f ∈ Emb and α ∈ kN,
where Im(α) = {α(n) : n ∈ N} is finite and supp(α) = dom f ⊂ N is infinite. Because
k is a field, we can multiply A on the left by a diagonal matrix in �(k) to conclude
that U f ∈ I . But since ran( f ) is infinite, there are bijections g : N → dom( f ) and
h : ran( f )→ N such that h f g = 1. Hence I must contain 1 = UhU f Ug . ��
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5 �∞ as an infinite sum ring

We begin this section by recalling some definitions from [22] and [8]. A sum ring
(R, x0, x1, y0, y1) consists of a unital ring R and elements x0, x1, y0, and y1 ∈ R
satisfying:

y0x0 = y1x1 = 1

x0y0 + x1y1 = 1. (5.1)

If R is a sum ring, the map

⊕ : R × R −→ R, defined by r ⊕ s = x0r y0 + x1sy1, (5.2)

is a unital ring homomorphism. An infinite sum ring consists of a sum ring R equipped
with a unital ring homomorphism


 : R −→ R such that r ⊕
(r) = 
(r). (5.3)

The notion of infinite sum ring was introduced by Wagoner [22]. He showed that
if R is unital, then the following is an infinite sum ring:

�W (R) := {A ∈ RN×N : A · M∞R ⊂ M∞R ⊃ M∞R · A}.

We may regard �W (R) as a multiplier algebra of M∞R. One checks that a matrix
A ∈ �W (R) if and only if every row and every column of A has finite support. Let

fi : N → N, fi (n) = 2n − i (i = 0, 1) (5.4)

The elements xi = U f †i
, yi = U fi satisfy conditions (5.1). The homomorphism 


is defined by


(A) =
∞∑

k=0
xk
1 x0Ay0yk

1 =
∞∑

k,i, j

Ai j E2k+1i+2k−1,2k+1 j+2k−1. (5.5)

This map is well-defined because (k, i) �→ 2k+1i + 2k − 1 is one-to-one; Wagoner
showed in [22, pp. 355] that it satisfies (5.3). Observe that the x ′i s and y′i s are elements
of �(R). It is not hard to check, and noticed in [8, 4.8.2], that 
(�(R)) ⊂ �(R),
whence �(R) is an infinite sum ring too. Now we remark that if A is a bornological
algebra, then

�(A) ⊂ �∞(A) ⊂ �W (A).

Furthermore, 
 also sends �∞(A) to itself. Thus if A is unital, then �∞(A) is an
infinite sum ring. We record this in the following proposition.
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Proposition 5.1 Let A be a unital bornological algebra, and let fi be as in (5.4) and

 as in (5.5) Then (�∞(A), U f †0

, U f †1
, U f0 , U f1 ,
) is an infinite sum ring.

Corollary 5.2 Let F : C − Alg → Ab be a functor. Assume that the restriction of
F to unital C-algebras is split-exact and M2-stable. Then F(�∞(A)) = 0 for any
unital bornological algebra A. If furthermore F is split exact on all C-algebras, then
F(�∞(A)) = 0 for any, not necessarily unital bornological algebra A.

Proof Immediate from Proposition 5.1 and [5, Proposition 2.3.1]. ��
Example 5.3 Both Weibel’s homotopy algebraic K -theory [23] and periodic cyclic
homology [13] are M2-stable and excisive on allQ-algebras. Hence ifA is a bornolog-
ical algebra, then

KH∗(�∞(A)) = HP∗(�∞(A)) = 0.

Algebraic K -theory groups Kn are split exact and M2- stable for n ≤ 0; the same is
true of Karoubi–Villamayor K -groups K Vm for m ≥ 1 [18, Théorème 4.5]. Hence,

Kn(�∞(A)) = K Vm(�∞(A)) = 0 (n ≤ 0, m ≥ 1),

again for all A. For positive n, the groups Kn are still split exact and M2-stable on
unital rings. The same is true of both the Hochschild and cyclic homology groups HHn

and HCn for n ≥ 0; moreover these groups vanish for n ≤ −1. Hence we have

Kn+1(�∞(A)) = HHn(�∞(A)) = HCn(�∞(A)) = 0 (n ≥ 0)

for any unital bornological algebra A.

6 The algebra �∞(A) as a crossed product

Let 2N denote the submonoid of idempotent elements of Emb

2N = {p : p ∈ Emb p2 = p} ⊂ Emb.

Note that if p ∈ 2N, then for A = ran(p) = dom(p), we have Up = diag(χA), the
diagonal matrix on the sequence

(χA)n =
{
1 n ∈ A
0 n /∈ A.

We will often identify p, Up = diag(χA), and χA. Notice that

f∗(p) f = f p. (6.1)
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The subgroup of � generated by the image of 2N under f �→ U f is the subring

P = span{Up : p ∈ 2N} ⊂ �.

