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1. Introduction

Throughout this paper we shall work over an algebraically closed field k of charac-
teristic zero.

Given a finite group I', a (faithful) I-grading on a finite tensor category D is a
decomposition D = @
that

ger Dg, where Dy are full Abelian subcategories of D such

e D, #0;
o ®:Dy x Dy — Dyp, for all g,h €T

In this case C = D, is a tensor subcategory of D. The tensor category D is a I'-
extension of C. The category D, is an invertible C-bimodule category for any g € I'.
This gives rise to a group homomorphism ¢ : I' — BrPic (C), where BrPic(C) is
the so-called Brauer—Picard group of C introduced in [7]. The Brauer—Picard group
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of a finite tensor category C is the group of equivalence classes of invertible exact
C-bimodule categories.

Given a finite group I' and a fusion category C, I'-extensions of C were classified
in [7]. Any such extension depends on a group map ¢ : I' — BrPic (C) and certain
cohomological data. The problem of giving concrete examples of I'-extensions of a
given finite tensor category C is that, besides the cohomological obstructions, the
explicit computation of the Brauer—Picard group is needed. The computation of
Brauer—Picard group is in general complicated. Some computations of this group
were done in [14, 16, 12].

A different version of I'-extensions was studied in [10]. In [10] the author
studies and classifies I'-gradings D = @ ger D, such that there are equivalences
Dy, ~ D, as D.-module categories for any g € I'. Such extensions are called
I-crossed products and they are classified by equivalence classes of crossed sys-
tems of T' over C. A crossed system of I' over C consists of a collection ¥ =
(@, &%), (Uapy 7°), Yabe)ab,ccr Where

e (a,,£%) : C — C are monoidal autoequivalences, with monoidal structure
y 10X QYY) = a(X)®a.(Y), X,Y€C;

e invertible objects U, € C;
e natural isomorphisms

0% abu(X) @ Uap — Uap @ (ab). X, X €C;
o isomorphisms Yo pc : @ (Ube) @ Ugpe = Uap @ Ugpc,

such that they satisfy certain conditions. If ¥ is a crossed system of I' over C we
define a new category C(X) = @, Ca as Abelian categories and C, = C for all
a € T. Denote by [V,a] the object V' € C,. In [10] the author introduces a new
tensor product on the category C(X) given by

[V,a] @ [W,b] = [V @ a.(W) ® Uy p, abl,

for any V,W € C, a,b € I". The conditions of crossed system ensures that C(X) is
indeed a monoidal category.

This paper is devoted to give explicit examples of Co-crossed products, where Cy
is the cyclic group of two elements, of the category Comod(H ) of finite-dimensional
H-comodules, where H is a supergroup algebra. Part of the information needed
to compute crossed systems in this particular case is the computation of tensor
autoequivalences F' : Comod(H) — Comod(H), thus we need to compute the
group BiGal(H) of equivalence classes of biGalois objects over H [17]. The group
BiGal(H) is interesting from the Hopf algebraic point of view. It was computed only
for few examples, see [3, 5, 18]. In this paper, we present a technique to compute
the biGalois group for supergroup algebras. This technique is different from the one
presented by Schauenburg in [18].
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The examples of Co-crossed products presented here are representation cate-
gories of quasi-Hopf algebras. We do not know how to compute those quasi-Hopf
algebras explicitly. We believe that these tensor categories are not equivalent to the
representation categories of a (usual) Hopf algebra. We will address this question
in a forthcoming paper.

The paper is organized as follows. In Sec. 2, we give the required notations. In
Sec. 3, we describe the Hopf algebra structure of the supergroup algebras introduced
in [1]. For any supergroup algebra we describe the projective covers of its simple
objects. This description will be useful when computing certain Frobenius—Perron
dimensions. In Sec. 4, we classify biGalois objects for supergroup algebras. BiGalois
objects are a fundamental piece of information to compute examples of crossed
systems. In Sec. 5, we recall the definition of crossed product tensor category as
introduced in [10] and how they are constructed from crossed systems. We also give
a more concrete description of crossed systems in the case the tensor category is
the category of corepresentations of a finite-dimensional Hopf algebra. In Sec. 6, we
give explicit examples of crossed systems of Cy over a supergroup algebra and we
describe the monoidal structure. We obtain eight non-equivalent tensor categories
and we compute their Frobenius—Perron dimensions.

2. Preliminaries and Notation

If T is a finite group and ¢ € Z2(I',k*) is a 2-cocycle, there is another 2-cocycle
1)’ in the same cohomology class as v such that

Vg, )=v'(1,9)=1, ¥ (9.9 ) =1, ¥ (g.h) " =4'(h 97", (2.1

for all g, h € T'. From now on, all elements in Z2(I",k*) representing some class in
H?(T, k) will satisfy Eq. (2.1). For references in group cohomology see [4].

If H is a Hopf algebra and g € G(H) is a group-like element, we denote k, the
one-dimensional vector space generated by w, with left H-comodule given by

Aiky — Hoky, AMwg) =g @ w,.

A coradically graded Hopf algebra H = @~ , H(i) is a Hopf algebra H that is a
graded algebra and a graded coalgebra such that the coradical filtration is given by
H, = @;_, H(i). For references on Hopf algebra theory see [15].

If H is a coradically graded Hopf algebra and (A, A) is a left H-comodule algebra,
the Loewy series on A is given by A,, = A" (H,®xA), n =1,...,m, see [13]. The
associated graded algebra gr A is again a left H-comodule algebra. If the coradical
Hy is a Hopf subalgebra then Ay is a left Hy-comodule algebra. The comodule
algebra A is H-simple if it has no nontrivial ideals I C A such that A(J) C H®yl.

2.1. Twisting Hopf algebras

In this section we recall a well-known procedure of deformation of a given Hopf
algebra. The reader is referred to [15]. Let H be a Hopf algebra . A Hopf 2-cocycle
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for H is a convolution invertible map o : H®xH — k, such that

a(z1),y1))o (@Y 2),2) = oY), 21))0 (T, Y2)2(2))5 (2.2)

o(z,1) =e(x) = o(1, ), (2.3)

for all x,y, 2z € H. There is a new Hopf algebra structure constructed over the same
coalgebra H with product described by

Ty =0z, ya))o (@), yeE)T@Ye), 2y € H. (2.4)

This new Hopf algebra is denoted by H"!. If (A, )\) is a left H-comodule algebra,
then we can define a new product in A by

a-sb= U(a(,l), b(,l))a(o) : b(o), a,be A. (2.5)

We shall denote by A, this new algebra. With the same comodule structure, A, is
a left Hl?l-comodule algebra.

Let H be a pointed coradically graded Hopf algebra with coradical kG, G a
finite group. Let ¢ € Z?%(G,k*) be a 2-cocycle. There exists a Hopf 2-cocycle
oy : HeH — k such that for any homogeneous elements z,y € H

x, if z, ;
oy(ay) = {w v) y € H(0) 26)

0 otherwise.

See [11, Lemma 4.1].

