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a b s t r a c t

Feature selection is a key issue in pattern recognition, specially when prior knowledge of the most dis-
criminant features is not available. Moreover, in order to perform the classification task with reduced
complexity and acceptable performance, usually features that are irrelevant, redundant, or noisy are
excluded from the problem representation. This work presents a multi-objective wrapper, based on
genetic algorithms, to select the most relevant set of features for face recognition tasks. The proposed
strategy explores the space of multiple feasible selections in order to minimize the cardinality of the fea-
ture subset, and at the same time to maximize its discriminative capacity. Experimental results show
that, in comparison with other state-of-the-art approaches, the proposed approach allows to improve
the classification performance, while reducing the representation dimensionality.

� 2013 Published by Elsevier Ltd.
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1. Introduction

Face recognition has received significant attention due to its
promising applications in security systems and human–computer
interaction, which has motivated important new developments
in research areas such as image processing and artificial intelli-
gence. In general, the methodologies are developed for face images
acquired under controlled conditions, but in practical situations,
face recognition systems usually must also deal with changing con-
ditions like variations in pose, expression and illumination, which
introduce intra-class variability in the extracted features with re-
spect to the training data (Li and Jain, 2011; Milborrow and Nicolls,
2008; Wen, 2012). In a face recognition problem, a given face im-
age is classified into K previously known face classes. This is usu-
ally done using a model trained with the feature vectors
extracted from a database of face images (Cevikalp and Triggs,
2010; Oh et al., 2013).

Two main approaches exist in face recognition, those which are
based on holistic methods and the others based on analytic tech-
niques (Kong et al., 2005). Holistic methods, such as eigenfaces
(Turk and Pentland, 1991), use global characteristics of the face
images. On the other hand, analytic techniques, like the Active
Shape Models (ASM) (Cootes et al., 1995; Wang et al., 2013), ex-
tract face features related to the eyes, the nose, the mouth, etc.
82

83

84

85
In facial modeling with ASM, a number of points (i.e. image
locations) are selected from an input image, but only some of these
points are useful for characterizing the face, since the others have
small contributions to discrimination, or are noisy. As the training
of ASM converges towards salient edges, if these edges are dis-
torted by noise or some other artifact, like local illumination vari-
ation, erroneous feature matchings might arise (Behaine and
Scharcanski, 2012). Despite recent improvements made to ASM
techniques, the matching errors may be undesirably high at some
face locations (Hill et al., 1996; Kim et al., 2007). Even after some
new implementations that improve the landmark location accu-
racy, the detection of facial features with varying pose and illumi-
nation is still challenging (Milborrow and Nicolls, 2008; Zheng
et al., 2008). Usually, once a set of face image locations (i.e. points)
is selected by the ASM method, a number of features describing
each face location is extracted. Then, the resulting feature vectors
representing the faces are usually of high dimensionality, which
makes the classification task more difficult (Bishop, 2007). Also,
large feature sets are prone to overfitting and, hence, to achieve
poor generalization performance (Handl and Knowles, 2006).

In Behaine and Scharcanski (2012), the authors proposed to im-
prove the ASM performance in face recognition by weighting the
facial features according to a method based on adjusted mutual
information. As the authors shown, this criterion allowed the selec-
tion of the most relevant landmark points, in order to improve the
face classification results. However, the flexibility provided by the
full set of features obtained by the ASM approach has not yet been
fully explored by means of feature selection techniques, in order to
ystems
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reduce the dimensionality of the representation while improving
the face classification results. On the other hand, significant pro-
gresses have been made with the application of different artificial
intelligence techniques for feature selection. In particular, many
works rely on evolutionary algorithms for feature subset optimiza-
tion (Chatterjee and Bhattacherjee, 2011; Hsu et al., 2011; Li et al.,
2010; Pedrycz and Ahmad, 2012), and for the search of optimal
representations (Charbuillet et al., 2009; Vignolo et al., 2011a,b;
Vignolo et al., 2013). In Vignolo et al. (2012) a genetic wrapper
was proposed for the selection of the most relevant features for
improving the accuracy of face recognition. Nevertheless, this
wrapper was focused on classification accuracy improvement,
which limits the proposed method since it overlooks other impor-
tant issues in face classification (e.g. feature space dimensionality
and class overlap).