We also consider the monoid rings Z[2N] and Z[Emb], and the two-sided ideals

I = 〈{χA�B − χA − χB : A, B ⊂ N, A ∩ B = ∅}〉 � Z[2N], (6.2)

J = 〈{χA�B − χA − χB : A, B ⊂ N, A ∩ B = ∅}〉 � Z[Emb]. (6.3)

Observe that I and J contain the element

χA∪B − χA − χB + χA∩B

for any pair of not necessarily disjoint subsets A, B ⊂ N.

Lemma 6.1 i) P = Z[2N]/I .
ii) � = Z[Emb]/J
iii) If A is a unital bornological algebra, then �∞(A) ⊗P � ∼= �∞(A) as

P-bimodules.

Proof It is clear that there are natural surjective ring homomorphisms

π1 : Z[2N]/I → P and

π2 : Z[Emb]/J → �,

and a natural surjective P-bimodule homomorphism

π3 : �∞ ⊗P � → �∞.

Let ξ = ∑n
j=1 λ jχA j ∈ Z[2N] represent an element ∈ ker π1; for each subset F ⊂

{1, . . . , n}, let AF =⋂
j∈F A j ∩⋂

j /∈F Ac
j . From π1(ξ)|AF = 0 we get

AF �= ∅ ⇒
∑

j∈F

λ j = 0.

Next note that
⋃n

i=1 Ai = �F AF ; hence, modulo I , we have

ξ ≡
∑

F

n∑

j=1
λ jχA j∩AF

=
∑

F

⎛

⎝
∑

j∈F

λ j

⎞

⎠ χAF = 0.

This proves i). In order to prove ii) we have to show that ker(π2) = 0. Let ξ =∑n
j=1 λ j f j ∈ Z[Emb] be a representative of an element in ker(π2). Let Ai = dom fi ,
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and let AF be as above; then ξ ≡ ∑
F ξχAF . Hence we may assume that the Ai are

disjoint. Furthermore, upon replacing ξ by ξχAi , and eliminating zero elements of
Emb, we may assume that A1 = · · · = An . For each j ∈ N, we have

n∑

i=1
λi e fi ( j) = 0. (6.4)

Let K = { fi ( j) : i = 1, . . . , n}; for each k ∈ K , let Dk = {i : fi ( j) = k}. Then
D( j) := {Dk}k∈K is a partition of {1, . . . , n}, and ∑

i∈Dk
λi = 0. There is a finite set

D of partitions arising in this way, since the number of all partitions of {1, . . . , n} is
finite. For each D ∈ D, let JD = { j ∈ N : D( j) = D}. Then �D∈D JD = N, and
ξ ≡ ∑

D ξ · χD . Hence, upon replacing ξ by ξχD if necessary, we may assume that
D has only one element D = {D1, . . . , Dr }. But ξ ≡ ∑

i χDi ξ , so we further reduce
to the case when r = 1. This means that f1 = · · · = fn and, by (6.4),

∑
i λi fi is the

zero element of Z[Emb]. We have proved ii). To prove iii) we must show that π3 is
injective. Let ξ =∑n

i=1 α(i) ⊗U fi ∈ ker π3. Because

α ⊗U f = αχsupp(α)∩ran f ⊗ χsupp(α)∩ran f U f ∈ �∞(A)⊗P �,

wemay assume that supp(αi ) = ran( fi ) (i = 1, . . . , n). Proceeding as above, we may
assume that dom f1 = · · · = dom fn . For each j ∈ N, we have

n∑

i=1
α(i)( j)e fi ( j) = 0. (6.5)

Proceeding as above again, we may reduce to the case f1 = · · · = fn . By (6.5), we
have

∑n
i=1 α(i) = 0. Thus

ξ =
n∑

i=1
α(i) ⊗U fi =

(
n∑

i=1
α(i)

)
⊗U f1 = 0.

��
Remark 6.2 Given any monoid M , a representation of M is the same thing as module
over the monoid ring Z[M]. In view of Lemma 6.1, the modules over P and � corre-
spond to those representations of the inverse monoids 2N and Emb which are tight in
the sense of Exel (see [15, Def. 13.1 and Prop. 11.9]).

Remark 6.3 It was proved in [8, Lemma 4.7.1] that the map

ψ : � ⊗ R → �(R), ψ(A ⊗ x)i, j = Ai j x

is an isomorphism. It follows from this that � is flat as an abelian group. Therefore
the map J ⊗ R → Z[Emb] ⊗ R is injective. Thus, by Lemma 6.1,

�(R) = Z[Emb] ⊗ R/J ⊗ R = R[Emb]/JR.
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Next observe that the inclusion P ⊂ � is a split injection. Indeed the map

� → P, U f �→ Pdom f

is a left inverse. It follows that if R is any ring then the map ψ : P ⊗ R → P(R) :=
ψ(P ⊗ R) is an isomorphism. Thus using Lemma 6.1 and a similar argument as that
given above for the case of �, one can show that

P(R) = R[2N]/IR.

