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This paper deals with the study of free transverse vibrations of rectangular plates with an internal line
hinge and elastically restrained boundaries. The equations of motion and its associated boundary and
transition conditions are rigorously derived using Hamilton’s principle. The governing eigenvalue equa-
tion is solved employing a combination of the Ritz method and the Lagrange multipliers method. The
deflections of the plate and the Lagrange multipliers are approximated by polynomials as coordinate
functions. The developed algorithm allows obtaining approximate solutions for plates with different
aspect ratios, boundary conditions, including edges elastically restrained by both translational and rota-
tional springs, and arbitrary locations of the line hinge. Therefore, a unified algorithm has been imple-
mented. Sets of parametric studies are performed and the results are given in graphical and tabular form.
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1. Introduction the first order shear deformation theory for vibration of rectangu-
The plate is probably one of the most common structural ele-
ment that has been devised by either scientific or technological
interest. It is widely encountered in aerospace, marine, mechanical
and civil engineering structures. The dynamical behavior of plates
is one of the major concerns in designing this type of structures.
Vibration characteristics of plates have been extensively studied
over the last 100 years. It is not the intention to review the litera-
ture consequently, some of the relevant papers will be cited. Plates
with different shapes, boundary conditions and complicating ef-
fects have been considered and the frequency parameters were
documented in monographs [1,2], standard texts [3–5] and review
papers [6,7].

Several complicating effects have been considered such as: elas-
tically restrained boundaries, presence of elastically or rigidly con-
nected masses, variable thickness, anisotropic material, and
presence of holes. In Refs. [8–11] general studies on vibration of
plates with point supports have been presented and vibration of
plates with line supports have been developed in Refs. [12–14]. A
review of the literature has shown that there is only a limited
amount of information for the vibration of plates with line hinges.
A line hinge in a plate can be used to facilitate folding of gates or
the opening of doors among other applications. The hinge can also
be used to simulate a through crack along the interior of the plate.
Xiang and Reddy [15] provided the first-known solutions based on
All rights reserved.
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lar plates with an internal line hinge. The Lévy method and the
state-space technique were employed to solve the vibration prob-
lem. However, the method can only be applied to a rectangular
plate with at least two parallel edges simply supported. More re-
cently, Huang et al. [16] developed a discrete method for analyzing
the free vibration problem of thin and moderately thick rectangu-
lar plates with a line hinge and various classical boundary condi-
tions. Lin et al. [17] derived and used an analytical solution for
studying the effect of off-neutral axis loading (point force excita-
tion applied off the neutral axis of a rib) on ribbed-plate responses.
It must be noted that the analytical approach could be employed to
predict the free vibration of plates with hinges.

Often, the restraints along the boundaries of a real system can-
not be actually represented by classical edge conditions such as
simply supported, clamped and free. Therefore, it is of great impor-
tance to study the vibration characteristics of elastically restrained
plates. However, the general problem of free vibration of plates
with internal line hinges and with edges elastically restrained
against rotation and translation has not been treated so, the aim
of this paper, is to provide an approximate analytical solution to
this problem based on the classical Kirchhoff plate theory.

Stimulated by the development of the study of the mentioned
plate problems, interest in variational methods has grown in recent
decades. The Ritz method has gained considerable popularity,
being used by engineers and scientists as a very effective tool.
When applying this method it is necessary to select a sequence
of functions, called coordinate functions. The solution of the varia-
tional problem is then approximated by a linear combination of
these functions. In fact, the most critical feature of the Ritz method
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is regarding the choice of the coordinate functions. When the Ritz
method is applied to a structure obtained by joining several com-
ponents together, the transition conditions require the continuity
of displacement between all the junctions of the structural compo-
nents. These transition conditions give rise to several problems in
the rational choice of the coordinate functions. Fortunately it is not
necessary to subject the coordinate functions to the natural bound-
ary conditions [18,19]. This is particularly true in the case of a plate
with an internal line hinge. For this reason in this paper only the
essential transition condition along the line hinge,is taken into ac-
count with the Lagrange multipliers [20–22]. The developed meth-
odology is based on the Ritz method where the transverse
deflections and the Lagrange multiplier are approached by sets of
simple polynomials expressions.