2.2. Bicategories

For a review on basic notions on bicategories we refer to [2]. Any monoidal category
C gives rise to a bicategory C with only one object. If C,D are strict monoidal
categories, a pseudo-functor (F,§) : C — D is a monoidal functor between the
monoidal categories C and D. If (F,¢),(G,() : C — D are monoidal functors, a
pseudo-natural transformation between them is a pair (no,n) : (F,§) — (G, ()
where 79 € D is an object and for any X € C natural transformations

nx + F(X)®@ny — no @ G(X),
such that for all X,Y € C
(idp ® Cxy)nxey = (Nx ®id gy))(d pex) @ ny)(Ex,y @id ). (2.7)

Given two pseudo-natural transformations (n9,n) : (F,§) — (G,¢) and (09, 0) :
(G,¢) — (H, x) their composition is given by

(0 @ 00, (idy, @ 0)(n @id o)) : (F,€) — (H,X), (2.8)
and their tensor product is given by
(F(UO) @ 1Mo, ¢); (29)
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where, for any X € C,
Px  F(G(X)) ® F(og) @ng — F(o0) @no @ G(H(X))
is given by the composition

bx = (i p(og) @ N1 (x)) (€0 1) © o) (F(0)éa(x),00 ©id g )-

If (no,n),(c0,0) : F — G are pseudo-natural transformations, a modification
~: (no,n) = (00,0) is a morphism v € Home (19, 0g) such that for all V € C

(y®@idguy)nv = ov(id prvy @ 7). (2.10)

Given two modifications v : (n0,1) = (00,0) and 7 : (69,0) = (70, 7) their compo-
sition is given by the composition of morphisms in D.

v is an invertible modification if there exist another modification % such that
vyoy=id,, and Yoy =id4,.

We say that the pseudo-natural transformations (1o, n), (0o, 0) are equivalent,
and it is denoted by (19,1) ~ (0¢,0) if there exists an invertible modification
v : (no,n) — (00,0). A pair (no,n) is a pseudo-natural isomorphism if there exists
another pseudo-natural transformation (og, o) such that

(770,77)(0070) ~ (1D7idF)’ (0070)(7]0’77) ~ (1D7idG)'

Consequently, the object 7 is invertible in D, that is, there exists an object 7jg € D
such that 9o ® g ~ 1p >~ 7jg @ 1o.

2.3. Hopf biGalois objects

Let H, L be finite-dimensional Hopf algebras. An (H, L)-biGalois object [17] is an
algebra A that is a left H-Galois extension and a right L-Galois extension of the
base field k such that the two comodule structures make it an (H, L)-bicomodule.
Two biGalois objects are isomorphic if there exists a bijective bicomodule morphism
that is also an algebra map. Any (H, L)-biGalois object A can be regarded as a left
H®y L°P-comodule algebra. It follows from [15, Corollary 8.3.10] that any biGalois
object is H®yL°P-simple as a left H®yL°P-comodule algebra.

Denote by BiGal(H) the set of isomorphism classes of (H, H)-biGalois objects.
It is a group with product given by the cotensor product .

If Ais an (H, L)-biGalois object then the functor

Fa : Comod(L) — Comod(H), Fa(X)=AOLX, (2.11)
for all X € Comod(L), has a tensor structure as follows. If X,Y € Comod(L) then
2y - (A0 X)@(AOLY) — ADL(X@,Y) is defined by

f}‘},y(ai@)xi@l)j ®yj) = a;b; ® v; @y, (2.12)

for any a;, ® z; € AOLX, b; ®y; € AOLY. If A, B are (H, L)-biGalois objects then
there is a natural monoidal isomorphism between the tensor functors F4, Fp if and
only if A ~ B as biGalois objects.
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Assume that A is a H-biGalois object with left H-comodule structure A : A —
H®iA. If g € G(H) is a group-like element we can define a new H-biGalois object
A9 on the same underlying algebra A with unchanged right comodule structure and
a new left H-comodule structure given by A9 : A9 — HRAI, N\ (a) = gfla(_l)g ®
a() for all a € A.

Recall [9] that two H-biGalois objects A, B are equivalent, and denote it by
A ~ B if there exists an element g € G(H) such that A9 ~ B as biGalois objects.
The subgroup of BiGal(H) consisting of H-biGalois objects equivalent to H is
denoted by InnbiGal(H). This group is a normal subgroup of BiGal(H). We denote
OutbiGal(H) = BiGal(H)/InnbiGal(H).

Theorem 2.1 ([9, Theorem 4.5]). Let A, B € BiGal(H). The following state-
ments are equivalent:

(1) A~ B;
(2) there exists a pseudo-natural isomorphism (no,n) : Fa — Fp.

Remark 2.2. Given an isomorphism f : A9 — B of bicomodule algebras, there is
an associated pseudo-natural isomorphism (19, 17) : Fa — Fg, given by

no=ky, nl: AOgVek, — k,@BOLV,
n{?(a@v@r) =r® f(a) ®v,

for all a @ v ®@r € AOyV&iky. Moreover, any pseudo-natural isomorphism is of
this form.

2.4. Comodule algebras over graded Hopf algebras

One of the goals of the paper is the classification of biGalois objects over a certain
family of Hopf algebras. Since biGalois objects are in particular comodule algebras,
we first recall some tools developed in [13] to study simple comodule algebras over
coradically graded Hopf algebras.

Let H = @, H(i) be a coradically graded finite-dimensional Hopf algebra.
We shall also assume that H is pointed; the coradical is a group algebra Hy = kG
of a finite group G.

If A is right H-simple then A is right kG-simple [13, Proposition 4.4], thus
there exist a subgroup F' C G and a 2-cocycle ¢ € Z%(F,k*) such that Ay = kyF.
The next result is [14, Lemma 5.4].

Lemma 2.3. If A is right H-simple there exists a 2-cocycle 12 € Z%(G, k) such
that ¢ restricted to F equals v and (grA)% s isomorphic to a homogeneous left

coideal subalgebra of H3l 45 a left H73!_comodule algebras.
Recall that the Hopf 2-cocycle o5 was defined in (2.6).
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3. Finite Supergroup Algebras

Let G be a finite Abelian group, u € G be an element of order 2 and V a finite-
dimensional G-module such that v -v = —v for all v € V. The space V has a
Yetter—Drinfeld module structure over kG as follows. The G-comodule structure
0:V — kG®V is given by §(v) = u® v, for all v € V. The Nichols algebra of V/
is the exterior algebra B(V) = A(V). The bosonization A(V)#kG is called in [1] a
finite supergroup algebra and it is denoted by A(V,u, G). Hereafter we shall denote
the element v#g simply by vg, for all v € V, g € G.

The algebra A(V, u, G) is generated by elements v € V, g € G subject to relations

vw+wv =0, gv=(g-v)g, forallv,weV, geaG.
The coproduct and antipode are determined for all v € V, g € G by
Av)=veltuev, Alg)=gog, Sk)=-uw, S(g)=g"

Let us explain the coproduct in a more explicit form. Suppose {v1,...,v;} is a
basis of V. Let t € N, and define

Lo=1{,....0),t1,....t—=1),(t—1,t,1,....,t —2),...,(2,3,...,t,1)} C N'.
The coproduct of A(V,u,G) on the element vy - - - v;g of the canonical basis equals

v g @gtulg@urug Y Vi, ug ® vi,g
(41,..,¢)EL:

+ Z Viy ~-~vit_2u29®vit_lvitg+~-~+ Z vilutflg@)w2 EER VN
(il,...,it)eﬁt (7:1,...7it)€£t
(3.1)

Lemma 3.1. The algebra map ¢ : A(V,u,G) — A(V,u, G)°°P determined by
o(v) =vu, ¢(g) =y,
1s a Hopf algebra isomorphism.

Next, we shall compute the projective covers of simple A(V, u, G)-comodules.
For any g € G, k, is a simple A(V, u, G)-comodule. Let P, = A(V)®kk, be the left
A(V,u, G)-comodule with coaction determined by the restriction of the coproduct.

Theorem 3.2. Let {vy,...,ux} be a basis of V. The following assertions hold.

(1) The family {k, : g € G} is a complete set of isomorphism classes of simple
A(V,u, G)-comodules.