Because Emb is a monoid, ifA is a ring on which Emb acts by ring endomorphisms
we can form the crossed product A#Emb.As an abelian group,A#Emb = A⊗Z[Emb]
with multiplication given by

(a# f )(b#g) = a f∗(b)# f g. (6.6)

Here # = ⊗ and f∗(b) denotes the action of f on Emb. Now assume that the Emb-ring
A is also a P-algebra, that is, it is a ring and a P-bimodule, and these operations are
compatible in the sense that

(ap)b = a(pb) (a, b ∈ A, p ∈ P).

Further assume that A is central as a P-bimodule, i.e. pa = ap (a ∈ A, p ∈ P), and
that

pa = p∗(a) (p ∈ 2N).

Under all these conditions, we say that A is an Emb-bundle (cf. [1, Def. 2.10]). For
J � Z[Emb] as in (6.3), we have

A#Emb � A#J = span{r# j : r ∈ A, j ∈ J } and
A#Emb � L = span{r p#h − r#ph : r ∈ A, p ∈ P, h ∈ Emb}.

Set

A#P� = A#Emb/(L +A#J ). (6.7)

Thus, A#P� = A⊗P � as left P-modules, and the product is that induced by (6.6);
we have

(a#U f )(b#Ug) = a f∗(b)#U f g ∈ A#P�. (6.8)

Proposition 6.4 Let A be a bornological algebra. The map

�∞(A)#P� → �∞(A), α#U f �→ diag(α)U f (6.9)

123



Homotopy invariance through small stabilizations 479

is an isomorphism of P-algebras. If S � �∞ is a symmetric ideal, then (6.9) sends
S(A)#P� isomorphically onto IS(A) � �∞(A).

Proof Assume first that A is unital. Then the map (6.9) is the same as that of Lemma
6.1(iii). Hence, it is bijective. By (3.1) and (6.8), it is an algebra homomorphism.
This proves the first assertion in the unital case; the second is immediate from the
fact that (6.9) is bijective and maps S(A)#P� onto IS(A). For not necessarily uni-
tal A, write Ã for its unitalization as a bornological algebra. We have an exact
sequence

0→ S(A) → S(Ã)→ S → 0. (6.10)

Observe that the inclusion C ⊂ Ã induces a P-module homomorphism S → S(Ã)

which splits the sequence (6.10). Hence we get an exact sequence

0→ S(A)#P� → S(Ã)#P� → S#P� → 0.

Combining this sequence with the unital case of the proposition, we obtain an isomor-
phism

S(A)#P�
∼=−→ ker(IS(A) → IS) = IS(A).

��

7 Homotopy invariance

7.1 Crossed products by the Cohn ring

The following two elements of Emb will play a central role in what follows

si : N → N (i = 1, 2)

si (m) = 2m + i − 1.

We have the following relations

s†i s j = δi, j i = 1, 2. (7.1)

Following standard conventions, if ν is a word of length l on {1, 2}, we write sν =
sν1 · · · sνl and s†ν = (sν)

†. Thus for the empty word we have s∅ = s†∅ = 1. Observe
that if μ is of length l then

sμ(n) = 2ln +
l∑

i=1
(μi − 1)2i−1. (7.2)
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Put

W l
2 = {words of length l on {1, 2}}, W2 =

∞⋃

l=0
W l

2.

We write

M2 = {sμ(sν)
† : μ, ν ∈ W2}.

Thus M2 ⊂ Emb is the inverse submonoid generated by the si . Its idempotent sub-
monoid is

E(M2) = {sν(sν)
† : ν ∈ W2}.

One checks, using (7.2) that sμs†ν = sμ′s
†
ν′ if and only if μ = μ′ and ν = ν′. It follows

that M2 is the universal inverse monoid on generators s1, s2 subject to the relations
(7.1). Write

C2 = Z[M2] ⊃ P2 = Z[E(M2)].

The ring C2 is the Cohn ring on two generators [3]; it is a purely algebraic version of
the Toeplitz Cuntz algebra (called E2 in [11]). The assignment

Esμ(1),sν (1) �→ sμ

(
1−

2∑

i=1
si s

†
i

)
s∗ν .

defines an isomorphism between M∞ and the ideal of C2 generated by 1−∑2
i=1 si s

†
i .

We shall identify each element of M∞ with its image in C2. If A is a bornological
algebra and S � �∞ is a symmetric ideal, then we can consider the action of M2
on S(A) coming from restriction of the Emb action, and form the crossed product
S(A)#M2. Recall from Sect. 6 that S(A)#M2 = S(A)⊗Z Z[M2] equipped with the
product (6.6). Put

S(A)#P2C2 = S(A)#M2/〈αp# f − α#p f : p ∈ E(M2), f ∈M2〉.

As a vector space, S(A)#P2C2 = S(A)⊗P2 C2; the product is defined as in (6.6). We
have an algebra homomorphism

ρ : S(A)#P2C2 → IS(A), ρ(α# f ) = diag(α)U f . (7.3)

Lemma 7.1 The map (7.3) is injective.

