
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Potential of native forests for the mitigation of greenhouse
gases in Salta, Argentina

Silvina Manrique a,b,*, Judith Franco a, Virgilio Núñez b, Lucas Seghezzo a
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a b s t r a c t

Carbon stocks were assessed in three archetypal forest ecosystems in the province of Salta,

Argentina, namelyYungas, Chaco, and shrublands located aroundChaco. Over a total area of

about 7000 m2, detailed measurements of woody biomass were conducted using structural

information such as diameter at breast height (dbh), total height, and stem height. At the

same time, the wet weight of herbaceous, shrubs, and litter was registered within that area.

Soil samples were also collected to determine parameters such as bulk density and organic

carbon. The above-ground tree biomass (AGB) was quantified by two non-destructive

methods. This biomass was expressed from each reservoir studied in t.ha�1 and the carbon

content was then calculated using a factor of 0.5. Carbon stocks in the ecosystems studied

were 162, 92, and 48 tC.ha�1 for Yungas, Chaco, and shrublands, respectively. Our results

show that carbon is concentrated in the soil or as AGB. The latter is the most important

reservoir in Yungas, while the soil plays this role in the other two, drier environments. In the

province of Salta, native forests play a significant role in themitigation of greenhouse gases.

Our results reveal the magnitude of carbon stocks in some characteristic regional native

forests, and estimate their carbon sequestration potential. These results could be useful to

inform policy makers in charge of negotiations related to conservation and sustainable

management of native forests, and be a relevant input for the formulation of more

comprehensive land use planning processes in the region.

ª 2011 Elsevier Ltd. All rights reserved.

1. Introduction

World emissions of human-related greenhouse gases (GHG)

increased 70% between 1970 and 2004 [1]. Rising GHG in the

atmosphere are very likely causing a global climate change, as

evidenced by increasing world average ambient and ocean

temperatures, changes in precipitation, widespread melting

of glaciers, and mounting ocean levels [2e4]. According to the

Intergovernmental Panel on Climate Change (IPCC), the threat

of climate change will intensify if the global temperature rises

more than 2 �C (above pre-industrial levels). To avoid this

drastic increase, the atmospheric concentration of CO2, the

most important of the GHG, should be kept roughly below

450 ppmv [1]. Yet some controversy still remains regarding the

stabilization level of atmospheric GHG concentrations [5]. The

use of fossil fuels is known to be the main source of anthro-

pogenic global climate change. The second largest contribu-

tion to this change is deforestation and forest degradation,
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contributing to around 18% of total global GHG emissions,

a larger percentage than the entire transport sector [6].

Reducing deforestation, combined with forestation and

appropriate forest management measures, would prove to be

effective, immediate, and low-cost strategies to avoid signifi-

cant carbon emissions into the atmosphere [7e9]. The

conservation of native forests has the additional advantage of

eventually allowing for the preservation of a wider range of

ecosystem services that depend on the structure and

processes of ecosystems [10e12]. The supply of these

ecosystem services can be significantly reduced in degraded

forests [13] and is also low in simpler ecosystems like forest

plantations [14e17].

Indigenous people and small farmers who live in native

forests could be incorporated into a management system

combining carbon sequestration with energy production

without jeopardizing their cultural integrity and livelihood

[18e20]. Climate policies could be an opportunity to reduce

GHGwhile, at the same time, tackling pressing problems such

as the loss of biodiversity, spreading desertification, and

poverty issues [21,22]. Many analysts fear such an approach

will deflect attention away from the root cause of climate

change, that is, GHG emissions from fossil fuel combustion in

developed countries [23]. On the other hand, some tropical

countries are also wary of attempts to internationalize part of

their territories [21]. Finding strategies aimed at a more

sustainable management of forest resources should thus take

into account the multiplicity of possible uses for these

resources. A delicate balance must be struck between poten-

tial carbon savings, local development, and the protection of

biodiversity [24].

