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TENSOR PRODUCTS OF LEAVITT PATH ALGEBRAS

PERE ARA AND GUILLERMO CORTIÑAS

(Communicated by Birge Huisgen-Zimmermann)

Abstract. We compute the Hochschild homology of Leavitt path algebras

over a field k. As an application, we show that L2 and L2 ⊗L2 have different
Hochschild homologies, and so they are not Morita equivalent; in particular,
they are not isomorphic. Similarly, L∞ and L∞ ⊗ L∞ are distinguished by
their Hochschild homologies, and so they are not Morita equivalent either. By
contrast, we show that K-theory cannot distinguish these algebras; we have
K∗(L2) = K∗(L2 ⊗ L2) = 0 and K∗(L∞) = K∗(L∞ ⊗ L∞) = K∗(k).

1. Introduction

Elliott’s theorem [21] states that O2 ⊗ O2
∼= O2 plays an important role in the

proof of the celebrated classification theorem of Kirchberg algebras in the UCT
class, due to Kirchberg [14] and Phillips [19]. Recall that a Kirchberg algebra is a
purely infinite, simple, nuclear and separable C*-algebra. The Kirchberg-Phillips
theorem states that this class of simple C*-algebras is completely classified by
its topological K-theory. The analogous question whether the algebras L2 and
L2 ⊗ L2 are isomorphic has remained open for some time. Here L2 is the Leavitt
algebra of type (1, 2) over a field k (see [17]), that is, the k-algebra with generators

x1, x2, x
∗
1, x

∗
2 and relations given by x∗

i xj = δi,j and
∑2

i=1 xix
∗
i = 1.

In this paper we obtain a negative answer to this question. Indeed, we analyze a
much larger class of algebras, namely the tensor products of Leavitt path algebras
of finite quivers in terms of their Hochschild homology, and we prove that, for
1 ≤ n < m ≤ ∞, the tensor products E =

⊗n
i=1 L(Ei) and F =

⊗m
j=1 L(Fj) of

Leavitt path algebras of non-acyclic finite quivers Ei, Fj are distinguished by their
Hochschild homologies (Theorem 5.1). Because Hochschild homology is Morita
invariant, we conclude that E and F are not Morita equivalent for n < m. Since
L2 is the Leavitt path algebra of the graph with one vertex and two arrows, we
obtain that L2 ⊗ L2 and L2 are not Morita equivalent; in particular, they are not
isomorphic.

Recall that, by a theorem of Kirchberg [15], a simple, nuclear and separable
C∗-algebra A is purely infinite if and only if A ⊗ O∞ ∼= A. We also show that
the analogue of Kirchberg’s result is not true for Leavitt algebras. We prove in
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Proposition 5.3 that if E is a non-acyclic quiver, then L∞ ⊗ L(E) and L(E) are
not Morita equivalent, and also that L∞ ⊗ L∞ and L∞ are not Morita equivalent.

Using the results in [5] we prove that the algebras L2 and L2 ⊗ L(F ), for F an
arbitrary finite quiver, have trivial K-theory: all algebraic K-theory groups Ki,
i ∈ Z, vanish on them (this follows from Lemma 6.1 and Proposition 6.2). We also
compute K∗(L(F )) = K∗(L∞⊗L(F )) and that K∗(L∞) = K∗(L∞⊗L∞) = K∗(k)
is the K-theory of the ground field (see Proposition 6.3 and Corollary 6.4). This
implies in particular that, in contrast with the analytic situation, no classification
result, in terms solely of K-theory, can be expected for a class of central, simple k-
algebras, containing all purely infinite simple unital Leavitt path algebras and closed
under tensor products. It is worth mentioning that an important step towards a
K-theoretic classification of purely infinite simple Leavitt path algebras of finite
quivers has been achieved in [2].

We refer the reader to [3], [7] and [20] for the basics on Leavitt algebras, Leavitt
path algebras and graph C*-algebras, and to [22] for a nice survey on the Kirchberg-
Phillips Theorem.