Proof Any nonzero element x ∈ C2 can be written as a finite sum of nonzero terms

x =
∑

μ,ν

α(μ, ν)#sμs†ν . (7.4)
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Let l be the maximum length of all the multi-indices μ appearing in the expression
above. Remark that we may rewrite (7.4) as another finite sum

x =
∑

i, j

xi, j#Ei, j +
∑

l(μ)=l

βμ,ν#sμs†ν . (7.5)

such that

xi, j �= 0⇒ i < 2l . (7.6)

Indeed this follows from (7.2) and from the identities

sμs†ν = sμ

(
1−

2∑

i=1
si s

†
i

)
s†ν +

2∑

i=1
sμi s

†
νi

= Eμ(1),ν(1) +
2∑

i=1
sμi s

†
νi .

Suppose that the element (7.5) is in ker ρ. Observe that ρ(χ{i} ⊗ Ei, j ) = Ei, j .
Hence, we have

0 =
∑

i, j

xi, j Ei, j +
∑

l(μ)=l,ν

diag(βμ,ν)UsμU∗
sν . (7.7)

But by (7.2), for μ as in (7.7), we have

ran(UsμU∗
sν ) = span

{
en : n = 2lm +

l∑

i=1
(μi − 1)2i−1 m ∈ N

}
.

This together with (7.6) imply that each of the summands of (7.7) vanishes. Thus

xi, j = 0 and diag(βμ,ν)UsμU∗
sν = 0

for all i, j and all μ and ν in (7.6). Hence,

∅ = suppβμ,ν ∩
(
2l

N+
l∑

i=1
(μi − 1)2i−1

)
= supp(sμs†μ)∗(βμ,ν).

It follows that βμ,ν#sμs†ν = 0 and therefore the element (7.5) must be zero, finishing
the proof. ��
Remark 7.2 Let S � �∞ be a nonzero symmetric ideal and let c f be as in Example
3.8. Then S contains c f and thus if we identify S#P2C2 with its image in IS , we have

IS ⊃ S#P2C2 ⊃ c f #P2C2 = M∞.
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In particular the completion of c0#P2C2 with respect to the operator norm in B(�2)

coincides with the completion of M∞C and of Ic0 ; it is the ideal K = Jc0 of compact
operators. Similarly, for p ≥ 1 the completion of �p#P2C2 for the p-Schatten norm
||T ||p = T r(|T |p) coincides with that of I�p ; it is the Schatten ideal Lp.

7.2 The Cohn ring and homotopy invariance

Let V be a bornological vector space, T a compact Hausdorff topological space, X a
metric space, and 1 ≥ λ > 0. Put

C(T, V) = { f : T → V continuous},
Hλ(X, V) = { f : X → V λ− Hölder continuous}.

We refer the reader to [12, §2.1.1 and §3.1.4] for the definitions of continuity and
Hölder continuity in the bornological setting, as well as for those of the canonical
uniform bornologies that the above algebras carry.

Let S � �∞ be a symmetric ideal and A a bornological algebra. We have a natural
inclusion

inc : A ⊂ S(A), a �→ (a, 0, 0, . . .).

Lemma 7.3 (cf. [12, Lemma 3.26]) Let F : C − Alg → Ab be a split-exact, M2-
stable functor, B a bornological algebra, evt : C([0, 1],B) → B the evaluation
map, and 0 < λ ≤ 1.

i)

F
(

C([0, 1],B)
evt→ B

inc→ c0(B)
−#1→ c0(B)#P2C2

)

is independent of t .
ii) If p > 1/λ, then

F
(

Hλ([0, 1],B)
evt→ B

inc→ �p(B)
−#1→ �p(B)#P2C2

)

is independent of t .

Proof Let S be either c0 or �p. In the first case, put B[0, 1] = C([0, 1],B); in the
second, let λ > 1/p and setB[0, 1] = Hλ([0, 1],B). Let

Z≥0 × Z≥0 ⊃ X = {(l, k) : k ≤ 2l − 1}.

Let φ+, φ−, φ2
0 and φ2− be the homomorphisms B[0, 1] → �∞(X,B) defined in

the proof of [12, Lemma 3.26]. One checks that (φ+, φ−) and (φ2
0 , φ

2−) are quasi-
homomorphisms B[0, 1] → S(X,B). Furthermore, it is shown in loc. cit. that there
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are elements V, V̄ ∈ Emb(X) such that for

inc0,0 : B→ S(X,B), inc0,0(a)l,k = aδl,0δk,0

we have

F(inc0,0 ◦ ev0)− F(inc0,0 ◦ ev1) = (F(V̄∗)− 1)F(φ−, φ+)

+(F(V∗)− 1)F(φ2
0 , φ

2−). (7.8)

Consider the bijection ψ : X → N

ψ(l, k) = 2l + k. (7.9)

Let s1, s2 be the generators (7.1) of C2. Let v, v̄ ∈ Emb be the conjugates of V and V̄
under ψ . One checks that, for ρ as in (7.3), we have

v̄ = s2 and (7.10)

Uv = ρ(1− s1s†1 − s2s†2 + s2s†1 + s1s†2). (7.11)

Now recall that C2 = Z[M2] and write ∗ : C2 → C2 for the involution induced by †.
It follows from (7.11) that the element

C2 " f = 1− s1s†1 − s2s†2 + s2s†1 + s1s†2 (7.12)

satisfies f ∗ f = 1. Hence if g is any of 1#s2, 1# f ∈ �∞(B̃)#C2, we have an algebra
homomorphism

conj(g) : S(B)#C2 → S(B)#C2, x �→ gxg∗.

