# TENSOR PRODUCTS OF LEAVITT PATH ALGEBRAS 

PERE ARA AND GUILLERMO CORTIÑAS

(Communicated by Birge Huisgen-Zimmermann)


#### Abstract

We compute the Hochschild homology of Leavitt path algebras over a field $k$. As an application, we show that $L_{2}$ and $L_{2} \otimes L_{2}$ have different Hochschild homologies, and so they are not Morita equivalent; in particular, they are not isomorphic. Similarly, $L_{\infty}$ and $L_{\infty} \otimes L_{\infty}$ are distinguished by their Hochschild homologies, and so they are not Morita equivalent either. By contrast, we show that $K$-theory cannot distinguish these algebras; we have $K_{*}\left(L_{2}\right)=K_{*}\left(L_{2} \otimes L_{2}\right)=0$ and $K_{*}\left(L_{\infty}\right)=K_{*}\left(L_{\infty} \otimes L_{\infty}\right)=K_{*}(k)$.


## 1. Introduction

Elliott's theorem [21] states that $\mathcal{O}_{2} \otimes \mathcal{O}_{2} \cong \mathcal{O}_{2}$ plays an important role in the proof of the celebrated classification theorem of Kirchberg algebras in the UCT class, due to Kirchberg [14] and Phillips [19]. Recall that a Kirchberg algebra is a purely infinite, simple, nuclear and separable C*-algebra. The Kirchberg-Phillips theorem states that this class of simple $\mathrm{C}^{*}$-algebras is completely classified by its topological $K$-theory. The analogous question whether the algebras $L_{2}$ and $L_{2} \otimes L_{2}$ are isomorphic has remained open for some time. Here $L_{2}$ is the Leavitt algebra of type ( 1,2 ) over a field $k$ (see [17]), that is, the $k$-algebra with generators $x_{1}, x_{2}, x_{1}^{*}, x_{2}^{*}$ and relations given by $x_{i}^{*} x_{j}=\delta_{i, j}$ and $\sum_{i=1}^{2} x_{i} x_{i}^{*}=1$.

In this paper we obtain a negative answer to this question. Indeed, we analyze a much larger class of algebras, namely the tensor products of Leavitt path algebras of finite quivers in terms of their Hochschild homology, and we prove that, for $1 \leq n<m \leq \infty$, the tensor products $E=\bigotimes_{i=1}^{n} L\left(E_{i}\right)$ and $F=\bigotimes_{j=1}^{m} L\left(F_{j}\right)$ of Leavitt path algebras of non-acyclic finite quivers $E_{i}, F_{j}$ are distinguished by their Hochschild homologies (Theorem 5.1). Because Hochschild homology is Morita invariant, we conclude that $E$ and $F$ are not Morita equivalent for $n<m$. Since $L_{2}$ is the Leavitt path algebra of the graph with one vertex and two arrows, we obtain that $L_{2} \otimes L_{2}$ and $L_{2}$ are not Morita equivalent; in particular, they are not isomorphic.

Recall that, by a theorem of Kirchberg [15], a simple, nuclear and separable $C^{*}$-algebra $A$ is purely infinite if and only if $A \otimes \mathcal{O}_{\infty} \cong A$. We also show that the analogue of Kirchberg's result is not true for Leavitt algebras. We prove in

[^0]Proposition 5.3 that if $E$ is a non-acyclic quiver, then $L_{\infty} \otimes L(E)$ and $L(E)$ are not Morita equivalent, and also that $L_{\infty} \otimes L_{\infty}$ and $L_{\infty}$ are not Morita equivalent.

Using the results in [5 we prove that the algebras $L_{2}$ and $L_{2} \otimes L(F)$, for $F$ an arbitrary finite quiver, have trivial $K$-theory: all algebraic $K$-theory groups $K_{i}$, $i \in \mathbb{Z}$, vanish on them (this follows from Lemma 6.1 and Proposition 6.2). We also compute $K_{*}(L(F))=K_{*}\left(L_{\infty} \otimes L(F)\right)$ and that $K_{*}\left(L_{\infty}\right)=K_{*}\left(L_{\infty} \otimes L_{\infty}\right)=K_{*}(k)$ is the $K$-theory of the ground field (see Proposition 6.3 and Corollary 6.4). This implies in particular that, in contrast with the analytic situation, no classification result, in terms solely of $K$-theory, can be expected for a class of central, simple $k$ algebras, containing all purely infinite simple unital Leavitt path algebras and closed under tensor products. It is worth mentioning that an important step towards a $K$-theoretic classification of purely infinite simple Leavitt path algebras of finite quivers has been achieved in 2].

We refer the reader to [3, [7] and [20 for the basics on Leavitt algebras, Leavitt path algebras and graph $\mathrm{C}^{*}$-algebras, and to [22] for a nice survey on the KirchbergPhillips Theorem.
Notation. We fix a field $k$; all vector spaces, tensor products and algebras are over $k$. If $R$ and $S$ are unital $k$-algebras, then by an $(R, S)$-bimodule we understand a left module over $R \otimes S^{o p}$. By an $R$-bimodule we shall mean an $(R, R)$ bimodule, that is, a left module over the enveloping algebra $R^{e}=R \otimes R^{o p}$. Hochschild homology of $k$-algebras is always taken over $k$. If $M$ is an $R$-bimodule, we write

$$
H H_{n}(R, M)=\operatorname{Tor}_{n}^{R^{e}}(R, M)
$$

for the Hochschild homology of $R$ with coefficients in $M$ and we abbreviate $H H_{n}(R)$ $=H H_{n}(R, R)$.