Notation. We fix a field k; all vector spaces, tensor products and algebras are over k.
If R and S are unital k-algebras, then by an (R,S)-bimodule we understand a left
module over R ⊗ Sop. By an R-bimodule we shall mean an (R,R) bimodule, that
is, a left module over the enveloping algebra Re = R ⊗ Rop. Hochschild homology
of k-algebras is always taken over k. If M is an R-bimodule, we write

HHn(R,M) = TorR
e

n (R,M)

for the Hochschild homology of R with coefficients inM and we abbreviateHHn(R)
= HHn(R,R).

2. Hochschild homology

Let k be a field, R a k-algebra and M an R-bimodule. The Hochschild homology
HH∗(R,M) of R with coefficients in M was defined in the introduction. It is
computed by the Hochschild complex HH(R,M), which is given in degree n by

HH(R,M)n = M ⊗R⊗n.

It is equipped with the Hochschild boundary map b defined by

b(a0⊗a1⊗· · ·⊗an)=
n−1∑
i=0

(−1)ia0⊗· · ·⊗aiai+1⊗· · ·⊗an+(−1)nana0⊗· · ·⊗an−1.

If R and M happen to be Z-graded, then HH(R,M) splits into a direct sum of
subcomplexes

HH(R,M) =
⊕
m∈Z

mHH(R,M).

The homogeneous component of degree m of HH(R,M)n is the linear subspace of
HH(R,M)n generated by all elementary tensors a0⊗· · ·⊗an with ai homogeneous
and

∑
i |ai| = m. One of the first basic properties of the Hochschild complex is

that it commutes with filtering colimits. Thus we have

Lemma 2.1. Let I be a filtered ordered set and let {(Ri,Mi) : i ∈ I} be a directed
system of pairs (Ri,Mi) consisting of an algebra Ri and an Ri-bimodule Mi, with
algebra maps Ri → Rj and Ri-bimodule maps Mi → Mj for each i ≤ j. Let
(R,M) = colimi(Ri,Mi). Then HHn(R,M) = colimi HHn(Ri,Mi) (n ≥ 0).
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Let Ri be a k-algebra and Mi an Ri-bimodule (i = 1, 2). The Künneth formula
establishes a natural isomorphism ([23, 9.4.1])

HHn(R1 ⊗R2,M1 ⊗M2) ∼=
n⊕

p=0

HHp(R1,M1)⊗HHn−p(R2,M2).

Another fundamental fact about Hochschild homology which we shall need is Morita
invariance. Let R and S be Morita equivalent algebras, and let P ∈ R ⊗ Sop-mod
and Q ∈ S ⊗Rop-mod implement the Morita equivalence. Then ([23, Thm. 9.5.6])

(2.2) HHn(R,M) = HHn(S,Q⊗R M ⊗R P ).

Lemma 2.3. Let R1, . . . , Rn and S1, . . . , Sm, . . . be a finite and an infinite sequence
of algebras, and let R =

⊗n
i=1 Ri, S≤m =

⊗m
j=1 Sj and S =

⊗∞
j=1 Sj. Assume:

(1) HHq(Ri) 	= 0 	= HHq(Sj) (q = 0, 1), (1 ≤ i ≤ n), (1 ≤ j).
(2) HHp(Ri) = HHp(Sj) = 0 for p ≥ 2, 1 ≤ i ≤ n, 1 ≤ j.
(3) n 	= m.

Then no two of R, S≤m and S are Morita equivalent.

Proof. By the Künneth formula, we have

HHn(R) =

n⊗
i=1

HH1(Ri) 	= 0, HHp(R) = 0, p > n.