In order to guide the search within the space of feasible face
classification solutions, here we propose the use of a Multi-
Objective Genetic Algorithm (Coello Coello et al., 2007). This
method allows to overcome the above mentioned limitations by
maximizing the face classification accuracy, while minimizing
the number of features and the mutual information. Two different
strategies for the representation of the candidate solutions are pro-
posed and compared, and the generalization performance of the
feature subset selection is assessed using an independent data set.

The organization of this paper is as follows. First a brief intro-
duction to the use of ASM for face modeling is given in Section 2,
and next our multi-objective wrapper for the selection of features
for face classification is presented in Section 3. Section 4 describes
our experiments and discuss the results obtained for face classifi-
cation. Finally, our conclusions and ideas for future work are pre-
sented in Section 5.
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2. Active shape models for facial recognition applications

The ASM approach is used to represent shapes and their ex-
pected ways of deforming as learned from a training set. For this,
it uses flexible point distribution models (PDM), based on the posi-
tioning of selected points in the face image examples (Hill et al.,
1996). This PDM iteratively deforms to fit the shape of an object,
constrained to vary in the way learned from a set of training exam-
ples. When applied to face recognition, the ASM is trained on a set
of sample faces, and N points are used to represent the shape of
each face within its class (see Fig. 1(a)).

Nevertheless, matching errors may arise in the location of the
PDM points, often called landmarks, in a face image (see Fig. 1(b))
(Behaine and Scharcanski, 2012). Then, considering a training
image set with K face classes, each class k = 1, . . . ,K is represented
by N landmark points Sk;� ¼ fpiðxi þ �xi

; yi þ �yi
Þkg, where i = 1, . . . ,

N, (xi,yi) are the coordinates of the landmark point pi and ð�xi
; �yi
Þ

are the respective location errors. Every relevant facial characteris-
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(a) (b)
Fig. 1. Illustration of the landmark points used to model a face (a) and their location
on an image (b) (Behaine & Scharcanski, 2012).
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tic (e.g. eye centers, mouth contours, etc.) is represented by a set of
landmarks pi, and the particularities of each point in the image are
described by Q features (e.g. chrominance, texture, etc.). The fea-
tures at landmark pi will be denoted {Fj,i}, with j = 1, . . . ,Q.

In order to describe each one of the N landmark points pi, the
mean lFj;i

and the variance r2
Fj;i

of the measurements of each fea-
ture j taken within a defined neighborhood of that point are com-
monly used (Behaine and Scharcanski, 2012). These are computed
for all features Fm

j;i , with m = 1, . . . ,M, where M is the number of
training image samples,

lFj;i
¼ 1

w2

Xw

r¼1

Xw

q¼1

lj;iðr; qÞ; ð1Þ

r2
Fj;i
¼ max

r;q2W
r2

j;iðr; qÞ
n o

; ð2Þ

where (r,q) are the pixel coordinates within the window W (of size
w �w), centered at the landmark point pi (Behaine and Scharcanski,
2012), lj;iðr; qÞ ¼ 1

M

PM
m¼1Fm

j;iðr; qÞ and r2
j;iðr; qÞ ¼ 1

M

PM
m¼1

Fm
j;iðr; qÞ � lj;iðr; qÞ

� �2
.

To consider the feature variability within the w � w neighbor-
hood of landmark pi, the maximum window variance was used in
(2). The window size was set to w = 2 max{r�}, where r� is the
standard deviation of landmark location errors, measured during
ASM training. The probability density of location errors at each
landmark point is assumed to be approximately Gaussian (Shi
et al., 2006).

In this work, the face detector proposed by Demirel and
Anbarjafari (2009) is used, and the process applied to the database
of face images in order to obtain the ASM-based set of features is
described in detail in Behaine and Scharcanski (2012), Vignolo
et al. (2012).

3. Multi-objective wrapper for face feature selection

Genetic algorithms (GAs) are meta-heuristic optimization
methods, inspired on the process of natural evolution, that are
capable of finding global optima in complex search spaces (Youssef
et al., 2001). These optimization algorithms need to evaluate a
problem-dependent objective function to guide the search. How-
ever, in most real-world problems we may be interested in satisfy-
ing more than one objective, and the optimization of one objective
may conflict with the other objectives. In general, the solution of a
multi-objective optimization problem is not a single point, but a
set of points known as the Pareto optimal front (Kim and Liou,
2012).