## 2. Hochschild homology

Let $k$ be a field, $R$ a $k$-algebra and $M$ an $R$-bimodule. The Hochschild homology $H H_{*}(R, M)$ of $R$ with coefficients in $M$ was defined in the introduction. It is computed by the Hochschild complex $H H(R, M)$, which is given in degree $n$ by

$$
H H(R, M)_{n}=M \otimes R^{\otimes n}
$$

It is equipped with the Hochschild boundary map $b$ defined by
$b\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n}+(-1)^{n} a_{n} a_{0} \otimes \cdots \otimes a_{n-1}$.
If $R$ and $M$ happen to be $\mathbb{Z}$-graded, then $H H(R, M)$ splits into a direct sum of subcomplexes

$$
H H(R, M)=\bigoplus_{m \in \mathbb{Z}}{ }_{m} H H(R, M) .
$$

The homogeneous component of degree $m$ of $H H(R, M)_{n}$ is the linear subspace of $H H(R, M)_{n}$ generated by all elementary tensors $a_{0} \otimes \cdots \otimes a_{n}$ with $a_{i}$ homogeneous and $\sum_{i}\left|a_{i}\right|=m$. One of the first basic properties of the Hochschild complex is that it commutes with filtering colimits. Thus we have
Lemma 2.1. Let $I$ be a filtered ordered set and let $\left\{\left(R_{i}, M_{i}\right): i \in I\right\}$ be a directed system of pairs $\left(R_{i}, M_{i}\right)$ consisting of an algebra $R_{i}$ and an $R_{i}$-bimodule $M_{i}$, with algebra maps $R_{i} \rightarrow R_{j}$ and $R_{i}$-bimodule maps $M_{i} \rightarrow M_{j}$ for each $i \leq j$. Let $(R, M)=\operatorname{colim}_{i}\left(R_{i}, M_{i}\right)$. Then $H H_{n}(R, M)=\operatorname{colim}_{i} H H_{n}\left(R_{i}, M_{i}\right)(n \geq 0)$.

Let $R_{i}$ be a $k$-algebra and $M_{i}$ an $R_{i}$-bimodule $(i=1,2)$. The Künneth formula establishes a natural isomorphism ([23, 9.4.1])

$$
H H_{n}\left(R_{1} \otimes R_{2}, M_{1} \otimes M_{2}\right) \cong \bigoplus_{p=0}^{n} H H_{p}\left(R_{1}, M_{1}\right) \otimes H H_{n-p}\left(R_{2}, M_{2}\right)
$$

Another fundamental fact about Hochschild homology which we shall need is Morita invariance. Let $R$ and $S$ be Morita equivalent algebras, and let $P \in R \otimes S^{o p}$-mod and $Q \in S \otimes R^{o p}-\bmod$ implement the Morita equivalence. Then ([23, Thm. 9.5.6])

$$
\begin{equation*}
H H_{n}(R, M)=H H_{n}\left(S, Q \otimes_{R} M \otimes_{R} P\right) \tag{2.2}
\end{equation*}
$$

Lemma 2.3. Let $R_{1}, \ldots, R_{n}$ and $S_{1}, \ldots, S_{m}, \ldots$ be a finite and an infinite sequence of algebras, and let $R=\bigotimes_{i=1}^{n} R_{i}, S_{\leq m}=\bigotimes_{j=1}^{m} S_{j}$ and $S=\bigotimes_{j=1}^{\infty} S_{j}$. Assume:
(1) $H H_{q}\left(R_{i}\right) \neq 0 \neq H H_{q}\left(S_{j}\right) \quad(q=0,1),(1 \leq i \leq n),(1 \leq j)$.
(2) $H H_{p}\left(R_{i}\right)=H H_{p}\left(S_{j}\right)=0$ for $p \geq 2,1 \leq i \leq n, 1 \leq j$.
(3) $n \neq m$.

Then no two of $R, S_{\leq m}$ and $S$ are Morita equivalent.
Proof. By the Künneth formula, we have

$$
H H_{n}(R)=\bigotimes_{i=1}^{n} H H_{1}\left(R_{i}\right) \neq 0, \quad H H_{p}(R)=0, \quad p>n
$$

By the same argument, $H H_{p}\left(S_{\leq m}\right)$ is non-zero for $p=m$ and zero for $p>m$. Hence if $n \neq m, R$ and $S_{\leq m}$ do not have the same Hochschild homology, and therefore they cannot be Morita equivalent, by (2.2). Similarly, by Lemma 2.1) we have

$$
H H_{n}(S)=\bigoplus_{J \subset \mathbb{N},|J|=n}\left(\bigotimes_{j \in J} H H_{1}\left(S_{j}\right)\right) \otimes\left(\bigotimes_{j \notin J} H H_{0}\left(S_{j}\right)\right)
$$

so that $H H_{n}(S)$ is non-zero for all $n \geq 1$, and thus it cannot be Morita equivalent to either $R$ or $S_{\leq m}$.

## 3. Hochschild homology of crossed products

Let $R$ be a unital algebra and $G$ a group acting on $R$ by algebra automorphisms. Form the crossed-product algebra $S=R \rtimes G$, and consider the Hochschild complex $H H(S)$. For each conjugacy class $\xi$ of $G$, the graded submodule $H H^{\xi}(S) \subset H H(S)$ generated in degree $n$ by the elementary tensors $a_{0} \rtimes g_{0} \otimes \cdots \otimes a_{n} \rtimes g_{n}$ with $g_{0} \cdots g_{n} \in$ $\xi$ is a subcomplex, and we have a direct sum decomposition $H H(S)=\bigoplus_{\xi} H H^{\xi}(S)$. The following theorem of Lorenz describes the complex $H H^{\xi}(S)$ corresponding to the conjugacy class $\xi=[g]$ of an element $g \in G$ as hyperhomology over the centralizer subgroup $Z_{g} \subset G$.