By the same argument, HHp(S≤m) is non-zero for p = m and zero for p > m.
Hence if n 	= m, R and S≤m do not have the same Hochschild homology, and
therefore they cannot be Morita equivalent, by (2.2). Similarly, by Lemma 2.1, we
have

HHn(S) =
⊕

J⊂N,|J|=n

(⊗
j∈J

HH1(Sj)
)
⊗
(⊗
j /∈J

HH0(Sj)
)

so that HHn(S) is non-zero for all n ≥ 1, and thus it cannot be Morita equivalent
to either R or S≤m. �

3. Hochschild homology of crossed products

Let R be a unital algebra and G a group acting on R by algebra automorphisms.
Form the crossed-product algebra S = R�G, and consider the Hochschild complex
HH(S). For each conjugacy class ξ of G, the graded submodule HHξ(S) ⊂ HH(S)
generated in degree n by the elementary tensors a0�g0⊗· · ·⊗an�gn with g0 · · · gn ∈
ξ is a subcomplex, and we have a direct sum decomposition HH(S) =

⊕
ξ HHξ(S).

The following theorem of Lorenz describes the complex HHξ(S) corresponding
to the conjugacy class ξ = [g] of an element g ∈ G as hyperhomology over the
centralizer subgroup Zg ⊂ G.

Theorem 3.1 ([16]). Let R be a unital k-algebra, G a group acting on R by au-
tomorphisms, g ∈ G and Zg ⊂ G the centralizer subgoup. Let S = R � G be the

crossed product algebra and HH〈g〉(S) ⊂ HH(S) be the subcomplex described above.
Consider the R-submodule Sg = R� g ⊂ S. Then there is a quasi-isomorphism

HH [g](S)
∼→ H(Zg, HH(R,Sg)).

In particular, we have a spectral sequence

E2
p,q = Hp(Zg, HHq(R,Sg)) ⇒ HH

[g]
p+q(S).
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Remark 3.2. Lorenz formulates his result in terms of the spectral sequence alone,
but his proof shows that there is a quasi-isomorphism as stated above. An explicit
formula is given for example in the proof of [11, Lemma 7.2].

Let A be a not necessarily unital k-algebra and write Ã for its unitalization.

Recall from [24] that A is called H-unital if the groups TorÃn (k,A) vanish for all
n ≥ 0. Wodzicki proved in [24] that A is H-unital if and only if for every embedding
A � R of A as a two-sided ideal of a unital ring R, the map

HH(A) → HH(R : A) = ker(HH(R) → HH(R/A))

is a quasi-isomorphism.

Lemma 3.3. Theorem 3.1 still holds if the condition that R be unital is replaced
by the condition that it be H-unital.

Proof. Follows from Theorem 3.1 and the fact, proved in [11, Prop. A.6.5], that
R�G is H-unital if R is as well. �

Let R be a unital algebra and φ : R → pRp a corner isomorphism. As in [6], we
consider the skew Laurent polynomial algebra R[t+, t−, φ]. This is the R-algebra
generated by elements t+ and t− subject to the following relations:

t+a = φ(a)t+

at− = t−φ(a)

t−t+ = 1

t+t− = p

Observe that the algebra S = R[t+, t−, φ] is Z-graded by deg(r) = 0, deg(t±) = ±1.
The homogeneous component of degree n is given by

R[t+, t−, φ]n =

⎧⎨
⎩
t−n
− R n < 0
R n = 0

Rtn+ n > 0

Proposition 3.4. Let R be a unital ring, φ : R → pRp a corner isomorphism, and
S = R[t+, t−, φ]. Consider the weight decomposition HH(S) =

⊕
m∈Z mHH(S).

There is a quasi-isomorphism

(3.5) mHH(S)
∼→ Cone(1− φ : HH(R,Sm) → HH(R,Sm)).

Proof. If φ is an automorphism, then S = R �φ Z, the right hand side of (3.5)
computes H(Z, HH(R,Sm)), and the proposition becomes the particular case G =
Z of Theorem 3.1. In the general case, let A be the colimit of the inductive system

R
φ �� R

φ �� R
φ �� . . . .