Moreover, because F is M2-stable by assumption and S(B)#C2 is an ideal in
�∞(B̃)#C2, F(conj(g)) is the identity [5, Proposition 2.2.6]. Let φ′20 , φ′2− , φ′+ and φ′−
be the maps B[0, 1] → S(B) obtained from φ2

0 , φ2−, φ+, and φ− after conjugating
with Uψ . Then (7.8) gives the identity

F((inc ev0)#1)− F((inc ev1)#1) = (F(conj(1#s2))− 1)F(φ′−, φ′+)

+(F(conj(1# f ))− 1)F(φ2
0 , φ

2−) = 0.

We have proved that F((inc ◦ ev0)#1) = F((inc ◦ ev1)#1). The proposition now
follows from the fact that if t ∈ [0, 1] then evt and ev0 are linearly homotopic. ��
Remark 7.4 The key property of C2 used in the proof of Lemma 7.3 is that it contains
the elements (7.10) and (7.12). In fact it is not hard to check that they generate C2
as a ring. Hence taking crossed product with C2 may be regarded as the smallest
construction which makes the proof given above work.
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Remark 7.5 If A is a C∗-algebra, then c0(A) = c0
∼⊗ A is the spatial C∗-algebra

tensor product. The inclusion c0 ⊂ Ic0 ⊂ K is equivariant for the action of Emb, and

so we get a map c0(A)#P2C2 → A
∼⊗ K. Composing the latter with the inclusion

A→ c0(A)#P2C2 of Lemma 7.3 we obtain the map ι : A→ A
∼⊗K, a �→ a

∼⊗ E1,1.
Hence, the lemma implies that if F : C − Alg → Ab is split-exact and M2-stable,
then, for every C∗-algebra B, the map

F
(

C([0, 1],B)
evt→ B

ι→ B
∼⊗K

)

is independent of t . One can use this to prove that F is homotopy invariant on stable
C∗-algebras, thus obtaining a weak version of Higson’s homotopy invariance theorem

[17, Theorem 3.2.2]. Indeed it suffices to show that F(ι) is injective ifB = A
∼⊗K, and

this follows from the fact that there is a mapK ∼⊗K→ M2K (in fact an isomorphism)
such that the following diagram commutes

K ∼⊗K �� M2K

K.

ι

��

E1,1

������������

(7.13)

Next suppose that B is any bornological algebra. Write ⊗̂ for the projective tensor
product. For each p ≥ 1we have amap �p⊗̂B→ �p(B). Thismap is an isomorphism
if p = 1; using this isomorphism as above, we obtain a map

�1(A)#P2C2 → A⊗̂L1.

In general �p⊗̂A→ �p(A) is not an isomorphism.Note, however, that for every p ≥ 1,
the quotient �p(A)/�1(A) is a nilpotent ring. Assume that the functor F is strongly
nilinvariant in the sense that if f : A → B is a homomorphism with nilpotent kernel,
and such that f (A) � B and B/ f (A) is nilpotent, then F( f ) is an isomorphism. Then
F(�1(A)#P2C2) → F(�p(A)#P2C2) and F(A⊗̂L1)→ F(A⊗̂Lp) are isomorphisms
for all p ≥ 1. Moreover we also have a commutative diagram

L1⊗̂L1 �� M2L1

L1

ι

��

E1,1

������������

(7.14)

Let BAlg be the category of bornological algebras and bounded homomorphisms.
Using Lemma 7.3 together with diagram (7.14) above and proceeding as before, one
shows that if F is split-exact, M2-stable, and strongly nilinvariant, then the functor

BAlg→ Ab, A �→ F(A⊗̂L1),
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is invariant under Hölder-continuous homotopies. This gives a (weak) bornological
version of [9, Theorem 6.1.6]. Observe that the stability properties (7.13) and (7.14)
play a crucial role in the arguments above.We do not have an analogous stability result
for the uncompleted algebras c0(A)#P2C2 and �1(A)#P2C2. In the next subsection we
shall prove a version of stability for crossed products with �. This will enable us to
prove a homotopy invariance theorem in the following subsection.

7.3 Stability

Lemma 7.6 i) There is a natural isomorphism �(N � N) ∼= M2�.
ii) LetA be a bornological algebra and S � �∞ a symmetric ideal. Then IS(N�N,A)

∼=
M2 IS(A).

Proof Let p1, p2 ∈ Emb(N � N) be the inclusions of each of the copies of N. One
checks that the map

φ : �(N � N) → M2�, φ(a)i j = Upi aUp j .

is an isomorphism. To prove part ii) one checks that the following composite of iso-
morphisms of abelian groups is a homomorphism of algebras

S(N � N,A)#P(N�N)�(N � N) ∼= (S(A)⊕ S(A))⊗P⊕P M2(�)

∼= M2(S(A)#P�).