Theorem 3.1 ([16]). Let $R$ be a unital $k$-algebra, $G$ a group acting on $R$ by automorphisms, $g \in G$ and $Z_{g} \subset G$ the centralizer subgoup. Let $S=R \rtimes G$ be the crossed product algebra and $H H^{\langle g\rangle}(S) \subset H H(S)$ be the subcomplex described above. Consider the $R$-submodule $S_{g}=R \rtimes g \subset S$. Then there is a quasi-isomorphism

$$
H H^{[g]}(S) \xrightarrow{\sim} \mathbb{H}\left(Z_{g}, H H\left(R, S_{g}\right)\right)
$$

In particular, we have a spectral sequence

$$
E_{p, q}^{2}=H_{p}\left(Z_{g}, H H_{q}\left(R, S_{g}\right)\right) \Rightarrow H H_{p+q}^{[g]}(S)
$$

Remark 3.2. Lorenz formulates his result in terms of the spectral sequence alone, but his proof shows that there is a quasi-isomorphism as stated above. An explicit formula is given for example in the proof of [11, Lemma 7.2].

Let $A$ be a not necessarily unital $k$-algebra and write $\tilde{A}$ for its unitalization. Recall from [24] that $A$ is called $H$-unital if the $\operatorname{groups} \operatorname{Tor}_{n}^{\tilde{A}}(k, A)$ vanish for all $n \geq 0$. Wodzicki proved in [24] that $A$ is $H$-unital if and only if for every embedding $A \triangleleft R$ of $A$ as a two-sided ideal of a unital ring $R$, the map

$$
H H(A) \rightarrow H H(R: A)=\operatorname{ker}(H H(R) \rightarrow H H(R / A))
$$

is a quasi-isomorphism.
Lemma 3.3. Theorem 3.1 still holds if the condition that $R$ be unital is replaced by the condition that it be $H$-unital.
Proof. Follows from Theorem 3.1 and the fact, proved in [11, Prop. A.6.5], that $R \rtimes G$ is $H$-unital if $R$ is as well.

Let $R$ be a unital algebra and $\phi: R \rightarrow p R p$ a corner isomorphism. As in [6], we consider the skew Laurent polynomial algebra $R\left[t_{+}, t_{-}, \phi\right]$. This is the $R$-algebra generated by elements $t_{+}$and $t_{-}$subject to the following relations:

$$
\begin{gathered}
t_{+} a=\phi(a) t_{+} \\
a t_{-}=t_{-} \phi(a) \\
t_{-} t_{+}=1 \\
t_{+} t_{-}=p
\end{gathered}
$$

Observe that the algebra $S=R\left[t_{+}, t_{-}, \phi\right]$ is $\mathbb{Z}$-graded by $\operatorname{deg}(r)=0, \operatorname{deg}\left(t_{ \pm}\right)= \pm 1$. The homogeneous component of degree $n$ is given by

$$
R\left[t_{+}, t_{-}, \phi\right]_{n}=\left\{\begin{array}{cc}
t_{-}^{-n} R & n<0 \\
R & n=0 \\
R t_{+}^{n} & n>0
\end{array}\right.
$$

Proposition 3.4. Let $R$ be a unital ring, $\phi: R \rightarrow p R p$ a corner isomorphism, and $S=R\left[t_{+}, t_{-}, \phi\right]$. Consider the weight decomposition $H H(S)=\bigoplus_{m \in \mathbb{Z} m} H H(S)$. There is a quasi-isomorphism

$$
\begin{equation*}
{ }_{m} H H(S) \xrightarrow{\sim} \operatorname{Cone}\left(1-\phi: H H\left(R, S_{m}\right) \rightarrow H H\left(R, S_{m}\right)\right) . \tag{3.5}
\end{equation*}
$$

Proof. If $\phi$ is an automorphism, then $S=R \rtimes_{\phi} \mathbb{Z}$, the right hand side of (3.5) computes $\mathbb{H}\left(\mathbb{Z}, H H\left(R, S_{m}\right)\right)$, and the proposition becomes the particular case $G=$ $\mathbb{Z}$ of Theorem 3.1 In the general case, let $A$ be the colimit of the inductive system

$$
R \xrightarrow{\phi} R \xrightarrow{\phi} R \xrightarrow{\phi} \ldots .
$$

Note that $\phi$ induces an automorphism $\hat{\phi}: A \rightarrow A$. Now $A$ is $H$-unital, since it is a filtering colimit of unital algebras, and thus the assertion of the proposition is true for the pair $(A, \hat{\phi})$, by Lemma 3.3. Hence it suffices to show that for $B=A \rtimes_{\hat{\phi}} \mathbb{Z}$ the maps $H H(S) \rightarrow H H(B)$ and Cone $\left(1-\phi: H H\left(R, S_{m}\right) \rightarrow H H\left(R, S_{m}\right)\right) \rightarrow$ Cone $\left(1-\phi: H H\left(A, B_{m}\right) \rightarrow H H\left(A, B_{m}\right)\right)(m \in \mathbb{Z})$ are quasi-isomorphisms. The analogous property for $K$-theory is shown in the course of the third step of the proof of [5, Thm. 3.6]. Since the proof in [5] uses only that $K$-theory commutes with filtering colimits and is matrix invariant on those rings for which it satisfies excision, it applies verbatim to Hochschild homology. This concludes the proof.