Note that φ induces an automorphism φ̂ : A → A. Now A is H-unital, since it is a
filtering colimit of unital algebras, and thus the assertion of the proposition is true

for the pair (A, φ̂), by Lemma 3.3. Hence it suffices to show that for B = A �φ̂ Z

the maps HH(S) → HH(B) and Cone(1 − φ : HH(R,Sm) → HH(R,Sm)) →
Cone(1 − φ : HH(A,Bm) → HH(A,Bm)) (m ∈ Z) are quasi-isomorphisms. The
analogous property for K-theory is shown in the course of the third step of the
proof of [5, Thm. 3.6]. Since the proof in [5] uses only that K-theory commutes
with filtering colimits and is matrix invariant on those rings for which it satisfies
excision, it applies verbatim to Hochschild homology. This concludes the proof. �
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4. Hochschild homology of the Leavitt path algebra

Let E = (E0, E1, r, s) be a finite quiver and let Ê = (E0, E1 � E∗
1 , r, s) be the

double of E, which is the quiver obtained from E by adding an arrow α∗ for each
arrow α ∈ E1, going in the opposite direction. The Leavitt path algebra of E is the
algebra L(E) with one generator for each arrow α ∈ Ê1 and one generator pi for
each vertex i ∈ E0, subject to the following relations:

pipj = δi,jpi (i, j ∈ E0)

ps(α)α = α = αpr(α) (α ∈ Ê1)

α∗β = δα,βpr(α) (α, β ∈ E1)

pi =
∑

α∈E1,s(α)=i

αα∗ (i ∈ E0 \ Sink(E))

The algebra L = L(E) is equipped with a Z-grading. The grading is determined
by |α| = 1, |α∗| = −1, for α ∈ E1. Let L0,n be the linear span of all elements of the
form γν∗, where γ and ν are paths with r(γ) = r(ν) and |γ| = |ν| = n. By [7, proof
of Theorem 5.3], we have L0 =

⋃∞
n=0 L0,n. For each i in E0 and each n ∈ Z

+, let
us denote by P (n, i) the set of paths γ in E such that |γ| = n and r(γ) = i. The
algebra L0,0 is isomorphic to

∏
i∈E0

k. In general, the algebra L0,n is isomorphic to

(4.1)
[ n−1∏
m=0

( ∏
i∈Sink(E)

M|P (m,i)|(k)
)]

×
[ ∏
i∈E0

M|P (n,i)|(k)
]
.

The transition homomorphism L0,n → L0,n+1 is the identity on the factors∏
i∈Sink(E)

M|P (m,i)|(k),

for 0 ≤ m ≤ n− 1, and also on the factor∏
i∈Sink(E)

M|P (n,i)|(k)

of the last term of the displayed formula. The transition homomorphism∏
i∈E0\Sink(E)

M|P (n,i)|(k) →
∏
i∈E0

M|P (n+1,i)|(k)

is a block diagonal map induced by the following identification in L(E)0: A matrix
unit in a factor M|P (n,i)|(k), where i ∈ E0 \Sink(E), is a monomial of the form γν∗,
where γ and ν are paths of length n with r(γ) = r(ν) = i. Since i is not a sink,
we can enlarge the paths γ and ν using the edges that i emits, obtaining paths of
length n+ 1, and the last relation in the definition of L(E) gives

γν∗ =
∑

{α∈E1|s(α)=i}
(γα)(να)∗.

Assume E has no sources. For each i ∈ E0, choose an arrow αi such that
r(αi) = i. Consider the elements

t+ =
∑
i∈E0

αi, t− = t∗+.
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One checks that t−t+ = 1. Thus, since |t±| = ±1, the endomorphism

(4.2) φ : L → L, φ(x) = t+xt−

is homogeneous of degree 0 with respect to the Z-grading. In particular, it restricts
to an endomorphism of L0. By [6, Lemma 2.4], we have

(4.3) L = L0[t+, t−, φ].

Consider the matrix N ′
E = [ni,j ] ∈ Me0Z given by

ni,j = #{α ∈ E1 : s(α) = i, r(α) = j}.
Let e′0 = | Sink(E)|. We assume that E0 is ordered so that the first e′0 elements of
E0 correspond to its sinks. Accordingly, the first e′0 rows of the matrix N ′

E are 0.
Let NE be the matrix obtained by deleting these e′0 rows. The matrix that enters
the computation of the Hochschild homology of the Leavitt path algebra is(

0
1e0−e′0

)
−N t

E : Ze0−e′0 −→ Z
e0 .