��

LetA be a bornological algebra and let ι : �∞(A)→ �∞(N×N,A) be the inclusion

ι(α)(m, n) = α(m)δ1,n .

Also let S � �∞ be a symmetric ideal; put

j : S(A)#P� → S(N× N,A)#P(N×N)�(N× N) (7.15)

j (α#U f ) = ι(α)#(U f×χ{1}).

Proposition 7.7 Let A be a bornological algebra and S � �∞ a symmetric ideal.
Then any M2-stable functor F : C − Alg → Ab sends the map j of (7.15) to an
isomorphism.

Proof Choose a bijection N× N → N � N sending N× {1} bijectively onto the first
copy of N. This bijection induces an isomorphism

S(N× N,A)#P(N×N)�(N× N)
∼=−→ S(N � N,A)#P(N�N)�(N � N).
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Composing this map with the isomorphism of Lemma 7.6, we obtain an isomorphism
which fits into a commutative diagram

S(N× N,A)#P(N×N)�(N× N)
∼ �� M2(S(A)#P�)

S(A)#P�

j

��

E1,1⊗−

�������������������

This concludes the proof. ��

7.4 A homotopy invariance theorem

Let f0, f1 : A → B be homomorphisms of bornological algebras and 0 < λ ≤ 1.
A λ-Hölder continuous homotopy from f0 to f1 is a homomorphism H : A →
Hλ([0, 1],B) such that evi H = fi (i = 0, 1).We say that a functor F : BAlg→ Ab is
invariant under λ-Hölder homotopies if it maps λ-Hölder homotopic homomorphisms
to equal maps.

Theorem 7.8 Let F : C− Alg→ Ab be a split-exact, M2-stable functor.

i) The functor

BAlg→ Ab,B �→ F(Ic0(B))

is invariant under continuous homotopies.
ii) If 1 ≥ λ > 0 and p > 1/λ, then the functor

BAlg→ Ab,B �→ F(I�p(B))

is invariant under λ-Hölder homotopies.

Proof Let A be a bornological algebra. We adopt the notation of the proof of Lemma
7.3. Thus S will be either c0 or �p, and A[0, 1] will stand for C([0, 1],A) in the first
case, and for Hλ([0, 1],A) in the second. By the argument of the proof of Lemma 7.3
applied to the functor

G = F(S(−)#P�), (7.16)

we have the following identity

G(inc)(G(ev0))− G(ev1)) = (G((s2)∗)− 1)G(φ′−, φ′+)

+(G( f∗)− 1)G(φ′20, φ′
2
−). (7.17)

Now if h ∈ Emb then G(h∗) is the result of applying F to the map

S(h∗)#P� : S(S(A))#P� → S(S(A))#P�.

123



Homotopy invariance through small stabilizations 487

Here the crossed product is taken with respect to the action on the external S. In
addition, we consider the action of� on the inner S and take the crossed product again;
we write (S(S(A))#P�)#P� for the resulting algebra. We have an inclusion

inc′ = −#1 : S(S(A))#P� ⊂ (S(S(A))#P�)#P�

and a commutative diagram

S(S(A))#P�
S(h∗)#P� ��

inc′
��

S(S(A))#P�

inc′
��

(S(S(A))#P�)#P�
conj(1#Uh)

�� (S(S(A))#P�)#P�

Because F is M2-stable, F(conj(1#Uh)) is the identity map, since

S(S(A))#P�)#P� � (�∞(�∞(A))#P�)#P� " 1#Uh .

Hence, by (7.17),

F(inc′(S(inc)#�)))(F(S(ev0)#�)− F(S(ev1)#�)

= F(inc′)(G((s2)∗)− 1)G(φ′−, φ′+)+ F(inc′)(G( f∗)− 1)G(φ′20, φ′
2
−) = 0.

(7.18)

We have to show that

F(inc′(S(inc)#�)) (7.19)

is injective. Observe that we have a natural isomorphism

μ : S(S(A))
∼=−→ S(N× N,A), μ(α)m,n = (α(n))(m). (7.20)

For h ∈ Emb the isomorphism (7.20) transforms S(h∗) into the action of 1× h ∈
Emb(N× N), and h∗S into that of h × 1. Hence we have a map

inc′′ : (S(S(A))#P�)#P� → S(N× N)#P(N×N)�(N× N)

inc′′(α#Ug#Uh) = μ(α)#(Ug×h).

Observe that the composite

inc′′inc′(S(inc)#�) = j

is the map of (7.15). By Proposition 7.7, this implies that the map (7.19) is injective,
concluding the proof. ��
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8 K -theory

8.1 Homotopy algebraic K -theory

Let 0 < p ≤ ∞. Put

�p− =
⋃

q<p

�q .

For 0 < p <∞ we also consider

�p+ =
⋂

q>p

�q .