## 4. Hochschild homology of the Leavitt path algebra

Let $E=\left(E_{0}, E_{1}, r, s\right)$ be a finite quiver and let $\hat{E}=\left(E_{0}, E_{1} \sqcup E_{1}^{*}, r, s\right)$ be the double of $E$, which is the quiver obtained from $E$ by adding an arrow $\alpha^{*}$ for each arrow $\alpha \in E_{1}$, going in the opposite direction. The Leavitt path algebra of $E$ is the algebra $L(E)$ with one generator for each arrow $\alpha \in \hat{E}_{1}$ and one generator $p_{i}$ for each vertex $i \in E_{0}$, subject to the following relations:

$$
\begin{gathered}
p_{i} p_{j}=\delta_{i, j} p_{i} \quad\left(i, j \in E_{0}\right) \\
p_{s(\alpha)} \alpha=\alpha=\alpha p_{r(\alpha)} \quad\left(\alpha \in \hat{E}_{1}\right) \\
\alpha^{*} \beta=\delta_{\alpha, \beta} p_{r(\alpha)} \quad\left(\alpha, \beta \in E_{1}\right) \\
p_{i}=\sum_{\alpha \in E_{1}, s(\alpha)=i} \alpha \alpha^{*} \quad\left(i \in E_{0} \backslash \operatorname{Sink}(E)\right)
\end{gathered}
$$

The algebra $L=L(E)$ is equipped with a $\mathbb{Z}$-grading. The grading is determined by $|\alpha|=1,\left|\alpha^{*}\right|=-1$, for $\alpha \in E_{1}$. Let $L_{0, n}$ be the linear span of all elements of the form $\gamma \nu^{*}$, where $\gamma$ and $\nu$ are paths with $r(\gamma)=r(\nu)$ and $|\gamma|=|\nu|=n$. By [7] proof of Theorem 5.3], we have $L_{0}=\bigcup_{n=0}^{\infty} L_{0, n}$. For each $i$ in $E_{0}$ and each $n \in \mathbb{Z}^{+}$, let us denote by $P(n, i)$ the set of paths $\gamma$ in $E$ such that $|\gamma|=n$ and $r(\gamma)=i$. The algebra $L_{0,0}$ is isomorphic to $\prod_{i \in E_{0}} k$. In general, the algebra $L_{0, n}$ is isomorphic to

$$
\begin{equation*}
\left[\prod_{m=0}^{n-1}\left(\prod_{i \in \operatorname{Sink}(E)} M_{|P(m, i)|}(k)\right)\right] \times\left[\prod_{i \in E_{0}} M_{|P(n, i)|}(k)\right] \tag{4.1}
\end{equation*}
$$

The transition homomorphism $L_{0, n} \rightarrow L_{0, n+1}$ is the identity on the factors

$$
\prod_{i \in \operatorname{Sink}(E)} M_{|P(m, i)|}(k),
$$

for $0 \leq m \leq n-1$, and also on the factor

$$
\prod_{i \in \operatorname{Sink}(E)} M_{|P(n, i)|}(k)
$$

of the last term of the displayed formula. The transition homomorphism

$$
\prod_{i \in E_{0} \backslash \operatorname{Sink}(E)} M_{|P(n, i)|}(k) \rightarrow \prod_{i \in E_{0}} M_{|P(n+1, i)|}(k)
$$

is a block diagonal map induced by the following identification in $L(E)_{0}$ : A matrix unit in a factor $M_{|P(n, i)|}(k)$, where $i \in E_{0} \backslash \operatorname{Sink}(E)$, is a monomial of the form $\gamma \nu^{*}$, where $\gamma$ and $\nu$ are paths of length $n$ with $r(\gamma)=r(\nu)=i$. Since $i$ is not a sink, we can enlarge the paths $\gamma$ and $\nu$ using the edges that $i$ emits, obtaining paths of length $n+1$, and the last relation in the definition of $L(E)$ gives

$$
\gamma \nu^{*}=\sum_{\left\{\alpha \in E_{1} \mid s(\alpha)=i\right\}}(\gamma \alpha)(\nu \alpha)^{*} .
$$

Assume $E$ has no sources. For each $i \in E_{0}$, choose an arrow $\alpha_{i}$ such that $r\left(\alpha_{i}\right)=i$. Consider the elements

$$
t_{+}=\sum_{i \in E_{0}} \alpha_{i}, \quad t_{-}=t_{+}^{*}
$$

One checks that $t_{-} t_{+}=1$. Thus, since $\left|t_{ \pm}\right|= \pm 1$, the endomorphism

$$
\begin{equation*}
\phi: L \rightarrow L, \quad \phi(x)=t_{+} x t_{-} \tag{4.2}
\end{equation*}
$$

is homogeneous of degree 0 with respect to the $\mathbb{Z}$-grading. In particular, it restricts to an endomorphism of $L_{0}$. By [6, Lemma 2.4], we have

$$
\begin{equation*}
L=L_{0}\left[t_{+}, t_{-}, \phi\right] . \tag{4.3}
\end{equation*}
$$

Consider the matrix $N_{E}^{\prime}=\left[n_{i, j}\right] \in M_{e_{0}} \mathbb{Z}$ given by

$$
n_{i, j}=\#\left\{\alpha \in E_{1}: s(\alpha)=i, \quad r(\alpha)=j\right\} .
$$