Different modifications to the traditional GAs were proposed in
order to tackle multi-objective problems (Fonseca and Fleming,
1993). One generic approach is to combine the individual objective
functions into a single aggregative function, or to consider all but
one objective as constraints. Another generic approach is to deter-
mine a Pareto optimal, or nondominated set of solutions. This
means, a set of solutions for which none of the objective values
can be improved without detriment in some of the other objective
functions. This approach takes advantage of the population-based
nature of GAs, which allows the generation of several elements
of the Pareto set in a single run (Coello Coello et al., 2007).

Particularly, the Multi-Objective Genetic Algorithm (MOGA) is a
variation of the classical GA, in which the rank of an individual is
the number of chromosomes in the population by which it is dom-
inated (Fonseca and Fleming, 1993). This technique addresses the
search toward the true Pareto front, while maintaining diversity
in the population (Konak et al., 2006). A problem that arises in
Pareto based multi-objective evolutionary algorithms is the diffi-
ecognition based on multi-objective evolutionary wrappers. Expert Systems
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culty to preserve diversity among Pareto optimal solutions. The
population tends to scatter around the existing optima forming
stable sub-populations, or niches. One approach to overcome this
difficulty, which is based on the concept of niching around prom-
ising points, makes use of a sharing function as proposed by Fons-
eca and Fleming (1993). Fitness sharing allows the MOGA to
maintain the population diversity while encouraging the search
for solutions in unexplored sections of a Pareto front. This is
accomplished by reducing the fitness of solutions in densely popu-
lated areas of the search space (Kim and Liou, 2012). The MOGA, as
other fitness sharing techniques, uses the parameter rs to define
the size of the niche around a point in the Pareto front (Konak
et al., 2006). In this way, the nearby solutions are penalized in or-
der to maintain population diversity, and to promote the search
around all the salient peaks in the domain of feasible solutions.

Here we propose and study three different wrappers for feature
selection in face recognition applications. The first wrapper is a
classical GA, in which each individual represents a particular selec-
tion of the set of facial features extracted from an input image by
means of ASM. The second wrapper that we propose is a multi-
objective GA with an aggregative fitness function, which combines
classification accuracy and the number of features in a single equa-
tion. Finally, we propose a third wrapper which consists of a
MOGA, with the same objective functions considered for the sec-
ond alternative. Additionally, in this case we also use mutual infor-
mation as an additional objective, in order to minimize the
interdependence of the selected features. The proposed multi-
objective wrapper method is described as a diagram in Fig. 2.

The selection of individuals is done considering the set of coef-
ficients represented by each chromosome, using the tournament
selection scheme. This consists on choosing a few individuals at
random from the population in order to run a competition, from
which the winner is selected for reproduction. To evaluate a partic-
ular individual, a set of images is used to compute the objective
functions. In order to perform the evaluation, first, the feature vec-
tors that represent the images are assembled with the coefficients
indicated by the chromosome.

The classical mutation and one-point crossover are used, and an
elitist replacement strategy is applied in order to maintain the best
individual for the next generation.
286
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288

3.1. Fitness functions

In the proposed multi-objective wrappers, one of the target
functions evaluates the feature set suggested by a given chromo-
some, providing a measure of the face classification accuracy.
Therefore, a classifier is used as the first objective function, so that
the success classification rate is considered for each evaluated indi-
vidual. In order to guide the search, while maintaining a low com-
putational cost, a simple classifier algorithm was considered. This
classifier assigns the test face image, represented by its feature
vector, to the class with the closest prototype (mean feature vec-
tor). The mean is first computed based on the feature vectors in
the training set, and the Euclidean norm was used as distance in
290290

291
292

Fig. 2. General scheme of the proposed multi-objective wrapper.

Please cite this article in press as: Vignolo, L. D., et al. Feature selection for face r
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our experiments. Then, after an optimized solution is found, the
k-nearest neighbors (KNN) classifier (Bishop, 2007) is used to eval-
uate the classification performance on the test set.

It shall be observed that it is also beneficial to obtain a face im-
age representation containing the smallest number of coefficients,
which should be help in face image classification task, as discussed
next.