To demonstrate the validity and efficiency of the proposed algo-
rithm, results of a convergence study are included, several numer-
ical examples not previously treated are presented and some
particular cases are compared with results presented by other
authors. Sets of parametric studies are performed and the results
are given in graphical and tabular form. Also, in the present paper,
a complete rigorous application of the Hamilton’s principle is
developed for the derivation of equations of motion and its associ-
ated boundary and transition conditions.

2. The determination of the boundary value problem

Let us consider an isotropic rectangular thin plate of variable
thickness h, length a and width b. An internal line hinge that is par-
allel to the y-axis is located at x = c, as shown in Fig. 1. The whole
domain of the plate A is considered to have two sub domains A(1)

and A(2) which correspond respectively to the left and the right part
of the plate and are separated by the line C(c). We assume that dif-
ferent rigidities D(i) and mass density qh(i) of the isotropic material,
correspond to the sub domains A(1) and A(2).The rotational restraints
are characterized by the functions cðiÞr ðsÞ and the translational re-
straints by the functions cðiÞt ðsÞ;where s denotes the arc length mea-
sured from the point P(i) of the boundary @A(i) (see Fig. 1).

As usual, in order to analyze the transverse displacements of the
system under study we suppose that the vertical position of the
plate at any time t, is described by the function w = w(x,y, t), where
ðx; yÞ 2 A and A ¼ A [ @A. At time t, the kinetic energy of the plate is
given by
Fig. 1. General description of the mechanical system under study.
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Hence w(i) is the restriction of the function w to AðiÞ:
At time t, the total potential energy due to the elastic deforma-
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EDðwÞ ¼
1
2

X2

i¼1

Z Z
AðiÞ

DðiÞ
@2w
@x2 þ

@2w
@y2

 !2
0
@

2
4

8<
:

�2ð1� lÞ @2w
@x2

@2w
@y2 �

@2w
@x2@y2

 !2
0
@

1
A
1
A� 2qðiÞw

3
5dxdy

þ
Z

CðiÞ
cðiÞr ðx; yÞw2ðx; y; tÞdsþ

Z
CðiÞ

cðiÞt ðx; yÞ
@w
@n
ðx; y; tÞ

� �2

ds

)
;

ð3Þ

where w is given by Eq. (2), i.e. w = w(i), "(x,y) 2 A(i) and the func-
tions q(i) are defined in the same form as the functions w(i) in Eq.
(2). Based on Eq. (2) w(i) is replaced by w in Eqs. (1) and (3). Hence,
@w/@n denotes the directional derivate of w(i) with respect to the
outward normal unit vector to the curve C(i) = oA(i) � C(c), i = 1, 2.

Hamilton’s principle requires that between times t0 and t1, at
which the positions of the mechanical system are known, it should
execute a motion which makes stationary the functional
FðwÞ ¼

R t1
t0
ðEK � EDÞdt; on the space of admissible functions. This
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where (see Fig. 1)
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The expression of UT is obtained from Eq. (5) by replacing cðiÞ;jr by
cðiÞ;jt and the derivatives by the corresponding functions.

The definition of the variation of F at w in the direction v, is gi-
ven as a generalization of the definition of the directional deriva-
tive of a real valued function defined on a subset of Rn [23].
Consequently, the definition of the first variation of F at w in the
direction v, is given by
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dFðw; vÞ ¼ dF
de
ðwþ evÞ

����
e¼0
: ð6Þ

The condition of stationary functional requires that

dFðw; vÞ ¼ 0;8v 2 Dv ; ð7Þ

where dF(w;v) is the first variation of F at w in the direction v and Dv
is the space of admissible directions at w for the domain Dw of this
functional.

In order to make the mathematical developments required by
the application of the techniques of the calculus of variations, we
assume that:

hðiÞ 2 CAðiÞÞ; qðiÞð�; �; tÞ 2 CðAðiÞÞ;DðiÞ 2 C2ðAðiÞÞ;wðx; y; �Þ
2 C2½t0; t1�;wð�; �; tÞ 2 CðAÞ; andwð�; �; tÞjAðiÞ 2 C4ðAðiÞÞ;
AðiÞ ¼ AðiÞ [ @AðiÞ; i ¼ 1;2:

It must be noted that as a consequence of the presence of the
line hinge the derivative @w/@x is not continuous and the classical
derivatives @2w/@x2, @2w/@x@y, . . . do not necessarily exist in the
domain A, so it is necessary to impose the conditions
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In view of all these observations and since Hamilton’s principle
requires that at times t0 and t1 the positions are known, the space
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The only admissible directions v at w 2 Dw are those for which
w + ev 2 Dw for all sufficiently small e and dF(w;v) exists. In conse-
quence, and in view of Eq. (8), v is an admissible direction at w for
Dw if, and only if, v 2 Dv where
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Performing the derivative (6) with F given by Eq. (4), we have
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where:
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The expression of VUT is obtained from Eq. (11) by replacing cðiÞ;jr

by cðiÞ;jt and the derivatives by the corresponding functions.
Let us consider the first term of Eq. (10). Since w(x,y, �),
v(x,y, �) 2 C2[t0, t1] we can integrate by parts with respect to t and
if we apply the conditions vðx; y; t0Þ ¼ vðx; y; t1Þ ¼ 0;8ðx; yÞ 2 A; im-
posed in Eq. (9), we obtainZ t1
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To transform the terms of Eq. (10) which are multiplied by the
coefficient D(i), we employ the well known Green’s formula:Z
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where x = (x1,x2) andnj denotes the jth component of the outward
unit normal to the boundary @G. We have, upon applying twice
Eq. (13) and using Eq. (12) that:
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According to the condition of stationary functional given by Eq.
(7), the Eq. (14) must vanish for the function w corresponding to
the actual motion of the plate for all admissible directions v, and
in particular for all admissible v(i)(the restriction of v to A(i)), satis-
fying on the whole contours @A(i) the conditions:
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In this case, the curvilinear integrals and the one-dimensional
definite integrals in Eq. (14) vanish, and only the double integrals
remain:
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Since v is an arbitrary smooth function satisfying the Eq. (18),
we have from the fundamental lemma of the calculus of variations,
that the restrictions w(i)of the function w to A(i) must respectively
satisfy the following differential equations
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The fourth order partial differential equations given by Eq.
(20) describe the dynamical behavior of the vibrating plate. If
we set q � 0, so that there is no external forces acting on the
plate, the Eq. (20) reduce to the equations of free vibrations of
the anisotropic plate. If we set @2w/@t2 � 0, and it is assumed
that all variables are independent of time, the Eq. (20) reduce
to the equations which describe the statical behavior of
the mentioned plate when a load of density q = q(x,y) is
applied on A: Next, we remove the Eq. (18) and since the func-
tions w(i), i = 1, 2, must satisfy the Eq. (20), the Eq. (14) reduces
to
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Since we can independently choose v and its derivatives and the
interval [t0, t1] is arbitrary, the condition of stationary functional gi-
ven by Eq. (6) applied to Eq. (21), leads in the manner for achieving
Eq. (20), to the following boundary conditions:
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Operating in a similar fashion we get the remaining
boundary conditions and also those which correspond to the
domain A(2).
3. The transition conditions

Since the domain of definition of the problem is the open set
A � R2, all the points of the line C(c) are interior points of A and
the equations formulated on it are not boundary conditions hence,
they can be called transition conditions.

When C(c) is considered as part of A(1) the components of the
outward unit normal are given by n1 = 1,n2 = 0. Hence from Eq.
(21) it is immediate that the corresponding curvilinear integral is
given by
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Eq. (24) and the corresponding curvilinear integral when C(c) is
considered as a part of @A(2), lead to the following transition
conditions:
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Finally we can incorporate the obvious transition condition

wð1Þðc; y; tÞ �wð2Þðc; y; tÞ ¼ 0;8y 2 ½0; b�: ð28Þ

It is well known that for a differential equation of order 4, the
boundary conditions containing the function w and derivatives of
w of orders not greater than 1, are called stable or geometric, and
those containing derivatives of orders higher than 1, are called
unstable or natural, [19]. In consequence, if
0 6 cðiÞ;jr <1;0 6 cðiÞ;jt <1; the boundary conditions given by Eqs.
(22) and (23)and those which correspond to the remaining sides
of the plate are all unstable. If this classification is extended to
the transition conditions, we conclude that the conditions given
by Eqs. (25)–(27) are unstable and Eq. (28) is stable.