By a slight abuse of notation, we will write 1 − N t
E for this matrix. Note that

1−N t
E ∈ Me0×(e0−e′0)

(Z). Of course, NE = N ′
E in case E has no sinks.

Theorem 4.4. Let E be a finite quiver without sources, and let N = NE . For each
i ∈ E0 \ Sink(E) and m ≥ 1, let Vi,m be the vector space generated by all closed
paths c of length m with s(c) = r(c) = i. Let Z = 〈σ〉 act on

Vm =
⊕

i∈E0\Sink(E)

Vi,m

by rotation of closed paths. We have

mHHn(L(E)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

coker(1− σ : V|m| → V|m|) n = 0,m 	= 0
coker(1−N t) n = m = 0

ker(1− σ : V|m| → V|m|) n = 1,m 	= 0
ker(1−N t) n = 1,m = 0

0 n /∈ {0, 1}
Proof. Let L = L(E), P = P (E) ⊂ L be the path algebras of E and Wm ⊂ P be
the subspace generated by all paths of length m. For each fixed n ≥ 1 and m ∈ Z,
consider the following L0,n-bimodule:

Lm,n =

{
L0,nWmL0,n m > 0
L0,nW

∗
−mL0,n m < 0

Write L = L(E), and let mL be the homogeneous part of degree m; we have

mL =
⋃
n≥1

Lm,n.

If m is positive, then there is a basis of Lm,n consisting of the products αθβ∗ where
each of α, β and θ is a path in E, r(α) = s(θ), r(β) = r(θ), |α| = |β| = n and
|θ| = m. Hence the formula

π(αθβ∗) =

{
θ if α = β
0 else

defines a surjective linear map Lm,n → Vm. One checks that π induces an isomor-
phism

HH0(L0,n, Lm,n) ∼= Vm (m > 0).
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Similarly, if m < 0, then

HH0(L0,n, Lm,n) = V ∗
|m|

∼= V−m.

Next, by (4.1), we have

HH0(L0,n) = k[E \ Sink(E)]⊕
⊕

i∈Sink(E)

kr(i,n).

Here

r(i, n) = max{r ≤ n : P (r, i) 	= ∅}.
Now note that because L0,n is a product of matrix algebras, it is separable, and thus
HH1(L0,n,M) = 0 for any bimoduleM . As observed in (4.3), for the automorphism
(4.2), we have L = L0[t+, t−, φ]. Hence in view of Proposition 3.4 and Lemma 2.1,
it only remains to identify the maps HH0(L0,n, Lm,n) → HH0(L0,n+1, Lm,n+1)
induced by inclusion and by the homomorphism φ. One checks that for m 	= 0,
these are respectively the cyclic permutation and the identity V|m| → V|m|. The
case m = 0 is dealt with in the same way as in [5, Proof of Theorem 5.10]. �

Corollary 4.5. Let E be a finite quiver with at least one non-trivial closed path.

i) HHn(L(E)) = 0 for n /∈ {0, 1}.
ii) mHH∗(L(E)) ∼= −mHH∗(L(E)) (m ∈ Z).
iii) There exist m > 0 such that mHH0(L(E)) and mHH1(L(E)) are both non-

zero.

Proof. We first reduce to the case where the graph does not have sources. By the
proof of [5, Theorem 6.3], there is a finite complete subgraph F of E such that F has
no sources, F contains all the non-trivial closed paths of E, Sink(F ) = Sink(E),
and L(F ) is a full corner in L(E) with respect to the homogeneous idempotent∑

v∈F 0 pv. It follows that HH∗(L(E)) and HH∗(L(F )) are graded-isomorphic.
Therefore we can assume that E has no sources.