3.1.1. Aggregative fitness function
For the aggregative approach we used a fitness function that

combines classification accuracy and the number of features in a
single equation. The proposed aggregative fitness function is:

Fa ¼ aF1 þ
1� a

F2
; ð3Þ

where a is a parameter that assigns a relevance to each objective.
The first term of Fa corresponds to the prediction accuracy, F1 (the
fitness function used in the standard GA), and F2 accounts for the
number of selected features. In our experiments we adjusted a be-
tween 0.7 and 0.9. The second objective function is defined as

F2 ¼ 100 1� n
L

� �
; ð4Þ

so that we obtain a number in the same range as the classification
rate. Here, n is the number of coefficients selected by the chromo-
some, and L is the length of the chromosomes.

3.1.2. Proposed multi-objective approach
For the proposed MOGA we used the objective functions F1 and

F2, defined in (3) and (4), respectively. Also, we used an additional
objective function designed to minimize the mutual information
(MI) of the selected coefficients. We computed the MI for every
pair of coefficients on the training data using the method proposed
by Peng et al. (2005). We defined this third objective function as

F3 ¼
M�

1þ LM=n
; ð5Þ

where M⁄ is the sum of the MI calculated for all the available fea-
tures (taken in pairs), and M is the sum of the mutual information
calculated for the features selected by a chromosome.

Considering the three proposed target functions, all steps in the
evaluation of a population by the proposed multi-objective wrap-
per are detailed in the Algorithm 1.
293
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3.2. Chromosome codification

In this work, the mean of the color chrominance channels Cr and
Cb of the YCbCr color space were used as features for describing
ecognition based on multi-objective evolutionary wrappers. Expert Systems
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each of the 68 ASM landmark points, meaning that the dimension-
ality of a complete feature vector is N � Q = 136 (Behaine and
Scharcanski, 2012). We considered two different approaches for
coding the chromosomes, yielding search spaces of significantly
different sizes. In the first case, each gene represents a particular
feature, independently of the landmark point associated to it. Thus,
in this approach the chromosome size is 136, and each feature
associated to a given landmark point can be selected individually
and independently. In the second chromosome coding alternative,
each gene in a chromosome represents one of the ASM landmark
points, so the chromosome value indicates whether the corre-
sponding features are used or not, and hence the chromosome size
is reduced to 68. In both coding alternatives, the initialization con-
sists on a random selection of the genes (values) in the chromo-
somes, since no restriction was applied to the re-combinations of
features.
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4. Experimental results and discussion

A set of face images from the Essex Face Database was used in
our experiments (Vision Group, 2007), which contains a significant
diversity of individuals and expression changes. In order to make a
comparative evaluation of our experimental results with respect to
other approaches available in the literature, 100 face classes were
used. Five face images per class were randomly selected for train-
ing and other fifteen face images per class were separated for the
test set (Behaine and Scharcanski, 2012).

As stopping criteria for the optimization, we considered a max-
imum of 500 generations, and convergence was assumed after 100
generations without fitness improvement. After the optimization
step, the classification performance with the selected feature sub-
sets was evaluated on the test set, which was not used for the fea-
ture selection process. That is, the data from the test set was not
used for the fitness evaluation during the optimization, which al-
lowed to estimate the generalization performance of the optimized
feature subsets. This test was performed employing a KNN classi-
fier (with k = 1). We carried out several optimization experiments,
considering different alternatives and combination of parameters,
and here we discuss the most relevant.

The experimental results are presented and discussed next. Sec-
tion 4.1 discusses the experiments performed with the most sim-
ple approach studied in this paper, using the single-objective
wrapper. Then, in Section 4.2, the results obtained with the pro-
posed multi-objective strategies (i.e. aggregative GA and MOGA)
are addressed. Finally, Section 4.3 presents a comparative analysis
of the obtained results.
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4.1. Single-objective optimization

In this Section, we first describe the experiments that involve
chromosomes of length 136 (as explained before), which will be re-
ferred to as GA-136. The classifier described in Section 3.1 was
used in the evolution, which was evaluated on the training data
set in order to compute the fitness of each candidate solution.
The GA population consisted of 30 individuals, and crossover and
mutation probabilities were set to 0.8 and 0.025, respectively. In
this case, the proposed GA converged to a set of 62 features, and
the KNN classifier achieved an accuracy of 97.20% on the test data
set.