The above classification is particularly important when using
the Ritz method since we must choose a sequence of functions vi

which constitutes a base in the space of homogeneous essential
or geometric boundary conditions. So, in this case, there is no need
to subject the functions vi to the natural boundary and transition
conditions.
4. The Ritz and Lagrange multipliers methods

The Eq. (28) ensures the continuity of the transverse deflection
along the internal line hinge. Since it is difficult to construct a sim-
ple and adequate deflection function which can be applied to the
entire plate,and to show the continuity of displacement and the
discontinuities of the slope crossing the line hinge,we suggest
using the minimization of the energy functional involving subsidi-
ary conditions. The idea is to minimize the mentioned functional
over the deflection functions which satisfy the geometrical bound-
ary conditions on the boundary of A and only the continuity
requirement on the interface given Eq. (28). One way of dealing
with the problem is to force the continuity along the line hinge
by means of a suitable Lagrange multiplier [20,22]. This adds a con-
tribution to the energy functional given by:

G ¼ Gðk;wÞ ¼
Z

CðcÞ
kðwð1Þ �wð2ÞÞds

¼
Z b

0
kðyÞðwð1Þ �wð2ÞÞðc; yÞdy; ð29Þ

where k is the Lagrange multiplier.
For free plate vibrations, the displacements of the plate are gi-

ven by harmonic functions of the time, i.e.
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wðkÞðx; y; tÞ ¼W ðkÞðx; yÞ cos xt; k ¼ 1;2; ð30Þ

where x is the radian frequency of the plate. Substituting Eq. (30)
into Eqs. (1) and (3), the maximum kinetic energy EKmax and the
maximum strain energy EDmax are obtained. The total energy func-
tional can be written as

Fmax ¼ EK max � ED max:

Then the Lagrange multipliers method requires the stationarity
of the functional

IG ¼ Fmax þ G: ð31Þ

The approximating functions are chosen assuming that we have
two independent subdomains and that these functions verify the
corresponding essential boundary conditions. In the application
of the Ritz method it is sufficient for the chosen coordinate func-
tions to satisfy the essential or geometric conditions since, as the
number of coordinate functions approaches infinity, the natural
boundary conditions will be exactly satisfied [18,19]. In the present
paper the transverse deflections for A(1) and A(2) are represented by

means of the sets of polynomials pðkÞi ðxÞ
n o

and qðkÞj ðyÞ
n o

; k ¼ 1;2;

as

W ðkÞðx; yÞ ¼
Xmk

i¼1

Xnk

j¼1

aðkÞij pðkÞi ðxÞq
ðkÞ
j ðyÞ; k ¼ 1;2; x ¼ x=a; y ¼ y=b;

ð32Þ

where the superscript k denotes the kth subdomain. The coefficients
aðkÞij are unknown. The first members pðkÞ1 ðxÞ and qðkÞ1 ðyÞ of the sets of
polynomials are obtained as the simplest polynomial that satisfies
all the geometric boundary conditions of the kth subdomain and
are described in Table 1. The polynomials of higher order are ob-
tained as:

pðkÞi ðxÞ ¼ pðkÞ1 ðxÞxi�1; i ¼ 2; . . . ;mk: ð33Þ

The polynomials set qðkÞj ðyÞ
n o

is generated by using the same
procedure, i.e.

qðkÞj ðyÞ ¼ qðkÞ1 ðyÞyj�1; j ¼ 2; . . . ; nk: ð34Þ

In this case the Lagrange multiplier is a function which can be
represented by a set of polynomials, as:

k ¼ kðyÞ ¼
Xm3

i¼1

aðkÞi uiðyÞ; ð35Þ

where aðkÞi are unknown coefficients and ui (y) = yi�1. The application
of the Ritz method requires the minimization of the energy func-
tional given by Eq. (31) with respect to each of the unknown coef-
ficients að1Þij ; a

ð2Þ
ij and aðkÞi by means of the following necessary

conditions:
Table 1
Polynomials bases in the coordinates x and y.

Edge supports Base polynomials

x = 0 y = 0 x = 1y = 1 pð1Þ1 qð1Þ1 ¼ qð2Þ1 pð2Þ1

F F 1 1 1
S F x y 1
F C 1 (y � 1)2 (x � 1)2

S C x (y � 1)2 (x � 1)2

S S x (y � 1) x � 1
C C x2 y2(y � 1)2 (x � 1)2

C S x2 y2(y � 1)2 x � 1
C F x2 y2 1
F S 1 (y � 1) x � 1
@IG

@að1Þij

¼ 0;
@IG

@að2Þij

¼ 0;
@IG

@aðkÞi

¼ 0; ð36a;b; cÞ

The application of Eq. (36a,b,c) leads to the following governing
eigenvalue equation:

ð½K� �X2½M�Þfag ¼ f0g; ð37Þ

where X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
is the non-dimensional frequency parame-

ter. The expressions for the elements of the stiffness matrix [K],
the mass matrix [M] and the vector {a} are given in the Appendix.
For sake of simplicity we adopted D(1) = D(2) = D and h(1) = h(2) = h.