The quantification of carbon emissions and removals from

land use changes and forestry activities is known to be

complex [25]. The wide range of existing estimates of global

carbon emissions from the forest sector reflects the difficulties

in obtaining accurate information on this issue. Detailed

studies are therefore necessary to improve the reliability of

current emission estimations of the forest sector at country

level. Accurate information in this respect will help stan-

dardize units, reduce uncertainties, and contribute to a more

efficient strategy to limit global GHG emissions [24]. This

information is also necessary to improve our understanding of

forest biomass carbon stocks and describe patterns of land

use change and fire regimes [26].

Argentina currently experiences the highest deforestation

rate outside the tropics [27], and this loss of native forests has

reached critical levels in recent years [28]. Moreover, infor-

mation on the mitigation potential of native forests in

Argentina is scarce. Studies are usually oriented to assess or

quantify thebiomassof single species [29,30]. Recent estimates

indicate that deforestation represents a significant source of

carbon at country level [31]. Two of the main native forest

formations in Argentina are the regions called Chaco and

Yungas [32]. Combined, they represent roughly 81% of all

national remaining native forests [33]. In recent years, the rate

of land-cover and land use change in these two regions has

been thehighest in the country [34]. These ecosystems are also

subject to an intensive process of degradation [28]. Uncon-

trolled clearings for agriculture, timber overexploitation, and

extensive cattle ranching are the main causes of these

combined processes. Regional surveys have shown, for

instance, that more than a quarter million hectares have been

deforested in the Chaco region alone in the seven years from

1992 to 1999 at an annual rate of about 5% [35]. In the lowest

sections of Yungas, an area with fertile soil and favourable

climatic conditions locally known as “Selva Pedemontana”, the

rapidprogress in agriculturehas recently caused this area to be

considered an endangered ecosystem [36]. The rate of defor-

estation in the province of Salta, North-West of Argentina,

having 23% of the total surface of native forests in the country,

is around three times as high as theworld average [37]. Yungas

and Chaco are both in the province of Salta [28].

In this paper we have characterized forest carbon stocks in

three of the main native forest ecosystems in the province of

Salta. This work is part of an ongoing project aimed at

improving the estimates of the mitigation potential of these

forests and contributing to a nationwide effort to create

a database on the subject.

2. Materials and methods

2.1. Study area

Work was carried out in the municipality of Coronel Moldes,

60 km south of the provincial capital city of Salta. Coronel

Moldes covers an area of 84,000 ha and represents 17% of

a 144 km long and 52 km wide valley (Valle de Lerma). Mean

altitude in Coronel Moldes is around 1,100 m.a.s.l. [38].

Climate in the region can be defined as subtropical with a dry

season, and has been included within the zone of tropical

climates, as an intermediate category between humid and dry

climates [39]. Mean annual temperature is 17.5 �C, with

maximum andminimum average temperatures of 25.3 �C and

10.7 �C, respectively [40]. Population is around 4,000 inhabi-

tants, withmore than 40% in rural areas. Population density is

5 inh.km�2. Approximately 40% of households have unsatis-

fied basic needs [41]. Tobacco production is the region’s main

economic activity. Further activities include extensive cattle

ranching, the production of crops such as beans and chilli

peppers, and small scale horticulture.

2.2. Study design

No references were found regarding the characteristics of

native forests inCoronelMoldes. Themainnatural ecosystems

in the area (Chaco, Yungas, and a third one we called “shrub-

lands”) were first detected, classified, and measured using

satellite images (Landsat5).This informationwas later checked

and verified with Geographical Positioning System (GPS)

devices during a number of specific field trips permitting first-

hand observation of the current state of these ecosystems.

Most representative species in the area were identified either

on site or by samples collected for further analysis in the lab.

A photographic database was also created during the trips.

2.2.1. Sampling design
Data were collected following a stratified random sampling

design. Forests were divided into non-overlapping subpopu-

lations or strata, according to the type of vegetation. The
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criterion used to determine sample size for each stratum was

an estimation of AGB of trees with a diameter at breast height

(dbh) � 10 cm during a pre-sampling (90% probability, 20%

mean standard error). The experimental design used was

nested plots. Main plots had a total area of 100 m2 and were

distributed as follows: 26 plots in Chaco, 23 in Yungas, and 20

in shrublands.