(2) The projective cover of the comodule kg is Py.

(3) Forallg,h € G, kg @ky, ~kgp and Py @ ky, >~ Py, as A(V,u, G)-comodules.

Proof. Since A(V,u, @) is pointed, every simple comodule is one-dimensional and
they come from group-like elements of A(V, u, G). This proves (1).

1550067-7
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Since A(V,u,G) = @
comodule for any g € G.

Let py : Py — kyx, be the A(V,u,G)-comodule epimorphism, given on the
elements of the canonical basis by

W,k if x =v1...09,
py(x) = { . (3.2)

gec Py, as left A(V,u, G)-comodules, P, is a projective

0 elsewhere.

Let us prove that this projection is essential. Let L be any A(V, u, G)-comodule
together with a comodule morphism ¢ : L — P, such that p,o4 is an epimorphism.
Let y € L such that py 0 ¥(y) = wykry, then Y(y) = 2+ a vy ...vx @ g for some z €
ker(py) and 0 # o € k.

Note that P, is the smallest subcomodule containing z + o vy ... v, ® g. Indeed,
if P is a left subcomodule of A(V,u,G) such that z4+a v ...v,®g € P, then using
the explicit description of the coproduct given by formula (3.1), and the fact that
z € ker(pgy), one can verify that any element of the canonical basis of P, belongs
to P. Since the image of ¢ is a subcomodule containing z + a v; ... vx ® g, it must
be all P,. Hence 1 is surjective and the map p, is essential. We conclude that P,
is the projective cover of the comodule k.

Finally, for g,h € G, let v : ky @ kp, — kgp and 3 : Py @ k, — Py, be the maps

Y(wg ® wp) =wgn, BU®gRws) =v®gh
for all v € V. Clearly v and 3 are comodule isomorphisms. O

The following result will be needed when computing the Frobenius—Perron
dimension of certain tensor categories.

Corollary 3.3. Assume dim(V') = 2. For any g € G we have

<Pg> = 2<kg> + 2<kuy>-
Here (P;) denotes the class of P, in the Grothendieck group of the category of
finite-dimensional left A(V,u, G)-comodules.

Proof. Let {v, w} be a basis of V. Recall the projection p, : P, — k, described in
(3.2). Since in this case Py is generated as a vector space by {vw®g, v®g, w®yg, 1Qg},
the kernel of p, is generated as a vector space by {v ® g,w ® g,1 ® g}. Define
f i ker(pg) — kyg the A(V,u, G)-comodule epimorphism by

Wwyy fr=w®yg,
€Tr) =
/(@) {0 elsewhere.

Let f1 : ker(f) — kyg be the A(V, u, G)-comodule epimorphism given by

Wy frz=v®g,
x =
h@) {0 elsewhere.
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We have a composition series for P, given by
P, 2 ker(p,) 2 ker(f) 2 ker(f1) 20,
and satisfies
Py /ker(pg) ~ky,  ker(pg)/ker(f) ~k
ker(f)/ker(f1) =~ kyg, ker(f1) ~ kg.

3.1. The tensor product A(V, u, G)RiA(V, u, G)°P

k
k

Let G1, Go be finite Abelian groups and u; € G; be central elements of order 2. For
i = 1,2 let V; be finite-dimensional GG;-modules, such that u; acts in V; as —1.

Define A(V1, Vo, u1, us, G, G2) = A(V1,u1, G1)QxA(Va, us, Go) with the tensor
product Hopf algebra structure. For simplicity, we shall denote

B(V,u,G) = A(V,V,u,u,G,G).

Observe that B(V,u, @) is a coradically graded Hopf algebra.
If we denote D = GG; x G2, then both vector spaces Vi, Vs are D-modules by
setting

(gvh)'vlzg'vh (gah’)'rUQ:h'rU% (g,h)ED, Uie‘/i; Z:1a2

The algebra A(V7, Vo, uy, us, G1,G2) is generated by elements Vi, Vs, D subject to
relations

viwy +wivr =0, vows +wovy =0, v1v2 = vav1,

guy = (g : 'Ul)g» guz = (g : Uz)g,

for all g € D, v;,w; € V;, i =1,2. The Hopf algebra structure is determined for all
(91792) S Ga v; € ‘/:h 1= 172 by

A(vl):v1®l+(u1,1)®v1, A(U2)202®1+(1,UQ)®’U2,
A(g1,92) = (91, 92) ® (91, g2)-

We shall define certain families of Hopf algebras that are cocycle deformations
of B(V,u, Q). Let (V1, Vo, u1,u2, G1,G2) be a data as above. Set V' = V; @ V4. Define
HOA, Va,ur, ug, Gi, Ge) = A(V)®kkD with product determined by

vw+wv =0, gv=(g-v)g, foranyv,weV;dVa,g€D,
and coproduct determined by

Alv))=v1 @1+ (u1,1) @v1, A(ve) =v2 @1+ (1,u2) @ v,
for any v; € V;, i =1,2.

Lemma 3.4 ([14, Proposition 6.2]). Let be H = A(Vy, Vo, u1,uz, G1,Gs), ¢ €
Z%(D,k*) and o : HoxH — k the Hopf 2-cocyle defined in (2.6). Denote

§= w((uh 1)7 (17U2))1/)((17U2)7 (ulv 1))71'

1550067-9
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Then

(i) if € = 1 we have HI7) ~ A(V1, Vo, u1,us, Gy, Ga);
(ii) if € = —1 then Hw ~ H(V1, Va, u1,us, G1,Ga).

4. The Classification of Hopf biGalois Objects Over A(V, u, Q)

In this section, we shall present a classification of biGalois objects over the super-
group algebras. The idea to achieve this classification for an arbitrary Hopf algebra
H is the following. Any biGalois object over H is an H®y H“°P-simple left H @y H “°P-
comodule algebra with trivial coinvariants. Any such H®yH “°P-comodule algebra
is a lifting of a 2-cocycle deformation of a homogeneous left coideal subalgebra
inside a certain twisting of the Hopf algebra H®y H°P. Since biGalois objects have
dimension equal to the dimension of H, we can then detect the biGalois objects.

Let G be a finite Abelian group, u € G be an element of order 2 and V be a
finite-dimensional G-module such that v -v = —v for all v € V.

First we classify all A(V,u, G)@xA(V,u, G)°P-simple left comodule algebras
with trivial coinvariants. Hopf biGalois objects over A(V, u, G) are inside this family.

4.1. Simple comodule algebras over B(V,u,G)

We recall the description of all B(V, u, G)-simple left comodule algebras presented
in [14].

For a given finite-dimensional coradically graded Hopf algebra H, the idea to
classify simple left H-comodule algebras is roughly the following. If A is a H-
simple left comodule algebra the graded algebra gr A, with respect to the Loewy
filtration, is also H-simple. A twisting of gr A, by a certain Hopf 2-cocycle o, is
isomorphic to an homogeneous coideal subalgebra inside H!?J. Then, one has to
classify homogeneous coideal subalgebras inside H?!. At last, one has to compute
all liftings of gr A, that is, H-comodule algebras A such that gr A is a twisting of
a coideal subalgebra inside H°.

Definition 4.1. A collection (W, W2 W3 3, F,v) is compatible with the triple
(V,u,G) if

e WL, W2 C V, W3 C V@V are subspaces such that W3 n W' ¢ W2 = 0,
W3nvVe{0}=0=w3n{0}aV;

e F C G x G is a subgroup that leaves invariant all subspaces W?, i = 1,2, 3;

o if W3 =0 then (u,u) € F;

o denote W = W! @ W2 @ W?3. Then f: W x W — k is a bilinear form stable
under the action of F', such that

Bwi,we) = —B(wz,w1), Blwr,ws) = Blws,wr), Bwz,w3)=—0B(ws3,ws),

1550067-10
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for all w; € W', i = 1,2,3, and 3 restricted to W x W? is symmetric for any
i=1,2,3;

o if (u,u) ¢ F then f3 restricted to Wt x W2 and W2 x W3 is null;

o € H2(F, k).