Let $e_{0}^{\prime}=|\operatorname{Sink}(E)|$. We assume that $E_{0}$ is ordered so that the first $e_{0}^{\prime}$ elements of $E_{0}$ correspond to its sinks. Accordingly, the first $e_{0}^{\prime}$ rows of the matrix $N_{E}^{\prime}$ are 0 . Let $N_{E}$ be the matrix obtained by deleting these $e_{0}^{\prime}$ rows. The matrix that enters the computation of the Hochschild homology of the Leavitt path algebra is

$$
\binom{0}{1_{e_{0}-e_{0}^{\prime}}}-N_{E}^{t}: \mathbb{Z}^{e_{0}-e_{0}^{\prime}} \longrightarrow \mathbb{Z}^{e_{0}} .
$$

By a slight abuse of notation, we will write $1-N_{E}^{t}$ for this matrix. Note that $1-N_{E}^{t} \in M_{e_{0} \times\left(e_{0}-e_{0}^{\prime}\right)}(\mathbb{Z})$. Of course, $N_{E}=N_{E}^{\prime}$ in case $E$ has no sinks.
Theorem 4.4. Let $E$ be a finite quiver without sources, and let $N=N_{E}$. For each $i \in E_{0} \backslash \operatorname{Sink}(E)$ and $m \geq 1$, let $V_{i, m}$ be the vector space generated by all closed paths $c$ of length $m$ with $s(c)=r(c)=i$. Let $\mathbb{Z}=\langle\sigma\rangle$ act on

$$
V_{m}=\bigoplus_{i \in E_{0} \backslash \operatorname{Sink}(E)} V_{i, m}
$$

by rotation of closed paths. We have

$$
{ }_{m} H H_{n}(L(E))=\left\{\begin{array}{cc}
\operatorname{coker}\left(1-\sigma: V_{|m|} \rightarrow V_{|m|}\right) & n=0, m \neq 0 \\
\operatorname{coker}\left(1-N^{t}\right) & n=m=0 \\
\operatorname{ker}\left(1-\sigma: V_{|m|} \rightarrow V_{|m|}\right) & n=1, m \neq 0 \\
\operatorname{ker}\left(1-N^{t}\right) & n=1, m=0 \\
0 & n \notin\{0,1\}
\end{array}\right.
$$

Proof. Let $L=L(E), P=P(E) \subset L$ be the path algebras of $E$ and $W_{m} \subset P$ be the subspace generated by all paths of length $m$. For each fixed $n \geq 1$ and $m \in \mathbb{Z}$, consider the following $L_{0, n}$-bimodule:

$$
L_{m, n}=\left\{\begin{array}{cc}
L_{0, n} W_{m} L_{0, n} & m>0 \\
L_{0, n} W_{-m}^{*} L_{0, n} & m<0
\end{array}\right.
$$

Write $L=L(E)$, and let ${ }_{m} L$ be the homogeneous part of degree $m$; we have

$$
{ }_{m} L=\bigcup_{n \geq 1} L_{m, n}
$$

If $m$ is positive, then there is a basis of $L_{m, n}$ consisting of the products $\alpha \theta \beta^{*}$ where each of $\alpha, \beta$ and $\theta$ is a path in $E, r(\alpha)=s(\theta), r(\beta)=r(\theta),|\alpha|=|\beta|=n$ and $|\theta|=m$. Hence the formula

$$
\pi\left(\alpha \theta \beta^{*}\right)=\left\{\begin{array}{cc}
\theta & \text { if } \alpha=\beta \\
0 & \text { else }
\end{array}\right.
$$

defines a surjective linear map $L_{m, n} \rightarrow V_{m}$. One checks that $\pi$ induces an isomorphism

$$
H H_{0}\left(L_{0, n}, L_{m, n}\right) \cong V_{m} \quad(m>0)
$$

Similarly, if $m<0$, then

$$
H H_{0}\left(L_{0, n}, L_{m, n}\right)=V_{|m|}^{*} \cong V_{-m}
$$

Next, by (4.1), we have

$$
H H_{0}\left(L_{0, n}\right)=k[E \backslash \operatorname{Sink}(E)] \oplus \bigoplus_{i \in \operatorname{Sink}(E)} k^{r(i, n)}
$$

Here

$$
r(i, n)=\max \{r \leq n: P(r, i) \neq \emptyset\} .
$$

Now note that because $L_{0, n}$ is a product of matrix algebras, it is separable, and thus $H H_{1}\left(L_{0, n}, M\right)=0$ for any bimodule $M$. As observed in (4.3), for the automorphism (4.2), we have $L=L_{0}\left[t_{+}, t_{-}, \phi\right]$. Hence in view of Proposition [3.4 and Lemma 2.1, it only remains to identify the maps $H H_{0}\left(L_{0, n}, L_{m, n}\right) \rightarrow H H_{0}\left(L_{0, n+1}, L_{m, n+1}\right)$ induced by inclusion and by the homomorphism $\phi$. One checks that for $m \neq 0$, these are respectively the cyclic permutation and the identity $V_{|m|} \rightarrow V_{|m|}$. The case $m=0$ is dealt with in the same way as in [5, Proof of Theorem 5.10].
Corollary 4.5. Let $E$ be a finite quiver with at least one non-trivial closed path.
i) $H H_{n}(L(E))=0$ for $n \notin\{0,1\}$.
ii) ${ }_{m} H H_{*}(L(E)) \cong{ }_{-m} H H_{*}(L(E))(m \in \mathbb{Z})$.
iii) There exist $m>0$ such that ${ }_{m} H H_{0}(L(E))$ and ${ }_{m} H H_{1}(L(E))$ are both nonzero.