2.2.2. Data collection
Carbon represents about 50% of the total oven-dried biomass

present in forests [42]. Estimation of carbon pools in forests

necessarily involves studying the different strata of biomass

present in them. In this work, the following carbon pools and

variables were measured:

a) Above-ground tree biomass (AGB). AGB refers to the total

amount of above-ground living organicmatter in trees and

shrubs (�1 cm dbh and height� 50 cm) expressed as oven-

dried tonsperhectare. Stemheight (fromground level up to

first main branch), total height (from ground level up to

crown point), and dbh were measured in all trees with

dbh� 10 cm (AGB10) in 100m2; plots.When 1� dbh� 10 cm

and height � 50 cm (AGB0), trees were measured in 50 m2;

plots. In multiple-stemmed trees, only the longest stem

was measured. If neither shoot was dominant, an average

of similar shoots was calculated. The basal diameter was

registered only when the stem was shorter than the dbh.

Standing dead trees with dbh � 1 cm, and fallen trees with

dbh� 10 cmweremeasured in the samewayas living trees.

However, a correction factor of 0.8 was applied to the

biomass values obtained [43].

b) Lignified understory vegetation (LUV). All shrubs shorter

than 50 cmwere collected in 5m2; plots within the corners

of the main 100 m2 plots.

c) Herbaceous understory vegetation (HUV). This fraction

was entirely removed in two 1 m2; plots. These plots were

located in opposite corners within the 100m2 plots used to

measure AGB10.

d) Litter (LI). Organic debris on the soil surface, including

freshly fallen parts of plants, decomposing organicmatter,

and dead wood with a diameter no greater than 10 cm

were collected in the same plots used for HUV.

e) Below-ground biomass (BGB) (tree roots). Due to the diffi-

culties involved in the measurement of BGB, this fraction

was estimated indirectly as a proportionofAGB10 for Chaco

and Yungas. For shrublands, most of the trees fell below

10 cm in dbh. Therefore, the calculation of BGB for this

ecosystemwasbasedonboth theAGB0andAGB10 fractions.

f) Soil. Bulk density and percentage of organic carbon were

determined in soil samples collected at a depth of 30 cm

[44]. Vegetation and litter were removed from the soil

surface prior to sampling. Bulk density was determined in

two samples per plot using the cylinder method [45].

Results from these samples were averaged. The

percentage of organic carbon was measured following the

method described in Walkley and Black [46]. This

measurement being performed on a composite sample

built from four samples taken at identical distances within

a linear transect along the longest axis of the 100 m2 plots

(dimensions of these plots were 5 m � 20 m).

Wet weight was recorded on site for LUV, HUV and LI

fractions. Dry weight was determined in the lab (registered

after drying in an oven at 80 �C until constant weight). The

equation introduced by Kurz and co-workers [47] for hard

woods was used to estimate the BGB fraction in the Chaco

region. In Yungas and shrublands, equations for soft woods

were applied instead. The AGB fraction, also called ‘biomass

density’ when expressed as tons of oven-dried weight per ha

[42], is the main source of total biomass in a forest ecosystem.

Its relevance as a GHG mitigation option is therefore crucial

[7,48]. This fraction was thoroughly assessed using two non-

destructive methodologies [42]: i) biomass expansion factor

(BEF); and ii) allometric equations (AE). A description of these

methods is provided in the next section.

2.2.3. Estimation of AGB

2.2.3.1. Method 1 (the BEF). For the BEF method, volume data

from the Forest Inventory of the Argentinean north-west were

used [49]. For somespecies, nodatawereavailable. In thosecases,

volumes of species from the same environment were utilized.

Volume data for dbh < 10 cm were extrapolated from existing

tables. AGB0 and AGB10 were calculated with equation (1).

AGB ¼ VOB�WD� BEF (1)

Where

AGB (t.ha�1) ¼ above-ground tree biomass.

VOB (m3. ha�1) ¼ volume of stem wood (from ground level

up to first main branch).

WD (t.m�3) ¼ volume-weighted average wood density

(oven-dried biomass per green volume).

BEF (�) ¼ biomass expansion factor.