If (WL, W2 W3, 3,F,¢) is compatible with (V,u,G) the left B(V,u,G)-
comodule algebra (W, 3, F,1) is defined as follows. The algebra K(W, 3, F, )
is generated by W and {ey : f € F'}, subject to relations

eren =P(fih)esn, epw=(f-wey,
wiwj + wjw; = Blwi,w;)l, w; € W' w; € WY,
for any (i,7) € {(1,1),(2,2),(1,3),(3,3)}, and relations
wowz — w3wz = (w2, W3)€(y,), forany ws € W2, ws e W3,
wiwe — wawy = B(wi,w2)e(y,), forany wy € W, w, e W2

The left coaction ¢ : K(W, 8, F,¢) — B(V,u, G)@xK(W, 3, F,1) is defined on the
generators

6(ef) = f ® €f, 6(an) =v®1l+ UJ(U,U) ® €(u,u) + (U, 1) ® (U,UJ),
O(wa) =we @1+ (1,u) wy, (wr)=w; @1+ (u,1)®w,

for any f € F,w; € W, wy € W2, (v,w) € W3. This family of comodule algebras
was introduced in [14] to classify certain module categories.

Definition 4.2. If (W', W?2 W3 3, F 1) is a compatible data with (V,u, G) such
that W' = W?2 = 0 we shall denote L(W, 3, F,v) = K(W, 3, F, ).

The following result is [14, Proposition 7.4, Theorem 7.10].

Theorem 4.3. The following assertions hold.

(1) dim K(W, B, F, ) = dim W|F|.
(2) The algebra IK(W, 8, F, ) is a B(V,u, G)-simple left comodule algebra with triv-
tal coinvariants.

Moreover, any B(V,u,G)-simple left B(V,u, G)-comodule algebra with trivial coin-
variants is isomorphic to one K(W, 8, F,4) for some compatible data (W, 3, F, ).

For later use, we shall give explicitly the left and right coactions on the algebra
L(W, B,1). Any left B(V, u, G)-comodule is a A(V, u, G)-bicomodule where the right
coaction is obtained using the canonical projection

e@id : B(V,u,G) = A(V,u, G)@xA(V,u,G) — A(V,u,G),

composed with the isomorphism ¢ : A(V,u, G) — A(V, u, G)°P given in Lemma 3.1.
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The A(V,u, G)-bicomodule structure on L(W, 3, F, ) is given by the left and
I'lght actions A : ﬁ(VV;ﬁ,wa) - A(MU,G)@kﬁ(Wﬂ, Fa¢)’ P ﬁ(VV;ﬁ,wa) -
LW, B, F, )@k A(V,u, G) determined by

Av,w) =v@1+u® (v,w), pV,w)=enu @w+ (v,w)® 1,

Mew.n) =9@ew.p),  ple.n) =eg.n®f (4.1)
for all (¢, f) € F, (v,w) € W.

Lemma 4.4. If F C G x G is a subgroup such that (u,u) € F, |F| = |G|, FNG X
{1} ={1} = FN{1} xG and W C V&V is a subspace stable under the action
of F such that dmW =dimV, WNV $0=0=WNO0&V; then the comodule
algebras L(W, 3, F, 1) are A(V,u, G)-biGalois objects.

Proof. We shall prove that the algebra L(W, 3, F, 1) is a Hopf-Galois object from
the left. The proof that it is Hopf-Galois from the right is similar. The condi-
tions on the subgroup F assure that the comodule algebra L(W, 3, F, 1) has trivial
coinvariants. We must show that the canonical map

can: [’(W ﬁ7F7¢)®]k[’(VV7 ﬁ7F7w) - A(‘/? U,G)@kﬁ(m ﬂa Fa ¢)a
can(a ® b) =a-1)® a(o)b,

is an isomorphism. By Theorem 4.3(1) the dimension of L(W, 3, F, ) equals the
dimension of A(V, u, G), hence it is enough to prove that can is surjective. The map
can is surjective if for any algebra generator a € A(V, u, G) there exists an element
z € LW, B, F, )@k LIW, 3, F,4) such that can(z) =a ® 1.

Since |F| = |G|, for any g € G there exists f € G such that (g, f) € F. Then

can(eg, r) ® eg-1,5-1y) =g @ L.

Since dimW = dimV, for any v € V there exists w € V such that (v,w) € W.
Then, since (u,u) € F'

can((v, w) @ 1 — e(yu) @ e(u,u) (v, w)) =v @ 1. O

4.2. Hopf biGalois objects over A(V,u,R)

We shall use the description of B(V,u, G)-simple left comodule algebras given in
the previous section to classify A(V, u, G)-Hopf biGalois objects.

Theorem 4.5. Any A(V,u,G)-biGalois object is isomorphic to an algebra of the
form L(W, B, F, 1), where

o FFC G xG is asubgroup such that FNG x {1} = {1} = Fn{l} x G, |F| = |G|,
(u,u) €

o W CV®V is a subspace stable under the action of F' such that dimW = dim V,
WNVel=0=WnoaV,;
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e 5:W xW —k is a F-invariant symmetric bilinear form,
e ) € H?(F,k*) is a 2-cocycle.

Proof. Let A be a A(V,u,G)-biGalois object. We have that A is a B(V,u,G)-
simple left B(V, u, G)-comodule algebra with trivial coinvariants. This implies that
there exists a compatible data (W1, W2 W3, 3, F 1) such that A ~ (W, 3, F, ).
Since the coinvariants of A are trivial, W' = W? = 0 and W = W?3. The conditions
stated on F and W must be satisfied since the coinvariants of A are trivial and

dim A = dim H. O

Now, we shall give an alternative description of compatible data (W, 3, F,)
such that the comodule algebra L(W, 3, F, ) is a biGalois object.
A collection (T, 3, a, 1) will be also called a compatible data if:

e a: G — G is a group isomorphism such that a(u) = u;
e T :V — V is a linear automorphism such that

T(g-v)=alg)-T(v), veV,geG;

e 3:V xV — kis asymmetric G-invariant bilinear form;
e 1 € H?(G,k*) is a 2-cocycle.

Lemma 4.6. There is a bijective correspondence between the set of compatible
data (T, B, a, 1) and collections (W, 3, F, 1)) such that they satisfy the conditions of
Theorem 4.5.

Proof. If (T, 3, a,v) is a compatible data define (W, 3, F, 12) as follows:
W={(T),v):veV} F={(alg)g):9€G}
The bilinear form B and the 2-cocycle 1Z are defined as

BUT (), 0), (T(w),w)) = Blv,w),  B((lg), 9), ((f), ) = (g, f),

for all v,w € V, g, f € G. Let (W, 3, F,1) be a compatible data satisfying condi-
tions of Theorem 4.5. If (x,g) € F, since F NG x {1} = {1}, then z is uniquely
determined by the element g. So we can denote x = «(g). Since |F| = |G| the
function « is defined for any g € G. Also, since F N {1} x G = {1}, the map « is
injective. The fact that |F| = |G| implies that it is bijective. Since F' is a group,
« is a group homomorphism, hence it is a group isomorphism. The definition of
the linear isomorphism 7' is analogous. Both constructions are one the inverse of
the other. O

Definition 4.7. If (T, 3, a, ¢) is a compatible data denote L(T, 3, o, 1) the algebra
L(W, 8, F,1) where the collection (W, 3, F, 1) is the associated data to (T, 3, v, ¥)
under the correspondence of Lemma 4.6. If (T, 3, o, v), (T7, 5, a/,9’) are compat-
ible data, define

(T,8,0,9) o (T", 5,/ })) = (To T, Bo T + ' a0d , yi).
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If g € G define Ty, : V' — V the isomorphism T, (v) = g - v for all v € V. Then
(Ty,0,id, 1) is a compatible data for all g € G.