The first two assertions are already part of Theorem 4.4. For the last assertion,
let α be a primitive closed path in E, and let m = |α|. Let σ be the cyclic
permutation; then {σiα : i = 0, . . . ,m − 1} is a linearly independent set. Hence

N(α) =
∑m−1

i=0 σiα is a non-zero element of V σ
m = mHH1(L(E)). Since on the

other hand N vanishes on the image of 1 − σ : Vm → Vm, it also follows that the
class of α in mHH0(L(E)) is non-zero. �

5. Applications

Theorem 5.1. Let E1, . . . , En and F1, . . . , Fm be finite quivers. Assume that n 	=
m and that each of the Ei and the Fj has at least one non-trivial closed path. Then
the algebras L(E1)⊗· · ·⊗L(En) and L(F1)⊗· · ·⊗L(Fm) are not Morita equivalent.

Proof. Immediate from Lemma 2.3 and Corollary 4.5(iii). �

Example 5.2. It follows from Theorem 5.1 that L2 and L2 ⊗k L2 are not Morita
equivalent. There is another way of proving this, due to Jason Bell and George
Bergman [8]. By Theorem 3.3 of [9], l.gl.dimL2 ≤ 1. Using a module-theoretic
construction, Bell and Bergman show that l.gl.dim(L2 ⊗k L2) ≥ 2, which forces
L2 and L2 ⊗k L2 to not be Morita equivalent. Bergman then asked Warren Dicks
whether general results were known about global dimensions of tensor products
and was pointed to Proposition 10(2) of [12], which is an immediate consequence of
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Theorem XI.3.1 of [10] and says that if k is a field and R and S are k-algebras, then
l.gl.dimR + w.gl.dimS ≤ l.gl.dim(R ⊗k S). Consequently, if l.gl.dimR < ∞ and
w.gl.dimS > 0, then l.gl.dimR < l.gl.dim(R ⊗k S); in particular, R and R ⊗k S
are then not Morita equivalent. To see that w.gl.dimL2 > 0, write x1, x2, x

∗
1,

x∗
2 for the usual generators of L2 and use normal-form arguments to show that

{a ∈ L2 | ax1 = a+1} = ∅ and {b ∈ L2 | x1b = b} = {0}. Hence, in L2, x1− 1 does
not have a left inverse and is not a left zerodivisor (or see [4]); thus, w.gl.dimL2 > 0.

We denote by L∞ the unital algebra presented by generators x1, x
∗
1, x2, x

∗
2, . . .

and relations x∗
i xj = δi,j1.

Proposition 5.3. Let E be any finite quiver having at least one non-trivial closed
path. Then L∞ ⊗ L(E) and L(E) are not Morita equivalent. Similarly, L∞ ⊗ L∞
and L∞ are not Morita equivalent.

Proof. Let Cn be the algebra presented by generators x1, x
∗
1, . . . , xn, x

∗
n and rela-

tions x∗
i xj = δi,j1, for 1 ≤ i, j ≤ n. Then

(5.4) L∞ = lim−→Cn

and Cn
∼= L(En), where En is the graph having two vertices v, w and 2n arrows

e1, . . . , en, f1, . . . , fn, with s(ei) = r(ei) = v = s(fi) and r(fi) = w for 1 ≤ i ≤ n.
(The isomorphism Cn → L(En) is obtained by sending xi to ei + fi and x∗

i to
e∗i + f∗

i .) It follows from Theorem 4.4 and (5.4) that the formulas in Theorem 4.4
for mHHn(L∞), m 	= 0, hold, taking as Vi,m the vector space generated by all the
words in x1, x2, . . . of length m, and that 0HH0(L∞) = k and 0HHn(L∞) = 0 for
n ≥ 1. As before, Lemma 2.3 gives the result. �

Theorem 5.5. Let E1, . . . , En and F1, . . . , Fm, . . . be a finite and an infinite se-
quence of quivers. Assume that the number of indices i such that Fi has at least
one non-trivial closed path is infinite. Then the algebras L(E1)⊗ · · · ⊗ L(En) and⊗∞

i=1 L(Fi) are not Morita equivalent.