Proof. We first reduce to the case where the graph does not have sources. By the proof of [5, Theorem 6.3], there is a finite complete subgraph $F$ of $E$ such that $F$ has no sources, $F$ contains all the non-trivial closed paths of $E, \operatorname{Sink}(F)=\operatorname{Sink}(E)$, and $L(F)$ is a full corner in $L(E)$ with respect to the homogeneous idempotent $\sum_{v \in F^{0}} p_{v}$. It follows that $H H_{*}(L(E))$ and $H H_{*}(L(F))$ are graded-isomorphic. Therefore we can assume that $E$ has no sources.

The first two assertions are already part of Theorem 4.4. For the last assertion, let $\alpha$ be a primitive closed path in $E$, and let $m=|\alpha|$. Let $\sigma$ be the cyclic permutation; then $\left\{\sigma^{i} \alpha: i=0, \ldots, m-1\right\}$ is a linearly independent set. Hence $N(\alpha)=\sum_{i=0}^{m-1} \sigma^{i} \alpha$ is a non-zero element of $V_{m}^{\sigma}={ }_{m} H H_{1}(L(E))$. Since on the other hand $N$ vanishes on the image of $1-\sigma: V_{m} \rightarrow V_{m}$, it also follows that the class of $\alpha$ in ${ }_{m} H H_{0}(L(E))$ is non-zero.

## 5. Applications

Theorem 5.1. Let $E_{1}, \ldots, E_{n}$ and $F_{1}, \ldots, F_{m}$ be finite quivers. Assume that $n \neq$ $m$ and that each of the $E_{i}$ and the $F_{j}$ has at least one non-trivial closed path. Then the algebras $L\left(E_{1}\right) \otimes \cdots \otimes L\left(E_{n}\right)$ and $L\left(F_{1}\right) \otimes \cdots \otimes L\left(F_{m}\right)$ are not Morita equivalent.
Proof. Immediate from Lemma 2.3 and Corollary 4.5 (iii).
Example 5.2. It follows from Theorem 5.1 that $L_{2}$ and $L_{2} \otimes_{k} L_{2}$ are not Morita equivalent. There is another way of proving this, due to Jason Bell and George Bergman [8]. By Theorem 3.3 of [9, l.gl.dim $L_{2} \leq 1$. Using a module-theoretic construction, Bell and Bergman show that l.gl. $\operatorname{dim}\left(L_{2} \otimes_{k} L_{2}\right) \geq 2$, which forces $L_{2}$ and $L_{2} \otimes_{k} L_{2}$ to not be Morita equivalent. Bergman then asked Warren Dicks whether general results were known about global dimensions of tensor products and was pointed to Proposition 10(2) of [12], which is an immediate consequence of

Theorem XI.3.1 of [10] and says that if $k$ is a field and $R$ and $S$ are $k$-algebras, then l.gl. $\operatorname{dim} R+$ w.gl.dim $S \leq 1 . g 1 . \operatorname{dim}\left(R \otimes_{k} S\right)$. Consequently, if l.gl. $\operatorname{dim} R<\infty$ and w.gl. $\operatorname{dim} S>0$, then l.gl.dim $R<1 . g l \cdot \operatorname{dim}\left(R \otimes_{k} S\right)$; in particular, $R$ and $R \otimes_{k} S$ are then not Morita equivalent. To see that w.gl. $\operatorname{dim} L_{2}>0$, write $x_{1}, x_{2}, x_{1}^{*}$, $x_{2}^{*}$ for the usual generators of $L_{2}$ and use normal-form arguments to show that $\left\{a \in L_{2} \mid a x_{1}=a+1\right\}=\emptyset$ and $\left\{b \in L_{2} \mid x_{1} b=b\right\}=\{0\}$. Hence, in $L_{2}, x_{1}-1$ does not have a left inverse and is not a left zerodivisor (or see [4]); thus, w.gl.dim $L_{2}>0$.

We denote by $L_{\infty}$ the unital algebra presented by generators $x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots$ and relations $x_{i}^{*} x_{j}=\delta_{i, j} 1$.

Proposition 5.3. Let $E$ be any finite quiver having at least one non-trivial closed path. Then $L_{\infty} \otimes L(E)$ and $L(E)$ are not Morita equivalent. Similarly, $L_{\infty} \otimes L_{\infty}$ and $L_{\infty}$ are not Morita equivalent.

Proof. Let $C_{n}$ be the algebra presented by generators $x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}$ and relations $x_{i}^{*} x_{j}=\delta_{i, j} 1$, for $1 \leq i, j \leq n$. Then

$$
\begin{equation*}
L_{\infty}=\underset{\longrightarrow}{\lim } C_{n} \tag{5.4}
\end{equation*}
$$

and $C_{n} \cong L\left(E_{n}\right)$, where $E_{n}$ is the graph having two vertices $v, w$ and $2 n$ arrows $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$, with $s\left(e_{i}\right)=r\left(e_{i}\right)=v=s\left(f_{i}\right)$ and $r\left(f_{i}\right)=w$ for $1 \leq i \leq n$. (The isomorphism $C_{n} \rightarrow L\left(E_{n}\right)$ is obtained by sending $x_{i}$ to $e_{i}+f_{i}$ and $x_{i}^{*}$ to $e_{i}^{*}+f_{i}^{*}$.) It follows from Theorem 4.4 and (5.4) that the formulas in Theorem 4.4 for ${ }_{m} H H_{n}\left(L_{\infty}\right), m \neq 0$, hold, taking as $V_{i, m}$ the vector space generated by all the words in $x_{1}, x_{2}, \ldots$ of length $m$, and that ${ }_{0} H H_{0}\left(L_{\infty}\right)=k$ and ${ }_{0} H H_{n}\left(L_{\infty}\right)=0$ for $n \geq 1$. As before, Lemma 2.3 gives the result.