Lemma 4.8. Let (T,5,a,v), (T7,5',a/,4") be compatible data.

(1) The collection (T oT',foT' 4+ ', a0, 41)’) is a compatible data.
(2) The set of compatible data with product
(T,B,a,9) o (T", 8,0/, ¢) = (T o T, BT + ' a0, ¢y)) (4.2)
is a group with identity (1d,0,1id, 1).

Proof. (1) Straightforward.

(2) For any compatible data (T, 3, «, 1) the collection (T—!, —BoT 1 a=t 1) is
again a compatible data and it is the inverse of (T, 3, a, ). O

Definition 4.9. Define the group R(V, u, G) as the quotient of the set of compat-
ible data (T, 8, a, ¥) with product described in (4.2) modulo the normal subgroup
of order two generated by the element (T,,0,id, 1).

The set of compatible data {(Ty,0,id,1) : ¢ € G} is a normal subgroup of
R(V,u,G). The quotient group R(V,u,G)/{(T},0,id,1) : g € G} is denoted by
OV, u,G).

Proposition 4.10. Let (T, 5, a,¢), (T, 3, &/, ¢") be compatible data. The follow-
img assertions hold.

(1) There is an isomorphism L(T, 3, a,v) ~ L(T',3',a’,¢") of biGalois objects if
and only if
(Taﬂaaa¢) = (Tl7ﬂ/aala¢l) or (TUOT7ﬁ7O[7w) = (T/aﬂl,@/,¢/)~
(2) L(T, B, a,v) € InnbiGal(A(V,u,G)) if and only if (T,5,a,9) = (Ty,0,id, 1)

for some g € G.
(3) There is an isomorphism of B(V,u, G)-comodule algebras

E(Tv 57 a, w)DA(V,u,G)E(T/7 ﬂlv O/a ’(//) = ‘C(T o Tl7 ﬂ o Tl + ﬁ/7 @ o 0/7 1/)1//)

Proof. (1) Let f: L(T, 3, «,v) — L(T', 3",/ ,¢") be a B(V,u,G)-comodule alge-
bra isomorphism. This implies that for any g € G we have f(e(g.a(g))) = Xg €(g,a(9))
for some y, € k. Whence ¢ = ¢/ in H*(G,k*). Since e%u w = L we have x, = +1.

Denote by (W, 3,4) and (W', 3 9’) the collections associated to the compat-
ible data (T, 3, a, ) and (1", ', a’,1¢’), respectively, under the correspondence of
Lemma 4.6. Follows straightforward that f(W) = W'. If f(z,y) = (2/,y’) for
(z,y) € W then, since f is a B(V,u, G)-comodule map, the element

' ®1+ yl(u7 U) ® €(u,u) + (u7 1) ® (xla y/)

is equal to

@1+ xuy(u,u) ® e + (u,1) @ (2, y).
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Thus f(x,y) = (z, xuy)- If xu = 1 both collections (W, 5, ¢), (W', 5,4’ are equal.
If Xu = —1 then (TU © Ta ﬂa a, ¢) = (Tl7 ﬁ/a O/a ¢/)

(2) Recall the definition of InnbiGal(H) given in Sec. 2.3. It follows directly from (1)
and the definition of InnbiGal(A(V, u, G)).

(3) Define the algebra map
V:L(ToT ,foT + 3 a0d Yy — LT, B, 0, )dav,u,c) LT, 5,0/, 0)
as follows. If g € G,v € V then
T oT'(v),v) = (ToT'((v),T'(v) @1+ ewu @ (T'(v),v)),
U(e(aca’(),9)) = E(aca’(9),0/(9)) @ €(a'(9),9)-

It follows by a straightforward calculation that the image of 1 is inside
L(T, B, c,Y)d av,u,cy £(T", 3,0’ ,4'). The map 9 is an injective algebra map. Since
both algebras have the same dimension, ¥ is an isomorphism. O

Remark 4.11. The proof of part (1) of Proposition 4.10 gives a description of the
possible bicomodule algebra isomorphisms between two biGalois objects. This fact
will be used later.

Corollary 4.12. There are group isomorphisms
R(V,u,G) ~ BiGal(A(V,u, G)), O(V,u,G) ~ OuthiGal(A(V,u,G)).

Remark 4.13. As a consequence of [9, Corollary 4.9] and Proposition 4.10 there
is an exact sequence of groups

0 — G/(u) — R(V,u,G) — BrPic(Rep(A(V,u, G))).
Lemma 4.14. Let (T, 3, «,v) be a compatible data and g € G. Then there is an
ismorphism L(T', 3,0, )0 a(v,u,cn kg = ka(gy of left A(V,u, G)-comodules.

Proof. If a ® r € LOgk, then p(a) = a ® g, hence

plae(a(g-1),g-1) = (a® g)(e(a(g-1).g-1) @9 1) = ae(a(g1),4-1) © 1,

therefore aeq(g-1y,4-1) € k1l = L(T, B, a, ) AVwE) and g = Ce(a(g),q) for some
¢ ek O

4.3. A concrete example of biGalois extensions

Assume V is the two-dimensional vector space generated by {vi,v2} and G =
Cy = (u) the cyclic group with two elements. Then, V is a Co-module with action
determined by declaring u - v; = —v; for 1 = 1, 2.
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For any £ € k define Tt : V' — V the linear map
Te(v1) =v1, Te(v2) = v — va.

By Lemma 4.6, the compatible data (T¢,0,id, 1) gives rise to a A(V,u, Cy)-
biGalois extension that we denote by Ug. From Proposition 4.10(3) it follows

that Ug has order two, that is, there is a bicomodule algebra isomorphism
UdpyUe ~ H.

5. Crossed Product Tensor Categories

In this section C will denote a strict finite tensor category [8]. We recall the definition
of crossed system of a finite group I' on the tensor category C introduced in [10]
and the associated I'-graded extension of C.

Definition 5.1 ([10]). Let I' be a finite group. A crossed system of T over C is a
collection ¥ = ((ax,£%), (Uaby ), Yab.c)a.b,cer consisting of

e monoidal autoequivalences (a.,£?) : C — C where %y 1 a.(X ®Y) — a.(X) ®
a+(Y') is the monoidal structure for X,Y € C. We also require that a.(1) = 1;
e objects U, , € C and for any X € C natural isomorphisms

08" b (X) @ Usp — Uap @ (ab). X, X €C;
o isomorphisms v, p.c : a4 (Up,c) @ Ugpe = Uap @ Uapc;

such that for all a,b,c € T', X, Y € C:

oit =idy,,, l.=Id¢, (Uie 0" =(1,ida,) = Us1,0%), (5.1)
Ya, 1,6 = Mab = Yap,1 = du, ,, (5.2)

(du,, ®§%’,Y)U§(€9Y
= (0% ®id (b () ({d a1 (x) @ 05N &L x oy - (Ek ) @id 0, ), (5.3)

a,bc b,c

(Va,b,e @ 1d (abey. () (1 o, (,0) @ OX ) (ED, . (be). (x) © 0 (o) ®id, ,.)

ab,c

= (ld Uap ® Ox )(Ug*’g{ ®id Uab,c)(id axbicy(X) ® ’Ya,b,c)(gg* ¢ (X),Upe ®id Ua,bc)'
(5.4)

Remark 5.2. (1) Condition (5.3) of Definition 5.1 implies that (U, 0*?) is a
pseudo-natural isomorphism in the bicategory C with only one object. In particular
the object U, is invertible in C with inverse U, .