VOB was calculated using data of dbh and stem height per

plot. Biomass in the plots (BV, in t.ha�1) was estimated by

multiplying the average VOB by WD. Data of WD were

obtained from the database compiled by INTI e CITEMA [50].

Where no data were available or species could not be identi-

fied, the WD used for the calculations were 0.766, 0.745, and

0.695 t.m�3 for Chaco, Yungas, and shrublands, respectively.

When BV values <190 t.ha�1, the BEF was calculated with

equation (2) [42]. BEF reaches constant values between 1.7 and

2.0 in primary tropical forests around the world [51].

BEF ¼ exp3:213�0:506�lnBV (2)

2.2.3.2. Method 2 (allometric equations). For comparison

purposes, AGB was also calculated using allometric equations

(AE). Two equations with a different number of variables,

proposed in the literature for similar ecosystems, were

selected for each ecosystem under study (Table 1). The

purpose of these calculations was to assess to what extent the

extra work involved in estimating a larger number of variables

was justified in terms of the accuracy or precision of the final

outcome.

The equations of Table 1 have been derived for specific

rangesofdbh. Inour case, theupper limitsof those rangeswere

never exceeded. The lower limits set for two of the six equa-

tions used could not always be respected. This situation was

considered acceptable as long as the thinnest dbh fractions

represented only a small proportion of the total biomass in the
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ecosystems studied. For shrublands, AGB was obtained as the

BF value (calculated with equation (8) in Table 1) plus 60%, to

account for the biomass contained in branches. This calcula-

tion assumes that the biomass of the shaft represents about

40% of the total biomass, as indicated in the literature [52,53].

2.2.4. Carbon stock
For both methods, the carbon content was calculated by

multiplying the results obtained for AGB by a factor of 0.5, as

recommended when no specific data are available [1,42]. All

other studied fractions of biomass (LUV, HUV, LI, and BGB)

were converted into carbon pool by applying the same factor.

As an exception, total organic carbon in the soil was calcu-

lated with equation (9) [44].

SOC ¼ %OC� BD� D (9)

Where:

SOC ¼ soil organic carbon (t.ha�1);

OC ¼ concentration of organic carbon in the soil (%);

BD ¼ bulk density of soil (g. cm�3); and

D ¼ depth of soil (cm).

2.3. Data analysis

Data gathered for AGB0 and AGB10, having used both BEF and

AE methods, did not follow a normal distribution (when

analysed using the KolmogoroveSmirnov test) and presented

non-homogeneous variances (determined by the Levene test).

Therefore, the KruskaleWallis non-parametric statistical test

was applied to analyse and compare these data. When

significant differences were detected between series of data,

the ManneWhitney pair-comparison test was applied. Two-

tailed tests at a significance level of 0.05 were used [56].

Carbon pools were calculated as the average between AGB

estimations that demonstrated no significant differences. In

the case of Yungas, significant differences were detected

between all of the estimations of AGB0. For this case, an

average of the three estimations obtained was used to calcu-

late the carbon pool.

3. Results and discussion

3.1. Current state of local forests

The three ecosystems studied are located along an East-West

line, from the mountainous areas with relatively high

precipitation in the West (Yungas) to the shrublands in the

easternmost part. Population density is highest in the Eastern

part and decreases gradually to the West.

The lower Yungas forest (located below 1,400 m.a.s.l.) is

represented by 2,600 ha in Coronel Moldes, about 25% of the

total Yungas forests in this municipality. Average rainfall in

this section of Yungas is 900 mm. Most common tree species

found within this ecosystem were Phyllostylon rhamnoides

(“palo amarillo”), Anadenanthera colubrina (“cebil”), Tipuana tipu

(“tipa”), Enterolobium contortisiliquum (“pacará”). These species

were detected above 1,200 m.a.s.l. in the study area although

they are usually found below 900 m.a.s.l. [32]. Individuals of

Schinopsis haenkeana (“horco-quebracho”) and Fagara coco

(“coco”) were also detected, which are typical traits in some

regions of Chaco (“Chaco Serrano”) [32]. Solanum riparium was

also abundant in this area, a species normally dispersed by

wild animals or cattle. The appearance of typically Chaco

species in sections of Yungas forest is probably a sign of

human intervention in this region [36,57].