Theorem 5.5. Let $E_{1}, \ldots, E_{n}$ and $F_{1}, \ldots, F_{m}, \ldots$ be a finite and an infinite sequence of quivers. Assume that the number of indices $i$ such that $F_{i}$ has at least one non-trivial closed path is infinite. Then the algebras $L\left(E_{1}\right) \otimes \cdots \otimes L\left(E_{n}\right)$ and $\bigotimes_{i=1}^{\infty} L\left(F_{i}\right)$ are not Morita equivalent.

Proof. Immediate from Lemma 2.3 and Corollary 4.5 (iii).
Example 5.6. Let $L^{(\infty)}=\bigotimes_{i=1}^{\infty} L_{2}$, and let $E$ be any quiver having at least one non-trivial closed path. Then $L^{(\infty)} \otimes L(E)$ and $L(E)$ are not Morita equivalent.

It would be interesting to know the answer to the following question:
Question 5.7. Is there a unital homomorphism $\phi: L_{2} \otimes L_{2} \rightarrow L_{2}$ ?
Observe that to build a unital homomorphism $\phi: L_{2} \otimes L_{2} \rightarrow L_{2}$, it is enough to exhibit a non-zero homomorphism $\psi: L_{2} \otimes L_{2} \rightarrow L_{2}$ because $e L_{2} e \cong L_{2}$ for every non-zero idempotent $e$ in $L_{2}$.

## 6. $K$-THEORY

To conclude the paper we note that algebraic $K$-theory cannot distinguish between $L_{2}$ and $L_{2} \otimes L_{2}$ or between $L_{\infty}$ and $L_{\infty} \otimes L_{\infty}$. For this we need a lemma which might be of independent interest. Recall that a unital ring $R$ is said to be regular supercoherent in case all the polynomial rings $R\left[t_{1}, \ldots, t_{n}\right]$ are regular coherent in the sense of [13].

Lemma 6.1. Let $E$ be a finite graph. Then $L(E)$ is regular supercoherent.
Proof. Let $P(E)$ be the usual path algebra of $E$. It was observed in the proof of 3, Lemma 7.4] that the algebra $P(E)[t]$ is regular coherent. The same proof gives that all the polynomial algebras $P(E)\left[t_{1}, \ldots, t_{n}\right]$ are regular coherent. This shows that $P(E)$ is regular supercoherent. By [3, Proposition 4.1], the universal localization $P(E) \rightarrow L(E)=\Sigma^{-1} P(E)$ is flat on the left. It follows that $L(E)$ is left regular supercoherent (see [5, page 23]). Since $L(E) \otimes k\left[t_{1}, \ldots, t_{n}\right]$ admits an involution, it follows that $L(E)$ is regular supercoherent.

Proposition 6.2. Let $R$ be regular supercoherent. Then the algebraic $K$-theories of $L_{2}$ and of $L_{2} \otimes R$ are both trivial.

Proof. Let $E$ be the quiver with one vertex and two arrows. Then $L_{2} \cong L(E)$, and we have

$$
L_{2} \otimes R=L_{R}(E)
$$

Applying [5] Theorem 7.6] we obtain that $K_{*}\left(L_{R}(E)\right)=K_{*}(L(E))=0$. The result follows.

We finally obtain a $K$-absorbing result for Leavitt path algebras of finite graphs, indeed for any regular supercoherent algebra.

Proposition 6.3. Let $R$ be a regular supercoherent algebra. Then the natural inclusion $R \rightarrow R \otimes L_{\infty}$ induces an isomorphism $K_{i}(R) \rightarrow K_{i}\left(R \otimes L_{\infty}\right)$ for all $i \in \mathbb{Z}$.

Proof. Adopting the notation used in the proof of Proposition 5.3 we see that it is enough to show that the natural map $R \rightarrow R \otimes L\left(E_{n}\right)$ induces isomorphisms $K_{i}(R) \rightarrow K_{i}\left(R \otimes L\left(E_{n}\right)\right)$ for all $i \in \mathbb{Z}$ and all $n \geq 1$. Since $R$ is regular supercoherent, the $K$-theory of $R \otimes L\left(E_{n}\right) \cong L_{R}\left(E_{n}\right)$ can be computed by using [5, Theorem 7.6]. By the explicit form of the quiver $E_{n}$, we thus obtain that

$$
K_{i}\left(R \otimes L\left(E_{n}\right)\right) \cong\left(K_{i}(R) \oplus K_{i}(R)\right) /(-n, 1-n) K_{i}(R)
$$

The natural map $R \rightarrow L_{R}\left(E_{n}\right)$ factors as

$$
R \rightarrow R v \oplus R w \rightarrow L_{R}\left(E_{n}\right) .
$$

The first map induces the diagonal homomorphism $K_{i}(R) \rightarrow K_{i}(R) \oplus K_{i}(R)$, sending $x$ to $(x, x)$. The second map induces the natural surjection

$$
K_{i}(R) \oplus K_{i}(R) \rightarrow\left(K_{i}(R) \oplus K_{i}(R)\right) /(-n, 1-n) K_{i}(R) .
$$

Therefore the natural homomorphism $R \rightarrow L_{R}\left(E_{n}\right)$ induces an isomorphism

$$
K_{i}(R) \xrightarrow{\sim} K_{i}\left(L_{R}\left(E_{n}\right)\right) .
$$

This concludes the proof.
Corollary 6.4. The natural maps $k \rightarrow L_{\infty} \rightarrow L_{\infty} \otimes L_{\infty}$ induce $K$-theory isomorphisms $K_{*}(k)=K_{*}\left(L_{\infty}\right)=K_{*}\left(L_{\infty} \otimes L_{\infty}\right)$.