Another set of experiments were conducted with single-objec-
tive optimization and GA-136 chromosomes. In order to obtain a
better generalization performance, we enlarged the training data
set using the Smoothed Bootstrap Resampling (SBR) method
(Young, 1990). When the amount of data is not enough to ensure
statistically significance, this method can be used to create new
Please cite this article in press as: Vignolo, L. D., et al. Feature selection for face r
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samples by adding noise to the feature values of the original sam-
ples. In particular, zero mean Gaussian noise with r = 0.1 was used
in our experiments, since this value allowed to preserve the vari-
ance of the original train data. Accordingly, in the next experiments
(GA-136 + SBR), 20 SBR examples were generated for each class in
order to perform the fitness evaluations. After the convergence of
the GA, 68 features were selected, which allowed the classifier to
achieve an accuracy of 97.40% on the test data. Therefore, we can
infer that the resampling of the training data allows better
generalization.

However, compared with the previous case, a larger subset of
features was selected. A plot of the maximum fitness value ob-
tained as the number of generations is increased is shown in
Fig. 3(a). Note that the convergence of the GA required about 220
generations in this experiment.

The following approach tested, as explained in Section 3, con-
sisted in reducing the length of the chromosomes to the number
of landmark points (68). This means that, within each chromo-
some, the selection of a given landmark implies that both of the
corresponding features are used. As a result of this experiment, re-
ferred to as GA-68 + SBR, we obtained a reduced feature set of size
56. With this feature set we obtained 98.0% of classification accu-
racy on the test data set, suggesting that the reduction of the chro-
mosome size simplified the search space, making the search easier
for the GA. Fig. 3(b) shows the evolution of the fitness value, and it
can be verified that the best solution was found after only 63 gen-
erations. When compared to Fig. 3(a), it suggests that the codifica-
tion strategy with smaller chromosomes, in addition to the
resampled training data set, allowed a faster convergence of the
GA.
4.2. Multi-objective optimization

In this section, we discuss the experimental results obtained by
using the simultaneous optimization of multiple objectives. We
first used a classical GA with the aggregative fitness function given
in (3), taking into account the number of features besides the clas-
sification accuracy. As in the previous case, we studied both the
codification alternatives with chromosome lengths 136 and 68,
and used SBR samples for training.

Figs. 4(a) and (b) show the convergence plots for the optimiza-
tions using chromosomes of length 136, and the aggregative fitness
function with a = 0.8 and a = 0.85, respectively. In the first case,
GA-Aggre-2ob-136 + SBR (a = 0.8), the GA converged to a set of
only 32 features, and the KNN classifier achieved an accuracy of
97.40% on the test data set. With a similar experiment but using
a = 0.85, we obtained a set with ten additional features (42), which
lead to a small improvement on classification accuracy of the test
set (97.80%).

On the other hand, conducting the same experiments indicated
above, but using chromosomes of length 136, we obtained a subset
of 46 features with classification accuracy of 97.60%, and a subset
of 56 features giving an accuracy of 97.80% on the test set, with
a = 0.8 and a = 0.85, respectively. For these experiments, the fitness
behaviors for different generations are shown in Figs. 4(c) and (d).
It is noticeable that the convergence of the GA takes a longer time
to optimize two objectives simultaneously, in contrast to the opti-
mizations with a single objective discussed before.

The last group of experiments consists in using a MOGA to opti-
mize two and three objectives simultaneously. In addition to clas-
sification accuracy and the number of features, in these
experiments we also considered the minimization of the mutual
information between selected features as a third objective. For
the problem in hand, we obtained the most interesting results
when rs was set to 0.09 and 0.1.
ecognition based on multi-objective evolutionary wrappers. Expert Systems
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Fig. 3. Convergence of the GA in the experiments: (a) GA-136 + SBR and (b) GA-68 + SBR.
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Several optimization experiments were conducted with the
MOGA, first combining classification accuracy and the number of
features, and then also including the mutual information measure-
ment. Performing the optimization with two objectives (MOGA-
2ob, as with the aggregative GA) and chromosomes of length
136, we obtained a subset of 37 features (rs = 0.09) giving an accu-
racy of 97.30% on the test set, and subset of 32 features (rs = 0.1)
giving an accuracy of 96.67% on the test set. With chromosomes
of length 68, we obtained a subset of 38 features giving an accuracy
of 97.53%, and a subset of 30 features giving an accuracy of 97.30%
on the test set. In this way, we compare the MOGA and the aggre-
gative GA, showing that the performances of both are similar, ex-
cept for a slight improvement of the MOGA in the later case.