(2) Condition (5.4) implies that 7,5 is an invertible modification in the same
bicategory.
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Definition 5.3. A crossed system % = ((ax,£%), (Uab,0*®), Yab,c)apcer is a
coherent outer I'-action on C if for all a,b,c,d € T

('Ya,b,c ®id Uabc,d)(id ax(Up,c) ® 'Ya,bc,d)(ggbC’ch7da* (’ybycyd) ®id Ua,bcd)
= (id v, , ® Yabea) (07, @id v, .0) (b, (U.0) ® Vasbicd)
X (gl()l*(Uc7d),Ub,cd ® id Ua,bcd)' (5'5)

In this case, we say that I' acts on the category C.

If " acts on C via a crossed system X, then the I'-crossed product tensor category,
introduced in [10], associated to this action is C(¥), where C(X) = @, Ca as
Abelian categories and C, = C for all a € T'. Denote by [V, a] the object V € C,.
Morphisms from @, [Va,a] to @ ,cp[Wa,a] are given by @, [fa,a] where f, :
V, — W, is a morphism in C for all @ € T".

Theorem 5.4 ([10, Sec. 3.3]). C(X) is a tensor category with tensor product
®:C(X) x C(X) — C(X) defined by

[V,a] @ [W,b] = [V ® a,(W) & Ugp,ab]  on objects, (5.6)

)@ (9,6 = [f ® au(g) ®idu, ,.ab]  on morphisms, (5.7)

with unit object [1¢, 1], and associativity constraints given by

aw,awlz,d = (dveesw @ o9’ @id Uav.o)(1d Voa, Wea.b, 2 @ Yab,c)

o(idvga.w ®&. 2, ®idu,,.)(dv @&y, zeu,. @idu,,.)-
(5.8)

The dual objects are given by
(V,1)* =[V*, 1] and ([1,a)* = [Ua’a_ua*l].

The next result explains when, for two coherent outer actions X, Y, the tensor
categories C(X), C(X') are monoidally equivalent.

Theorem 5.5 ([10, Theorem 4.1]). Let ¥ = ((a., 0%), (Ua,b,aa’b),%,b,c)mbvcep,
¥ o= ((alaca)a(U(Lb,Ta’b);’}/(lhb’c)a,b,cel" be two coherent outer T'-actions over
C. Any monoidal equivalence F : C(X) — C(X') comes from a collection
((H7 f)v fv (0(17 ﬂa)7 X(lyb)a,bGF where

e (H,&):C — C is a monoidal equivalence;

o f:1T'— T is a group isomorphism,;

e for any a € T the pair (04,8%) : Hoa. — f(a) o H is a pseudo-natural isomor-
phism such that (61, 3') = (1,id);

o Xap: HUap) @04 — 0, ® fa) (6y) @ U}(a)ﬂb) s an invertible morphism in C
such that xq,1 = X1, = idg, and

pv (d H(a.b.(v)) @ Xap) = (Xab @ id papy mvy))av, V €C, (5.9)
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where
. . a),f(b .
pv = (idg, ® (id f(a) (0,) ® TIJ;((\B)f( ))(SV ®id U}<a>,f<b>))
o (By.(vy®id F(@)(96)®U (4 ) ),

—1

fla f(a)
SV = Qo Py anay © @) (8 0 (GG vy 0,) 7
qv = (id g, ) ® B (v . (ab).(v) © H(OF) 0 (Eab.(vy0,,) " @ida,,).

Given the collection ((H,&), f,(0a,8%), Xap)aper as in the previous theorem,
the monoidal equivalence F' : C(X) — C(X') is defined by

F([V.a]) = [H(V) ®0a, f(a)], [V,a] € C(¥),
for any [V, a] € C(2).

Remark 5.6. In [10] the author defines crossed systems in terms of equivalence
classes of monoidal functors, up to monoidal isomorphisms, and equivalence classes
of pseudo-natural isomorphisms, up to invertible modifications. This is done this
way since it is shown that equivalence classes of crossed product extensions of the
tensor category C by the group I' are classified by crossed systems. Since we are only
interested in giving examples, our definition of crossed systems is a representative
of a crossed systems according to [10].

5.1. Coherent outer actions for the corepresentation category
of a Hopf algebra

Let H be a finite-dimensional Hopf algebra. We shall give an explicit description
for coherent outer actions on the tensor category Comod(H) of finite-dimensional
left H-comodules in terms of Hopf algebraic data. Let I' be a finite group.

Let us fix the following notation. If g € G(H) and L is a (H, H)-biGalois object
then the cotensor product LO gk, is one-dimensional. Let ¢(L, g) € T' be the group-
like element such that LO gk, ~ ks(r,g) as left H-comodules.

Lemma 5.7. Assume that T = (Lm(g(a,b),f“’b),%yb’c)ayb’cep 15 a collection
where

e foranya €T, L, is a (H, H)-biGalois object,

e g(a,b) € G(H) is a group-like element and f*° : (L,OpLy)9@?) — L. are
bicomodule algebra isomorphisms,

® Ya,b,c € kxa

such that:
Li=H, (9(1,0), ") = (Lid,) = (g(a, 1), f*"); (5.10)
¢(La7g(b7 c))g(a,bc) = g(a7b)g(ab7 C); (511)
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Ya,1,b = Y1,a,b = Ya,b,1 = 1; (512)
(fa,b ® id Lc)fab,c _ (ld L. ® fb,C)fa,bc7 (513)

for all a,b,c € T. Associated to such Y there is a crossed system Y of T
over Comod(H). Moreover, the crossed system Y is a coherent outer action on
Comod(H) if and only if v is a 3-cocycle, that is, for all a,b,c,d € T’

Ya,b,cVa,bc,dVb,c,d = Yab,c,dVa,b,cd- (514)

Proof. Forany a,b € I" define the monoidal functor a, : Comod(H) — Comod(H),
Ay = LGDH— and Ua,b = kg(a,b)'

Define the pseudo-natural isomorphism (kg4 p),0®") : as 0 by — (ab), which
comes from the bicomodule algebra isomorphism

fob (LaOpLy)? @Y — Ly

as explained in Remark 2.2.

The existence of the isomorphisms v, p.c : LaOukgp,c) = Kg(a,p)g(ab,e) 18 equiva-
lent to ¢(La, g(b, ¢))g(a, bc) = g(a,b)g(ab, c). Since both vector spaces L,Orky o) @
kg(a,be) and Kg(q,p) @ Kg(ap,¢) are one-dimensional, the map v, p,c : k — k is given by
multiplication of a scalar v, € k*.

Equation (5.1) is equivalent to (5.10), (5.2) is equivalent to (5.12), and Eq. (5.4)
is equivalent to (5.13). Since f%? is an algebra morphism then Eq. (5.3) is satisfied.
Equation (5.14) follows from (5.5). m|

Definition 5.8. Given a collection T as in the previous lemma, define

Comod(H)(T) := Comod(H)(Y) the I'-crossed product tensor category associated
to the coherent outer actionY.

The next lemma is a direct consequence of Theorem 5.5 applied to C =
Comod(H).