The Eq. (37) yields a determinant, whose zeros give the natural
frequencies of the mechanical system under study. Back substitu-
tion yields the coefficient vectors; and finally substitution of these
coefficient vectors into Eq. (32) gives the mode shapes of the plate.
5. Verifications and numerical applications

5.1. Convergence and comparison of eigenvalues and modal shapes

The terminology to be used throughout the remainder of the pa-
per for describing the boundary conditions of the plate considered
will now be introduced. The designation CSFS, for example, identi-
fies a plate with the edges 1 clamped, 2 simply supported, 3 free
and 4 simply supported (see Fig. 2).

In order to establish the accuracy and applicability of the ap-
proach developed and discussed in the previous sections, numeri-
cal results were computed for a number of plate problems for
which comparison values were available in the literature and also
convergence studies have been implemented. Additionally, new
numerical results were generated for rectangular plates with an
internal line hinge and different boundary conditions. All calcula-
tions have been performed taking Poisson’s ratiol = 0.3.

Results of a convergence study of the values of the frequency
parameter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

are presented in Table 2. The first ten
values of X are presented for a square SSSS plate with an internal
line hinge located at two different positions, namely, �c ¼ 0:3 and
�c ¼ 0:5 where �c ¼ c=a (see Appendix). The convergence of the men-
tioned frequency parameters is studied by gradually increasing the
number of polynomial in the approximate functions W(1), W(2) and
k which are respectively given by m1, n1, m2, n2 and m3. In this and
all the following studies equal numbers of terms have been used,
more specifically we adopted m1 = n1 = m2 = n2 = m3 = N.

It can be observed that the frequency parameters converge
monotonically from above as the number of terms increases.

Table 3 gives the first ten values of the frequency parameter
X=p2 ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

=p2 derived by the present method for square
plates, together with the values obtained by Xiang and Reddy
[15]. The plates considered are simply supported on the two edges
parallel to the x � axis with an internal line hinge parallel to the
Fig. 2. A rectangular plate with an internal line hinge in a variable position.



Table 2
Convergence study of the first ten values of the frequency parameter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

for a SSSS square plate with an internal line hinge located at two different positions,
�c ¼ 0:3; 0:5 � ðn1 ¼ m1 ¼ n2 ¼ m2 ¼ m3 ¼ NÞ:

�c N Mode sequence

1 2 3 4 5 6 7 8 9 10

0.3 4 16.79617 39.22581 47.60053 72.45622 113.82865 138.13555 141.19845 160.36664 164.73012 199.48865
5 16.78925 39.11835 47.57079 72.18488 96.74692 98.23627 124.31277 127.03886 155.94957 177.79215
6 16.78916 39.08628 47.42165 72.01087 96.69062 98.21949 124.20683 126.88881 151.22266 177.79215
7 16.78915 39.08628 47.42137 72.01029 96.29488 96.80420 122.95390 126.54394 150.69342 172.12537
8 16.78915 39.08628 47.42073 72.00980 96.29465 96.80387 122.95317 126.54354 150.55578 165.83926
9 16.78915 39.08628 47.42073 72.00980 96.29286 96.78357 122.93578 126.54224 150.55036 165.83893

0.5 4 16.13895 46.90956 49.35846 76.05570 79.06835 112.54409 137.52645 164.31104 199.26249 209.12610
5 16.13480 46.88772 49.35764 75.41597 79.06835 97.49083 111.31939 129.53776 166.11499 168.42340
6 16.13478 46.73884 49.34803 75.28363 78.95725 97.47912 111.02575 129.53336 165.80684 168.42340
7 16.13478 46.73884 49.34803 75.28363 78.95725 97.47912 111.02575 129.53336 165.80684 168.42340
8 16.13478 46.73815 49.34802 75.28338 78.95684 96.06096 111.02539 128.32166 164.71055 164.99171
9 16.13478 46.73815 49.34802 75.28338 78.95684 96.04060 111.02538 128.30494 164.69598 164.99163

Table 3
Comparison study of the first ten values of the frequency parameter X=p2 ¼ xb2

=p2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
for square plates with an internal line hinge.