On the other hand, when we also consider the minimization of
mutual information (MOGA-3ob). We obtained a subset of only 26
features giving an accuracy of 97.00% (rs = 0.09), and a subset of 30
Please cite this article in press as: Vignolo, L. D., et al. Feature selection for face r
with Applications (2013), http://dx.doi.org/10.1016/j.eswa.2013.03.032
features which obtained 97.53% of accuracy on the test set
(rs = 0.09), with chromosomes of length 136. Finally, with chromo-
somes of length 68, we obtained a subset of 36 features giving an
accuracy of 97.93% (rs = 0.09), and a subset of 38 features giving
98.00% of accuracy on the test set (rs = 0.09).

4.3. Comparative analysis and discussion

Table 1 summarizes the results of the aforementioned experi-
ments, and compares the performances obtained by the optimized
subsets of features with two different approaches representing the
state of the art. The second column shows the classification accu-
racy achieved by the different feature sets, obtained with the pro-
posed wrapper optimization method on the test data set, and the
third column shows the number of features involved. The last col-
umn exhibits the relative error reduction (RER) with respect to the
ecognition based on multi-objective evolutionary wrappers. Expert Systems
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Classification results obtained for the test data.

Method Accuracy(%) Number of features Relative error reduction

DFBFR (Demirel & Anbarjafari, 2009) 93.73 2 � 1002 –
Enhanced ASM (Behaine & Scharcanski, 2012) 95.33 54 (reference)
GA-136 96.93 62 34.26%
GA-136 + SBR 97.40 68 44.33%
GA-68 + SBR 98.00 56 57.17%
GA-Aggre-2ob-136 + SBR (a = 0.8) 97.40 32 44.33
GA-Aggre-2ob-136 + SBR (a = 0.85) 97.80 42 52.89
MOGA-2ob-136 + SBR (rs = 0.09) 97.30 37 42.18
MOGA-2ob-136 + SBR (rs = 0.1) 96.67 32 28.69
MOGA-3ob-136 + SBR (rs = 0.09) 97.00 26 35.76
MOGA-3ob-136 + SBR (rs = 0.1) 97.53 30 47.11
GA-Aggre-2ob-68 + SBR (a = 0.8) 97.60 46 48.61
GA-Aggre-2ob-68 + SBR (a = 0.85) 97.80 56 52.89
MOGA-2ob-68 + SBR (rs = 0.09) 97.53 38 47.11
MOGA-2ob-68 + SBR (rs = 0.1) 97.30 30 42.18
MOGA-3ob-68 + SBR (rs = 0.09) 97.93 36 55.67
MOGA-3ob-68 + SBR (rs = 0.1) 98.00 38 57.17
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Fig. 5. ROC curve generated by varying the threshold d in the binary classification
task. The solid line corresponds to the MOGA-3ob-68 + SBR, the dashed line to
GA-68 + SBR, and the dash-dot line to the complete feature set.
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Enhanced ASM (Behaine and Scharcanski, 2012), meaning the per-
centage by which the error rate is reduced. As illustrated by this ta-
ble, the optimized representations obtained by the evolutionary
wrappers obtained better classification performances. It should
be observed that these optimized representations provided larger
feature sets when compared to the Enhanced ASM. However, the
feature set provided by GA-68 + SBR improves the accuracy of
the Enhanced ASM in more than 4%, with two more features.

The multi-objective approaches obtained significantly smaller
feature subsets, specially if compared with the Enhanced ASM ap-
proach, with better classification performances. For instance, the
smallest subset found consists of only 26 features and allows a sig-
nificant reduction of the classification error, with respect to the En-
hanced ASM, with RER 35.76%. Moreover, the solutions found by
MOGA provided fewer features and, at the same time, produced
accuracies that are similar to those obtained by the single-objec-
tive GA. For instance, the MOGA-3ob-68 + SBR allowed to reduce
the classification error as much as our earlier GA-68 + SBR (RER
57.17%), using only 38 coefficients (features).