Assume that ¥ = (Lq, (g(a,b), f**), Yab.c)ab.cer and Y = (L, (g'(a,b), 2*?),
Yab.c)abcer are collections satisfying conditions given in Lemma 5.7. Thus, the
associated objects T, Y’ are coherent outer I'-actions.

Lemma 5.9. Any monoidal equivalence F: Comod(H)(YT) — Comod(H)(Y')
comes from a collection (L, \, (h(a), "), Tap)aber where

L is a (H, H)-biGalois object,

A:T'—= T is a group isomorphism,

e h(a) € G(H) is a group-like element and h® : (L0 Ly)"®) — Li\(a)DHL is a
biGalois object isomorphism, satisfying (h(1),h') = (1,id),

o 7, € k™ satisfies 741 = T1,0 = 1,
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and also the following equations are fulfilled

¢(L, g(a,b))h(ab) = h(a)p(L),), h(b))g'(A(a), A(b)), (5.15)
R(id L @ f°) = (MDA @ id ) (id Ly, @) (h* @idL,). (5.16)

6. Examples of C2-Extensions of Comod(A(V,u,C3))

Let C5 be the cyclic group of two elements. In this section, we shall give
explicit examples of tensor categories that are Cy-extensions of the tensor cate-
gory Comod(A(V,u,Cs)) with V' a two-dimensional vector space.

6.1. Cz-extensions of Comod(H)

Let H be a finite-dimensional Hopf algebra. First, we explicitly describe data giving

rise to Cy-extensions of Comod(H) in the particular case the group of group-like

elements of the Hopf algebra H is a cyclic group of order 2 generated by u.
Assume that (L, g, f,7) is a collection where

L is a (H, H)-biGalois object;

g € G(H) is a group-like element such that @ : L0k, ~ k, as left H-comodules;
f:(LOg L)Y — H is a bicomodule algebra isomorphism;

vek*, v =1.

According to Lemma 5.7 from data (L, g, f,~) we obtain a crossed system of Cy over
Comod(H). Just take L, = L, L1 = H, g(u,u) =g, 1 = g(1,u) = g(u, 1) = g(1,1),
fev = f, fbe = ol = b =id and yap. = 1 € k for any a,b,c € Cy except
Yu,u,u := Y- Let us denote this crossed system Y.

The monoidal structure of the category Comod(H)(Y), given by Theorem 5.4
explicitly reads as follows. For any V, W, Z € Comod(H) and b € Cs:

V1] @ W] = [VerW, b,
[V,u] @ (W, 1] = [Veu(LOg W), u],
[V,u] ® [W,u] = [Ver(LOgW)@kky, 1].

The unit object is [k, 1] and dual objects are given by
([Vv 1})* = [V*7 1]7 ([kv 1})* = [kv 1] and ([kvu])* = [kg‘17u]'
Finally, the associativity, on elements of the form [V, u], is given by

aw,uwulze = Y(idveroyw ® fOrid z ®idy,)(id vero,werdy 10,z @ @)

o(idveroyw @ &0y zk,)(1d v @ Ew,L0, zek, )-

The other components of the associativity are trivials. Here ¢ = (¢F)7! is the
morphism defined in Eq. (2.12).
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6.2. Explicit examples of Ca-extensions of Comod(A(V,u,C2))

In this section, H = A(V,u, Cy) where V is a two-dimensional vector space. Using
the results of previous sections, we describe families of crossed systems of Cy over
Comod(A(V, u,Cy)). These crossed systems come from a collection (L, g, f,7) as
presented in Sec. 6.1. Below, we present two such families depending on the biGalois
object L. For the first family the biGalois object L is the one presented in Sec. 4.3
and for the second family the biGalois object L is trivial.

Lemma 6.1. Let be {,v € k,g € Co, and let f € Hom(HY,H) be a comodule
algebra isomorphism. Assume v = 1.

(1) The collection (§,g, f,7) has associated a coherent outer Cs-action over
Comod(A(V,u,Cs)) and the corresponding Ca-crossed product tensor category
will be denoted by Ce(g, f,7).

(2) The collection (g, f,y) has associated a coherent outer Co-action over
Comod(A(V,u, Cs)) and the corresponding Co-crossed product tensor category
will be denoted by D(g, f,7)-

Proof. (1) Let L = U¢ be the (H, H)-biGalois object defined in Sec. 4.3. It follows
from Lemma 4.14 that UcOgk, ~ k.

(2) Following the same idea, take L = H. Then HOgk, ~ k. m|

We want to be more explicit in the determination of the comodule algebra
isomorphism f : H9 — H that appears in Lemma 6.1. We make use of the proof of
Proposition 4.10(1), where such comodule algebra maps are explicitly determined.
Let (£, g, f,~) be a collection as in Lemma 6.1. There are two options:

eIfg=1,then f: H— H.Let 6 : H— L(Id,0,id, 1) be the canonical iso-
morphism h + (h, h) and define f := § o f o 6~1. By (the proof of) Proposition
4.10

7:L0dy,0,id, 1) — £(Idv,0,id, 1),
satisfies that f(z,y) = (z,y) if (z,9) € {(v,v):v € V'} which implies that f(z) =
x if x € V. Moreover 7(61,1) = x1e1,1 = e1,1 and f(eu,u) = Xu€u,u = €uu. Then
f=idg.
e If g =wu, then f: H* — H. By (the proof of) Proposition 4.10(1)

7 L(1d%,0,id,1) — £(Id v, 0,id, 1),

satisfies that f(z,y) = (v, —y) if (z,y) € {(u-v,v)|v € V} which implies that
f@) =u-ax = —xif x € V. Moreover 7(6171) = ey and ?(e%u) = XwCuu =
—eyu, 80 f(u) = —u. We shall denote by ¢ : H* — H this unique bicomodule
algebra isomorphism.

1550067-21



A. Mejia Castano € M. Mombelli

Hence, we obtain four families of Cs-crossed product tensor categories
CE(17 1d7 ’Y)? Cf(uv Ly ,7)7 D(la lda '7)7 D(uv Ly W) (61)
Some of these tensor categories are equivalent. We shall use Lemma 5.9 to

distinguish them.

Theorem 6.2. Let be £,£,v,~' € k with v?> =1 = (y')%. As tensor categories
Ce(L,id, ) % Cer(u, 1,7),  Ce(L,id,y) = Co(1,id, "),
Ce(u,1,7) = Co(u,1,7'),  D(1,id,y) # D(u,1,7),
D(1,id,v) # Co(1,id,7),  D(u,1,v) # Co(u, 1, 7).

Proof. Using Lemma 5.9, there exists a monoidal equivalence

Cf(gv fv ’7) ~ CE/(glv flv'y/)
if there exists
(1) L =L(T,0,a,1) a biGalois object over H,
(2) h:=h(u) € Cy and A" : L(T,TT¢,0,id,1) — L(TeT,0,id, 1) a biGalois iso-
morphism,

(3) =Ty € kX,
satisfying

alg)=yg, @ldr®f)=(f®@id.)(idy, @ h")(h" @idy,), (6.2)
where ® : Ly H — HOgL is the isomorphism given by [ @ h +— 1 ® lpe(h).

The second condition of (6.2) comes from Eq. (5.16), and the first condition
from Eq. (5.15).

For all a, be 02, Lthg(a,b) >~ kag(a,b) and LZLDHkh(b) ~ kh(b)a then Eq. (515)
implies that a(g(a,b))h(ab) = h(a)h(b)g'(a,b). For a = 1 or b = 1 this equation is
valid. For a = u = b, we obtain a(g) = h%¢' = ¢'.

Since o = id, we obtain that C¢(1,id, v) 2 Cer (u, ¢,Y').