Cases �c Mode sequence

1 2 3 4 5 6 7 8 9 10

SFSS 0.3 Present 1.16669 2.19586 4.14908 5.35664 5.56334 8.95145 9.11707 10.66363 11.71242 14.29167
Ref.[15] 1.16556 2.18666 4.14343 5.33910 5.54343 8.91145 9.09445 10.62050 11.67830 14.22020

0.7 Present 1.14571 2.70372 4.09430 4.49394 5.98007 8.53530 9.02618 10.28266 11.03751 13.71081
Ref. [15] 1.14473 2.69347 4.08803 4.46971 5.96659 8.48238 9.00120 10.25520 11.00540 13.64930

CFSS 0.3 Present 1.28208 2.98105 4.21580 5.84019 6.00232 9.15994 9.39765 10.96627 12.56653 14.70935
Ref. [15] 1.28051 2.97197 4.20994 5.81851 5.97981 9.13703 9.34764 10.91920 12.52190 14.62370

0.7 Present 1.24524 3.01334 4.13938 5.33896 6.34725 9.05360 9.12080 11.33219 12.25461 14.57707
Ref. [15] 1.24394 2.99688 4.13260 5.31502 6.32836 9.02801 9.06092 11.29520 12.21400 14.48030

CSSS 0.3 Present 2.31513 4.60958 5.10475 7.79002 9.99943 10.31290 12.84882 13.44573 16.94566 18.50737
Ref. [15] 2.31282 4.59602 5.09580 7.75921 9.97150 10.28750 12.79160 13.39820 16.86070 18.42430

0.7 Present 1.91678 4.91307 4.96438 7.98690 9.92320 11.44474 12.98684 14.23616 16.12256 16.88868
Ref. [15] 1.91116 4.90107 4.95277 7.95945 9.89318 11.41580 12.93330 14.19240 16.05770 16.80180

Fig. 3. The first six modal shapes for a SSSS square plate with an internal line hinge located at �c ¼ 0:3:

Fig. 4. Relative error eðWÞ ¼ ðW ð1Þ �W ð2ÞÞjx¼�c=Wref as a function of the variable y/b,
for the displacements W(1) and W(2) in the internal line hinge.
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y-axis. Since the values derived by Xiang and Reddy [15] were
based on the first order shear deformation plate theory, for com-
parison purpose, in the present work, the ratio h/a = 0.01 was
adopted. It can be observed that the present solutions are in good
agreement,from an engineering viewpoint, with the exact solu-
tions of Ref. [15].

A comparison of nodal patterns and modal shapes is also in-
cluded. Fig. 3 presents the modal shapes of the first six modes
for a SSSS square plate with an internal line hinge located at
�c ¼ 0:3: These shapes are identical to those obtained by Huang
et al. [16].

Another validation of the proposed methodology has been
implemented by determining in the case of the fundamental fre-
quency, of a SSFF plate with an internal line hinge located at
�c ¼ 0:5, the relative error

eðWÞ ¼ ðW ð1Þ �W ð2ÞÞjx¼�c=Wref ;

as a function of the variable y/b, where the W(i) are given by Eq. (32)
and Wref is the value of the maximum deflection of the plate given



Fig. 5. Variation of the bending moments on the adjacent edges to the line hinge.
(a) Mð1Þ

1 ð�c; yÞ, (b) Mð2Þ
1 ð�c; yÞ.

Fig. 7. The first three values of the frequency parameter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
and

contour lines of a FFFF square plate with an internal line hinge located at different
positions.