The aggregative multi-objective approach is useful to find small
feature sets with reduced classification error, and the MOGA ap-
proaches provided better solutions (that is, almost the same accu-
racy with fewer features). Additionally, the minimization of the
mutual information as a third objective provides solutions with a
better compromise between classification error and the number
of features. However, it is important to observe that in this exper-
iments we favor solutions that provide high classification accuracy
more than those with fewer features.

An interesting performance analysis can be obtained by chang-
ing the 100-class problem into a binary classification task, and then
computing the ROC curve according to the methodology proposed
in Bolle et al. (2005). For this binary classification task we took the
15 test patterns of a given class and assigned them as the registered
user class, and all of the remaining test patterns, from the other 99
classes, were assigned to the unregistered user class. This was re-
peated for each of the 100 classes (each time a different class
was labeled as registered) and the classification results obtained
were averaged. As the unregistered users are unknown, the train-
ing patterns corresponding to this class were not used in the clas-
sification (we used only the patterns corresponding to the
registered user class). Instead of using the KNN classifier, the rule
to classify the test samples was based on the Euclidean distance
to the training samples of the registered user class. This rule can
be described simply as follows: if the distance from the test image
to each of the training (registered) users is less than the threshold
Please cite this article in press as: Vignolo, L. D., et al. Feature selection for face r
with Applications (2013), http://dx.doi.org/10.1016/j.eswa.2013.03.032
d, it is labeled as registered; otherwise the test image is classified as
unregistered.

Fig. 5 shows the ROC curves constructed with the true positive
rate (TPR) and false positive rate (FPR) indexes, obtained by aver-
aging the results for the 100 binary classification tests. The
classification performance obtained with the feature set MOGA-
3ob-68 + SBR (solid line), with the feature set GA-68 + SBR (dashed
line), and with the complete feature set (dash-dot line), for differ-
ent values of threshold d (varying from 0 to 120) are shown. High
TPR values indicate that most of the test samples that belong to the
registered class are correctly classified. On the other hand, high val-
ues of FPR occur when unregistered samples are labeled as regis-
tered. As can be seen in Fig. 5, to obtain the highest TPR we need
to tolerate a FPR different of zero. It is important to observe that
our optimized feature sets allow to improve on the classification
results obtained with the complete feature set, obtaining a higher
TPR without increasing the FPR. Also, analyzing the ROC curves it
can be noticed that the 38-feature set obtained with the MOGA
shows a significant improvement in classification performance
with respect to the 56-feature set obtained with the classical GA
(the same observation applies to the complete feature set). This
confirms our hypothesis that it is beneficial to minimize the size
of the feature set. Also, it can be noticed that the use of the resam-
pling method allowed to obtain better results.
ecognition based on multi-objective evolutionary wrappers. Expert Systems
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5. Conclusions and future work

This paper presented and compared multi-objective wrappers,
based on evolutionary computation techniques, designed to opti-
mize the feature selection process in face image classification.
The proposed wrappers provide feature sets of different sizes and
face class discrimination capabilities, and the choice of the most
appropriate wrapper should be guided by the requirements of
the problem in hand (e.g. reduced feature set combined with a high
classification accuracy, or just focus on high classification accu-
racy). The experiments were performed on a well known face im-
age data set, where the face images were represented using the
ASM approach. These experiments revealed that the optimized fea-
ture sets offer improved classification accuracy in comparison with
other state of the art approaches. Probably because these opti-
mized face representations provide better class separability in
the feature space, while simplifying the classification task. Further-
more, the dimensionality of the ASM-based representation was
significantly reduced, which also helps to avoid overfitting. Hence,
the proposed strategy provides a valid alternative for the selection
of relevant features for face recognition.

In the future, we plan to perform experiments with a larger data
set, with increased variability of pose and illumination, and explore
other options in terms of feature set optimization. We would like
to explore other multi-objective optimization algorithms such as
PESA-II or NSGA-II (Coello Coello et al., 2007), in order to compare
the performance with the MOGA. Also, a measure of compactness
(Stegmayer et al., 2012) could be also considered as objective func-
tion in order to improve the clustering of classes in our evolutive
wrapper. Moreover, we would consider the use of other heuristic
search methods, such as particle swarm (Kennedy and Eberhart,
1995; Tsai and Kao, 2011) and scatter search (Mart et al., 2006).
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