We say that a functor F : BAlg→ Ab is Hölder homotopy invariant if it is invariant
under λ-Hölder homotopies for all 0 < λ ≤ 1. Recall from [12, §2] that a bornological
algebra is called a local Banach algebra if it is a filtering union of Banach subalgebras.
Similarlywe say that a bornological algebra is abornolocal C∗-algebra if it is afiltering
union of C∗-subalgebras. If A = ∪λAλ andB = ∪μBμ are bornolocal C∗-algebras,
we define their spatial tensor product as the algebraic colimit of the spatial tensor

products Aλ

∼⊗Bμ; A
∼⊗B = colimλ,μ Aλ

∼⊗Bμ. For the projective tensor product
of bornological spaces (and of bornological algebras) see [12, §2.1.2]. In the next
theorem and elsewhere we write K V for Karoubi-Villamayor’s K -theory.

Theorem 8.1 Let S be one of �p, �p+ (0 < p <∞) or �p− (0 < p ≤ ∞).

i) The functor BAlg → Ab, A �→ KH∗(I�1(A)) is Hölder homotopy invariant and
we have KH∗(IS(A)) = KH∗(I�1(A)) for all S as above.

ii) For every bornological algebra A

KHn(I�1(A)) =
{

K Vn(I�1(A)) n ≥ 1
Kn(I�1(A)) n ≤ 0.

iii) If A is a local Banach algebra and n ≥ 0, then there is a natural split monomor-
phism K top

n (A) → KHn(I�1(A)).

Proof Recall thatKH satisfies excision, vanishes on nilpotent rings and commuteswith
filtering colimits [23]. On the other hand, �q(A)/�p(A) is nilpotent for p < q < ∞
and

�r−(A) = colim
s<r

�s(A) (0 < r ≤ ∞).

It follows that KH∗(IS(A)) = KH∗(I�1(A)) for all S as in the theorem. Recall also that
KH is M2-stable. Hence KH∗(I�1(−)) = KH∗(I�p(−)) is Hölder-homotopy invariant,
by Theorem 7.8. This proves i). By [23, Proposition 1.5] (see also [5, Proposition
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5.2.3]), in order to prove ii) it suffices to show that I�1(A) is K0-regular. By definition,
a ring A is K0-regular if for each n ≥ 1 the canonical map

K0(A)→ K0(A[t1, . . . , tn])

is an isomorphism. This is equivalent to the requirement that for t = (t1, . . . , tn), the
map

ε : A[ t ] → A[t], ε( f ) = f (0)

induce an isomorphism in K0. Observe that

I�1(A)[t] = (�1(A)#P�)[t] (8.1)

= (�1(A)[t])#P�.

Also note that, for the projective tensor product,

�1(C∞([0, 1],A)) = �1⊗̂C∞([0, 1], C)⊗̂A
= C∞([0, 1], �1(A)).

(8.2)

Next we borrow an argument from [19, Proposition 3.4]. Consider the homomorphism

φ : C∞([0, 1], �1(A))[t] → C∞([0, 1], �1(A))[t]
φ( f )(s, t) = f (s, st).

Using the identifications (8.1) and (8.2) we have a diagram

I�1(C∞([0,1],A))[t] φ#� �� I�1(C∞([0,1],A))[t]
s=0

		
s=1




I�1(A)[t]
inc

��

ε
��

1

��
I�1(A)[t]

One checks that both the outer and the inner square commute. By Theorem 7.8,
K0(evs=0#�) = K0(evs=1#�). It follows that K0(ε) is the identity; this proves ii).
Next assume that A is a local Banach algebra; then K top

0 (A) = K0(A). On the other
hand, by the universal property of the crossed product, we have a map

I�1(A) = (�1⊗̂A)#P� → L1⊗̂A. (8.3)

Composing this map with the inclusion

A→ I�1(A), a �→ aE1,1, (8.4)
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we obtain the map

A→ L1⊗̂A, a �→ a⊗̂E1,1. (8.5)

Since the latter map induces an isomorphism in K0, it follows that (8.4) induces a split
monomorphism K0(A) → K0(I�1(A)). Thus we have established iii) for n = 0. For
the case n ≥ 1, we consider the simplicial algebras ofC∞ functions on the topological
standard simplices and of polynomial functions on the algebraic standard simplices:

�dif : [n] �→ C∞(�n)

and

�alg : [n] �→ C[t0, . . . , tn]/〈
∑

ti − 1〉.

Set

�difA = �dif⊗̂A and

�algA = �alg ⊗C A.

For n ≥ 1, we have

K top
n (A) = πn BGL(�difA),

K Vn(A) = πn BGL(�algA).

Hence for K V (A) = BGL(�algA), there is a map

K top
n (A)→ πn(K V (�dif(A))).