362 M.V. Quintana, R.O. Grossi / Applied Acoustics 73 (2012) 356–365
by Wmax ¼Wð1Þð�c;0Þ ¼ 0:2145ð10�4Þ. The results plotted in Fig. 4
represent the relative error e(W) for the displacements W(1) and
W(2) in the line hinge. It can be observed the continuity of the
deflection along the internal line hinge, which demonstrates that
the geometric constraint 28 is satisfied.
c

(a)  

Fig. 6. First value of the frequency parameter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
versus the location param

plates; M, SCCF plates; }, CSCS plates and (b) symmetric boundary conditions: h, CCFF
Finally, to validate the solutions obtained for a hinged massless
joint which provides zero bending moment on the adjacent edges
to the line hinge, the variation of Mð1Þ

1 ð�c; yÞ and Mð2Þ
1 ð�c; yÞ are shown

in Fig. 5a and b. The parameters MðkÞ
1 are given by MðkÞ

1 ¼ MðkÞ
1 a2=D

with MðkÞ
1 given by Eq. (15a). All these figures clearly illustrate that

the bending moments on the line C(c) practically take the value
zero and that the deflection functions satisfy the transition condi-
tion (28).
5.2. New numerical results

The advantage of the approach developed here can be exploited
together useful and rapid information about the effects of the
c
(b) 

eter of the internal line hinge �c for: (a) asymmetric boundary conditions: h, CFCF
plates; M, CCSF plates; }, SSFF plates.



Fig. 8. The first three values of the frequency parameter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
and modal

shapes of a CCCC square plate with an internal line hinge located at different
positions.

Fig. 9. The first three values of the frequency parameter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
and

contour lines of a CCFF square plate with an internal line hinge located at different
positions.

Table 4
The first five values of the frequency parameter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

and nodal patterns
for a square plate with four edges elastically restrained against rotation

R ¼ Rð1Þi ¼ Rð2Þi ; i ¼ 1;2;3
� �

and translation T ¼ Tð1Þi ¼ Tð2Þi ; i ¼ 1;2;3
� �

. The line hinge
is located at �c ¼ 0:5.

R T X1 X2 X3 X4 X5

1 1 1.9955 9.9287 10.1687 19.9407 22.4840
10 6.1824 12.2568 12.5216 21.6615 23.4725
100 16.3072 24.6268 25.2947 32.3352 33.8958
1000 27.0384 52.5708 54.6714 67.8418 72.6893

1000 1 1.9954 9.9111 10.1492 19.9083 22.4264
10 6.1809 12.2454 12.5087 21.6353 23.4203
100 16.2802 24.6226 25.291 32.3188 3.8934
1000 26.9517 52.4640 54.5642 67.7696 72.5875

100 1 1.950 9.7568 9.979 1.6317 21.271
10 6.1674 12.1463 12.3969 21.4116 22.9694
100 16.0470 24.5869 25.2642 32.1792 33.8729
1000 26.2264 51.5837 53.6812 67.1799 71.7601

10 1 1.9908 8.595 8.689 17.869 18.211
10 6.0442 11.4025 11.5741 19.7391 19.9776
100 14.3883 24.3552 25.0847 31.2795 33.7518
1000 21.9852 46.9218 49.0536 64.2123 67.7309
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geometry and boundary conditions on the natural frequencies of
the plate with a line hinge when two parallel edges are not simply
supported. As an example, the Fig. 6 shows the variations of the
first value of the frequency parameter X with respect to the hinge
location for three square plates with asymmetric boundary condi-
tions at the edges parallel to the line hinge (see Fig. 6a) and three
square plates with symmetric boundary conditions (see Fig. 6b).
These figures clearly illustrate how the location of the internal line
hinge affects the frequency parameters of the plates.

Figs. 7–9 present the first three values of the frequency param-
eter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

and the associated contour lines or three-
dimensional mode shape for FFFF, CCCC and CCFF square plates
with an internal line hinge located at three different points. It
can be observed that the line hinge presence introduces significant
deformations and discontinuity of the slope along this line.

Table 4 depicts the first five values of the frequency parameter

X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
for a square plate with four edges elastically re-

strained against rotation Rð1Þi ¼ Rð2Þi ¼ R; i ¼ 1;2;3
� �

and transla-

tion T ð1Þi ¼ Tð2Þi ¼ T; i ¼ 1;2;3
� �

. The internal line hinge is located

at �c ¼ 0:5. This table shows the effect of both restraints parameters
applied simultaneously. It can be observed that the rotational re-
strain parameter R has little effect on the frequency coefficient X
but there is a large increase of its values when the translational re-
straint T is increased.