Proof. Immediate from Lemma 2.3 and Corollary 4.5(iii). �

Example 5.6. Let L(∞) =
⊗∞

i=1 L2, and let E be any quiver having at least one

non-trivial closed path. Then L(∞) ⊗ L(E) and L(E) are not Morita equivalent.

It would be interesting to know the answer to the following question:

Question 5.7. Is there a unital homomorphism φ : L2 ⊗ L2 → L2?

Observe that to build a unital homomorphism φ : L2 ⊗L2 → L2, it is enough to
exhibit a non-zero homomorphism ψ : L2 ⊗ L2 → L2 because eL2e ∼= L2 for every
non-zero idempotent e in L2.

6. K-theory

To conclude the paper we note that algebraic K-theory cannot distinguish be-
tween L2 and L2 ⊗ L2 or between L∞ and L∞ ⊗ L∞. For this we need a lemma
which might be of independent interest. Recall that a unital ring R is said to
be regular supercoherent in case all the polynomial rings R[t1, . . . , tn] are regular
coherent in the sense of [13].
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Lemma 6.1. Let E be a finite graph. Then L(E) is regular supercoherent.

Proof. Let P (E) be the usual path algebra of E. It was observed in the proof of [3,
Lemma 7.4] that the algebra P (E)[t] is regular coherent. The same proof gives that
all the polynomial algebras P (E)[t1, . . . , tn] are regular coherent. This shows that
P (E) is regular supercoherent. By [3, Proposition 4.1], the universal localization
P (E) → L(E) = Σ−1P (E) is flat on the left. It follows that L(E) is left regular
supercoherent (see [5, page 23]). Since L(E)⊗ k[t1, . . . , tn] admits an involution, it
follows that L(E) is regular supercoherent. �

Proposition 6.2. Let R be regular supercoherent. Then the algebraic K-theories
of L2 and of L2 ⊗R are both trivial.

Proof. Let E be the quiver with one vertex and two arrows. Then L2
∼= L(E), and

we have

L2 ⊗ R = LR(E).

Applying [5, Theorem 7.6] we obtain that K∗(LR(E)) = K∗(L(E)) = 0. The result
follows. �

We finally obtain a K-absorbing result for Leavitt path algebras of finite graphs,
indeed for any regular supercoherent algebra.

Proposition 6.3. Let R be a regular supercoherent algebra. Then the natural
inclusion R → R ⊗ L∞ induces an isomorphism Ki(R) → Ki(R ⊗ L∞) for all
i ∈ Z.

Proof. Adopting the notation used in the proof of Proposition 5.3, we see that it
is enough to show that the natural map R → R ⊗ L(En) induces isomorphisms
Ki(R) → Ki(R ⊗ L(En)) for all i ∈ Z and all n ≥ 1. Since R is regular super-
coherent, the K-theory of R ⊗ L(En) ∼= LR(En) can be computed by using [5,
Theorem 7.6]. By the explicit form of the quiver En, we thus obtain that

Ki(R⊗ L(En)) ∼= (Ki(R)⊕Ki(R))/(−n, 1− n)Ki(R).

The natural map R → LR(En) factors as

R → Rv ⊕Rw → LR(En) .

The first map induces the diagonal homomorphism Ki(R) → Ki(R)⊕Ki(R), send-
ing x to (x, x). The second map induces the natural surjection

Ki(R)⊕Ki(R) → (Ki(R)⊕Ki(R))/(−n, 1− n)Ki(R).

Therefore the natural homomorphism R → LR(En) induces an isomorphism

Ki(R)
∼−→ Ki(LR(En)).

This concludes the proof. �

Corollary 6.4. The natural maps k → L∞ → L∞ ⊗ L∞ induce K-theory isomor-
phisms K∗(k) = K∗(L∞) = K∗(L∞ ⊗ L∞).
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Proof. A first application of Proposition 6.3 gives K∗(k) = K∗(L∞). A second
application shows that for En as in the proof above, the inclusion L(En) → L(En)⊗
L∞ induces a K-theory isomorphism; passing to the limit, we obtain the corollary.

�
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