By Lemma 4.10(1), 2" is an isomorphism if and only if

ThTTE = TEIT or TuThTTE = Tg/T.

To prove that there is a monoidal equivalence Ce¢(1,1d,7) ~ Co(1,1d,~’) choose

h=1and h* =id then TT; =TT if T is given by the matrix

1 ¢&/2
0 %)
We only need to check that
®(id L ® p2) = (w3 @1d ) (id v, @ 1)(p1 @ idU,),
where
o ¢ : LOyU; — UgdyL coming from h" = id : L(TTg,0,id,1) — L(TyT,0,

id, 1) up to isomorphism,
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o v : UlldyUs — H coming from id : E(Tg,O,id,l) — L(id, 0,id, 1), which
satisfies (2)71(v) = (TeTe(0), Te (1)) @ 1+ €u @ (Te(v),v) and (¢2) " (egg) =
€g.g ®egq forveVand g€ Cs,

e p3 : UgOxyUy — H coming from id : L£(7¢,0,id,1) — £(id,0,id,1) up to
isomorphism.

Letve V. Ifa = (TTe(v), Te(v)) @ 1+ €44 @ (Te(v),v) € LOKUg then o1 (a) =
(ToT (v), T(v)) @ 1 + ey @ (T(v), ).

Let ¢, : L(TT,0,id,1) — LOxUe and G : L(ToT,0,id, 1) — UgOyL be the
isomorphisms give in Lemma 4.10(3), which satisfy

Q(TTe(v),v) = (TTe(v), Te(v)) ©1 + euu ® (Te(v),v),
G(ToT (v),v) = (ToT (v), T (V) @1+ ey @ (T'(v),v).
By definition of ¢, we have that 1 0 (1 = (2 0id £(77, 0,ia,1), and this implies the
claim.
By the same argument, if b = (TyTo(v), To(v)) @ 1+ ey, @ (To(v),v) € Ugdxg Uy
then ¢3(b) = v.
Moreover, ® = ajoag where ay : L — HOgL, g : LOgL — L and (a;) ' (h®

1) =¢e(h)l and (a2) (1) =lo @ 1y.
Let x = (T'(w),w) € L, then

(1) Mz @id ) (idu, @ 1)(p1 ®idu)(id L @ (p2) 1) (a2) H(z) = =,
since

x = ey @uw+ (T(w),w)®1
Te(w), w) + ey @ (TeTe(w), T (w)) @ 1+ (T(w),w) 1@ 1
Te(w), w) + (ToTTe(w), TTe(w)) ® 1 @ 1

= eyu ® ey ® (
= eyu ® eyu ® (
+ euu © (TTe(w), Te(w)) ® 1

= (ToTTe(w), TTe(w) © 1@ 1+ ey @ (LT (w), T(w)) © 1
+ euu ® eyu @ (T(w),w)

—u® (T(w),w)+T(w)®1

= .

In the same way, (g,9) — (g,g) for all g € C5, which implies that C¢(1,id, ) ~
Co(l,id,’y/).

To prove Ce¢(u,t,vy) =~ Co(u,t,7'), it is enough to take h = wu and A" :
L(T,TTy,0,id, 1) — L(TyT,0,id, 1) given for z,y € V by

hu(x,y) = (JZ, _y)a hu(eu,u) = —Cu,u-
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It follows from Lemma 5.9, that there is a monoidal equivalence
D(1,id,v) =~ D(u,t,v")

if and only if there exist M = L(R,0,a,1) a biGalois object over H, h € Co,
ht o L(T)R,0,id,1) — L(R,0,id,1) a biGalois object isomorphism and 7 € k*.
As before, they have to satisfy that «a(l) = wu, but a = id. This proves that
D(1,id,~) 2 D(u,t,7').

Again, using Lemma 5.9, D(1,id,v) ~ Co(1,id,+’) as monoidal categories if
and only if there exist M = L(R,0,a,1) a biGalois object over H, h € Cq, h* :
L(TyR,0,id, 1) — L(ToR,0,id, 1) a biGalois object isomorphism and 7 € k*.

By Lemma 4.10(3), h* is an isomorphism if and only if 7,R = TyR or
T.ThR = ToR, but the last two equations do not have a solution for 7' inverti-
ble. So D(1,id, v) 2 Co(1,id,~’) and D(u,t,v) & Co(u,t,7). O

In conclusion, we obtain eight pairwise non-equivalent tensor categories
CO(l7id71)? C0(17ida_1)’ CO(U7L71)a Co(U,L,—l),
D(171d71)’ D(17lda_1)? D(U7L71)’ D(U,L,—l).

6.3. FEzxplicit description of the monoidal structure

Using Theorem 5.4, we can explicitly describe the tensor product and the asso-
ciativity constraint for the eight tensor categories presented above. Recall that all
those categories have the same underlying Abelian category Comod(A(V, u,Cs)) ®
Comod(A(V,u,Cy)) where V is a two-dimensional vector space. The associativity
constraints that we describe are the nontrivial ones.

Let V,W, Z € Comod(A(V,u,C3)) and g € Cs.

e The tensor product, dual objects and associativity in the category Co(1,id, £1)
are given by

V. 1W, gl = [VeW,gl, [V,u][W,g]=[V&UOgW, ug],
[V7 1]* = [V*vl]v [1vu]* = [k7u]7

Al W,z = [E(id veu,ow ® ep2 @ id z)(id v ® Ew,u,0z), ul-
Here ¢ = (¢€Y0)~! is the morphism defined in Eq. (2.12).

e The tensor product, dual objects and associativity in Co(u, ¢, 1) are given by
VAW 1] =[VeWl], [VuWu]=[VeUlsW @k, 1],
V. Wu] = [Ve W, [VuW1] = [V &UDgW,ul,
V1" = v 1], [ )" = [y, u].
The associativity constraint oy, .}, (w2, 1S equal to

[+ (id veu,ow ® (etp2 ®1d zgu,ox, ) (§uyDzk, ) (d v ® wu,0zek, ), ul-
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e The tensor product, dual objects and associativity in D(1,id, +1) are given by
VAW, gl =[VeW.g], [V.u[W,g]=[V&Wug,
V1" =[V*,1], [1,u]* = [k, u],

Wl Wl (2w = [E(dvewez), ul.
e The tensor product, dual objects and associativity in D(u,¢,+1) are given by

VWA =[VeWw1], [VulWu=[VeW ak,,l],
VW] = [Ve W, [Vu[W1]=[VeWu,
[V7 1]* - [V*’ l]v [Lu]* = [kuvu]a

), Wl [z = [ E(dvew ® e ®@id zgx, ), u].

6.4. Frobenius—Perron dimension of the Cs-crossed extensions

For a review on Frobenius—Perron dimension we refer to [6]. For any object X in a
category C we denote by (X) the class of X in the Grothendieck group of C.

For the categories presented in (6.3), the isomorphism classes of the simple
objects are

<[k171]>7 <[k1»u]>v <[ku»1]>v <[ku7u]>

Using Theorem 3.2, the projective covers of these simple objects are respectively

<[P1»1]>7 <[P1,’LL]>, <[Pu71]>v <[Pu7u]>

Using Corollary 3.3 it follows from a straightforward computation that in any of
the categories listed in (6.3)

FPdim ([ky, h]) =1, FPdim ([P, h]) = 4,
for any g, h € Cy. This implies the next result.

Theorem 6.3. If C is any of the tensor categories listed in (6.3) then FPdim
C =16.

The above theorem implies, using [6, Proposition 1.48.2], that all the tensor
categories listed in (6.3) are representation categories of quasi-Hopf algebras.
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