Table 5 depicts the first ten values of the frequency parameter
X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

for CFFF, CSFF, FFFF and CCCC rectangular plates.
The plate aspect ratio b/a is taken equal to 1/2 and 1/3 and the
internal line hinge is located at different positions. It is clear from
the results presented in the mentioned table that the frequency
parameters are affected by the line hinge location. It can be seen
that the effect over the frequencies is highly sensitive to the
boundary conditions of the plates.
6. Conclusions

This paper presents the formulation of an analytical model for
the dynamic behavior of rectangular isotropic plates, with an arbi-
trarily located internal line hinge and boundaries elastically re-
strained against rotation and translation. The equations of
motion and its associated boundary and transition conditions were
rigorously derived using Hamilton’s principle. An approach to the
solution of the natural vibration problems, of the mentioned plates
by a direct variational method, has been presented. A simple, com-
putationally efficient and accurate algorithm has been developed
for the determination of frequencies and modal shapes of natural
vibrations. The approach is based on a combination of the Ritz
method and the Lagrange multipliers method. Sets of parametric
studies have been performed to show the influence of the line
hinge and its location on the vibration behavior. Finally, it is impor-
tant to point out that the method presented can be easily modified
to be applied to static deflection problems and buckling analysis.
On the other hand, the method can be easily generalized for ana-
lyzing anisotropic plates.
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Table 5
The first ten values of the frequency parameter X ¼ xb2 ffiffiffiffiffiffiffiffiffiffiffiffi

qh=D
p

for rectangular plates with different boundary conditions and with an internal line hinge located at different positions.

Cases b/a �c Mode Sequence

1 2 3 8 9 10

CFFF 1/2 1/3 3.70039 4.23226 10.977 31.29841 38.14117 42.46425
1/2 2.43433 3.68618 11.360 30.95284 33.17192 44.31261
2/3 1.58471 3.67354 10.396 31.55609 37.10921 42.90530

1/3 1/3 2.34785 4.88296 7.198 22.50846 26.33017 27.62041
1/2 1.07581 2.34520 6.669 21.48576 22.89995 25.25240
2/3 0.70019 2.34304 4.602 20.15549 22.95472 26.51224

CSFF 1/2 1/3 3.51554 7.68729 8.215 36.99155 40.60754 48.24853
1/2 2.23689 7.49831 11.376 38.10617 42.29858 50.26304
2/3 1.50140 7.51825 10.051 34.21046 37.75569 43.97461

1/3 1/3 1.55403 3.63483 4.779 23.54265 25.20263 25.25155
1/2 0.98842 4.74981 5.025 23.50794 25.77783 26.00811
2/3 0.66334 4.44817 4.759 23.99252 24.07921 27.54311

FFFF 1/2 1/3 6.60424 10.34880 14.143 35.84744 39.42025 42.94824
1/2 6.64373 13.46824 14.901 34.80135 34.80135 48.45422

1/3 1/3 4.36459 4.60037 9.145 22.13062 24.26271 28.57216
1/2 4.37560 6.61661 8.931 22.18323 24.35011 25.65404

CCCC 1/2 1/3 24.13002 30.04194 44.542 83.21104 97.628841 15.85963
1/2 23.92702 31.82602 40.002 80.58045 100.792821 16.41630

1/3 1/3 23.00374 25.36346 30.697 65.08278 70.42977 71.21769
1/2 22.93536 25.85940 29.389 65.50936 68.90407 69.56422
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4 5 6 7

44 11.37595 21.33792 23.25375 28.61012
09 15.03883 20.43894 22.85671 24.53022
74 11.95138 20.34555 22.69341 28.98979
68 12.84421 12.89246 18.52094 20.70305
45 7.23479 9.53061 13.18810 19.26823
78 7.36998 12.61387 12.86907 18.11722

67 16.48237 23.84415 26.59440 31.71965
17 18.02897 19.13922 26.52227 28.43581
15 17.09667 24.69953 26.37498 32.24363
71 10.02977 10.58499 17.30863 17.76210
79 8.52647 10.42137 16.30680 18.64217
85 10.16473 10.99140 14.99632 17.43077

52 21.81490 22.58888 25.46545 28.99325
54 19.59627 24.27068 25.37579 26.00085
25 12.76021 14.21635 18.09963 22.02086
39 9.51710 15.07240 20.59894 21.31491

95 58.10117 63.41626 69.97441 78.85972
47 63.23209 63.33094 71.07644 76.71410
78 36.44913 45.04034 60.16477 62.29117
19 38.09392 44.33273 60.32777 62.19775
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