Proof. A first application of Proposition 6.3 gives $K_{*}(k)=K_{*}\left(L_{\infty}\right)$. A second application shows that for $E_{n}$ as in the proof above, the inclusion $L\left(E_{n}\right) \rightarrow L\left(E_{n}\right) \otimes$ $L_{\infty}$ induces a $K$-theory isomorphism; passing to the limit, we obtain the corollary.

## Acknowledgement

Part of the research for this article was carried out during a visit of the second author to the Centre de Recerca Matemàtica. He is indebted to this institution for its hospitality.

## References

[1] G. Abrams, G. Aranda Pino. The Leavitt path algebra of a graph. J. Algebra 293 (2005) 319-334. MR 2172342 (2007b:46085)
[2] G. Abrams, A. Louly, E. Pardo, C. Smith. Flow invariants in the classification of Leavitt path algebras. J. Algebra 333 (2011) 202-231. MR2785945
[3] P. Ara, M. Brustenga. Module theory over Leavitt path algebras and K-theory. J. Pure Appl. Algebra 214 (2010) 1131-1151. MR2586992 (2011b:16109)
[4] P. Ara, M. Brustenga. The regular algebra of a quiver. J. Algebra 309 (2007) 207-235. MR2301238(2008a:16019)
[5] P. Ara, M. Brustenga, G. Cortiñas. K-theory of Leavitt path algebras. Münster Journal of Mathematics 2 (2009) 5-34. MR2545605 (2011d:46145)
[6] P. Ara, M.A. González-Barroso, K.R. Goodearl, E. Pardo. Fractional skew monoid rings. J. Algebra 278 (2004) 104-126. MR2068068 (2005f:16042)
[7] P. Ara, M. A. Moreno, E. Pardo, Nonstable K-theory for graph algebras. Algebr. Represent. Theory 10 (2007) 157-178. MR2310414 (2008b:46094)
[8] J. Bell, G. Bergman. Private communication, 2011.
[9] G. M. Bergman and Warren Dicks, Universal derivations and universal ring constructions. Pacific J. Math. 79 (1978) 293-337. MR531320 (81b:16024)
[10] H. Cartan, S. Eilenberg, Homological Algebra. Princeton University Press, Princeton, N. J., 1956. MR0077480 (17:1040e)
[11] G. Cortiñas, E. Ellis. Isomorphism conjectures with proper coefficients. arXiv:1108.5196v3.
[12] S. Eilenberg, A. Rosenberg, D. Zelinsky, On the dimension of modules and algebras, VIII. Dimension of tensor products. Nagoya Math. J. 12 (1957) 71-93. MR0098774 (20:5229)
[13] S. M. Gersten. K-theory of free rings. Comm. Algebra 1 (1974) 39-64. MR0396671|(53:533)
[14] E. Kirchberg, The classification of purely infinite $C^{*}$-algebras using Kasparov theory. Preprint.
[15] E. Kirchberg, N.C. Phillips, Embedding of exact $C^{*}$-algebras in the Cuntz algebra $\mathcal{O}_{2}$. J. Reine Angew. Math. 525 (2000) 17-53. MR1780426 (2001d:46086a)
[16] M. Lorenz. On the homology of graded algebras. Comm. Algebra 20 (1992) 489-507. MR 1146311 (93b:19003)
[17] W. G. Leavitt. The module type of a ring. Trans. Amer. Math. Soc. 103 (1962) 113-130. MR0132764 (24:A2600)
[18] J. L. Loday, Cyclic homology. Grund. Math. Wiss., 301. Springer-Verlag, Berlin, Heidelberg, 1998. MR1600246 (98h:16014)
[19] N. C. Phillips, A classification theorem for nuclear purely infinite simple $C^{*}$-algebras. Doc. Math. 5 (2000) 49-114. MR1745197|(2001d:46086b)
[20] I. Raeburn. Graph algebras. CBMS Regional Conference Series in Mathematics, 103. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2005. MR2135030 (2005k:46141)
[21] M. Rørdam, A short proof of Elliott's theorem. C. R. Math. Rep. Acad. Sci. Canada 16 (1994) 31-36. MR 1276341 (95d:46064)
[22] M. Rørdam, Classification of nuclear, simple $C^{*}$-algebras. Classification of nuclear C*algebras. Entropy in operator algebras, Encyclopaedia Math. Sci., 126, 1-145, Springer, Berlin, 2002. MR 1878882 (2003i:46060)
[23] C. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994. MR1269324 (95f:18001)
[24] M. Wodzicki, Excision in cyclic homology and in rational algebraic $K$-theory. Ann. of Math. 129 (1989) 591-639. MR997314 (91h:19008)

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

E-mail address: para@mat.uab.cat
Departamento de Matemática and Instituto Santaló, Ciudad Universitaria Pab 1, 1428 Buenos Aires, Argentina

E-mail address: gcorti@dm.uba.ar
URL: http://mate.dm.uba.ar/~gcorti


[^0]:    Received by the editors August 1, 2011 and, in revised form, November 9, 2011.
    2010 Mathematics Subject Classification. Primary 16E40, 16S99; Secondary 19D50.
    The first author was partially supported by DGI MICIIN-FEDER MTM2008-06201-C02-01 and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya.

    The second author was supported by CONICET and partially supported by grants PIP 112-200801-00900, UBACyTs X051 and 20020100100386, and MTM2007-64074.