Composing the latter map with that induced by the inclusion (8.4), and using parts i)
and ii), we get a homomorphism

K top
n (A) → πn K V (I�1(�difA))

∼= K Vn(I�1(A)) = KHn(I�1(A)). (8.6)

Composing (8.6) with the homomorphism induced by (8.3) we obtain

K top
n (A)→ KHn(L1⊗̂A). (8.7)

But by [9, Theorem 6.2.1] the comparison map

KHn(L1⊗̂A)→ K top
n (L1⊗̂A)

is an isomorphism. One checks that the latter map composed with (8.7) is equivalent
to that induced by (8.5). But (8.5) induces an isomorphism in K top of local Banach
algebras. This proves that (8.6) is a split monomorphism, concluding the proof. ��
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Theorem 8.2 i) The functor BAlg → Ab, A �→ KH∗(Ic0(A)) is invariant under
continuous homotopies.

ii) For every bornological algebra A

KHn(Ic0(A)) =
{

K Vn(Ic0(A)) n ≥ 1
Kn(Ic0(A)) n ≤ 0.

iii) If A is a bornolocal C∗-algebra and n ≥ 0, then there is a natural split monomor-
phism K top

n (A)→ KHn(Ic0(A)).

Proof As in Theorem 8.1, part i) follows from Theorem (7.8). To prove part ii), first
observe that

c0(C([0, 1],A)) = C0(N, C([0, 1],A))

= C([0, 1], c0(A)).

Then use the argument of the proof of part ii) of Theorem 8.1. To prove part iii) first
observe that if A is a bornolocal C∗-algebra, then for the spatial tensor product,

c0(A) = c0
∼⊗ A.

Hence if K = K(�2(N)) is the C∗-algebra of compact operators then the map A →
A
∼⊗K, a → a ⊗ E1,1 factors through Ic0(A). Taking this into account, using the fact

that, by [21, Theorem 10.9] and [19, Proposition 3.4], the comparison map KH∗(A
∼⊗

K) → K top∗ (A
∼⊗K) is an isomorphism, and substituting continuous functions for C∞

functions, we may now proceed as in the prooof of part iii) of Theorem 8.1. ��
Remark 8.3 The argument of the proofs of part iii) of Theorems 8.1 and 8.2 does not
work for n < 0. Indeed, Kn and K top

n do not agree for such n, not even on algebras on
which the former is homotopy invariant. For example negative K -theory is homotopy
invariant on commutative C∗-algebras [10, Theorem 1.2] yet Kn(C) = 0 for n < 0,
while K top

2m (C) = Z for m ∈ Z.

Remark 8.4 The argument of the proof of Theorem 8.1 shows that if A is a local
Banach algebra then A→ A⊗̂L1 factors through I�1(A) and the map

KHn(I�1A)→ KHn(A⊗̂L1) = K top
n (A)

is onto for n ≥ 0. Similarly, the argument of the proof of 8.2 shows that for A a

bornolocal C∗-algebra the map A→ A
∼⊗K factors through Ic0(A) and

KHn(Ic0(A))→ KHn(A
∼⊗K) = K top

n (A)

is onto for n ≥ 0.
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8.2 K -theory and cyclic homology

Theorem 8.5 Let A be a bornological algebra and let S be c0, �p, �p+ (0 < p <∞),
or �p− (0 < p ≤ ∞). Then there are long exact sequences (n ∈ Z)

KHn+1(IS(A)) �� HCn−1(IS(A))

��
KHn(IS(A)) Kn(IS(A))��

(8.8)

and

KHn+1(IS(A)) �� HCn−1(�∞(A) : IS(A))

��
KHn(IS(A)) Kn(�

∞(A) : IS(A))��

(8.9)

Proof Let K nil = hofi(K → KH) be the homotopy fiber of the comparison map. By
[5, diagram (86)], there is a natural map ν : K nil(A) → HC(A)[−1], defined for every
Q-algebra A. Write K ninf = hofi(ν); by [7, Proposition 8.2.4] K ninf is excisive, M2-
stable and nilinvariant, and K ninf∗ commutes with filtering colimits. Hence to prove
the theorem it suffices to show that

K ninf∗ (IS(A)) = 0. (8.10)

Note also that if S �= c0, then

K ninf∗ (IS(A)) = K ninf∗ (I�1(A))

by the same argument as that used in the proof of Theorem 8.1 to prove the analogous
assertion for KH. Thus we may assume from now on that S ∈ {c0, �1}. By [9, Propo-
sition 3.1.4], to prove (8.10) it suffices to show that IS(A) is K inf -regular. Here K inf is
infinitesimal K -theory; by [4] it is excisive and M2-stable. Hence, the same argument
as that used in the proof of Theorems 8.1 and 8.2 to prove that IS(A) is K0-regular
applies to show that it is also K inf -regular. This completes the proof. ��

Remark 8.6 By Examples 5.3, we have

KH∗(�∞(A)) = HC∗(�∞(A)) = K∗(�∞(A)) = 0

for unital A. Hence in the unital case, the second sequence of Theorem 8.5 can be
equivalently expressed in terms of the quotient �∞(A)/IS(A); we have a long exact
sequence

123



Homotopy invariance through small stabilizations 493

KHn+1(�∞(A)/IS(A)) �� HCn−1(�∞(A)/IS(A))

��
KHn(�∞(A)/IS(A)) Kn(�∞(A)/IS(A))��

(8.11)
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