Chaco, with 40,000 ha, is the largest ecosystem in Coronel

Moldes. Average rainfall is around 500 mm, concentrated

between October and March [32]. In the study area, the

Chaco ecosystem has lost some of its original characteris-

tics, as described in literature [58e60]. In fact, species like

Schinopsis quebracho-colorado and Aspidosperma quebracho-

blanco (locally known as “quebrachos”) are only found

sporadically, after decades of targeted logging. Our trips to

the region led us to conclude that the forest structure has

been reduced to only two strata: (a) a higher stratum domi-

nated by Prosopis nigra (“algarrobo”), Zizyphus mistol (“mis-

tol”), Cercidium australe (“brea”), Caesalpinia paraguariensis

(“guayacán”), and Geoffroea decorticans (“chañar”); and (b)

a dense lower stratum, mainly composed of shrubs from the

genus Acacia and Celtis.

The ecosystem we defined as “shrublands” occupies an

area of around 6,900 ha. This area is covered by shrubs

(generally below 5 m) and isolated trees, with patches of

native grass.Acacia species arewidespread. Shrublands can be

local original ecosystems, as indicated by Cabrera [32], or may

have originated in past clearings of native forests for agricul-

tural purposes, forest fallows, or cataclysmic events like

floods or forest fires, as discussed in Cozzo [61].

3.2. Biomass density estimates for each forest

AGB10 estimations decrease from Yungas to shrublands, with

intermediate values in Chaco, for bothmethods used (Table 2).

Low water availability and high human presence in shrub-

lands are probably the main reasons for this trend [59,62].

Table 1 e Allometric equations used to estimate biomass density (AGB0 and AGB10). D[ dbh (cm); r and S[wood density
(g cmL3); H [ total height (m); BA [ basal area (cm2); Y [ tree biomass (kg); BF [ biomass of main stem (kg).

Ecosystem Equation Number Reference

Yungas Y ¼ 34:4703� 8:0671ðDÞ þ 0:6589ðD2Þ (3) [51]

Y ¼ expf�2:4090þ0:9522�lnðD2�H�SÞg (4) [51]

Chaco Y ¼ expf�1:996þ2:32�lnðDÞg (5) [42]

Y ¼ 0:112� ðr� D2 � HÞ0:916 (6) [54]

Shrublands Y ¼ 10f�0:535þ0:9996ðlog10BAÞg (7) [55]

BF ¼ 0:1368 ðD2 � H Þ0:7559 (8) [53]
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The BEF method generally provides higher values than the AE

method for all ecosystems studied. This was especially clear

for AGB0. Only for AGB10 in Yungas, differences found between

the methods were not statistically significant (using equa-

tion (4)). In Chaco, the estimation obtained with the BEF

method is almost twice that calculated with AE for AGB10, and

almost four times higher than the estimation for AGB0. The

BEF method, known to be less precise, is accepted to make

estimations over large areas [51,63], as it allows the conver-

sion of extensive forest volume data to biomass estimates [62].

Extrapolations for the category under 10 cm dbh may influ-

ence the estimates. In our case, this influence was considered

negligible for Yungas because the fraction under 10 cm dbh is

relatively small. In the case of shrublands, the error might be

bigger due to the larger presence of this fraction.

Both allometric equations (AE) used for Chaco and shrub-

lands provided similar results, although equations with more

variables have sometimes been recommended [54]. The

degraded horizontal and vertical structure of these forests,

with short trees (<10 m) and small diameters (only some iso-

lated individuals reached a dbh of 30 cm), may be the reason

why results are so close to one another for these two ecosys-

tems. In fact, average height in Chaco and shrublands was 6.7

and 4.8m, respectively (for dbh� 10 cm). In shrublands, 88% of

the trees registered showed dbh< 10 cmwhile 70%was�5 cm,

with an average height of 2.9 m (in the category of AGB0). In

Yungas, average heightwas 11mand average dbhwas 17.6 cm,

both higher than those for Chaco and shrublands, although still

lower than figures cited for pristine Yungas ecosystem [32,64].

For the latter environment (Yungas), the difference between

the two allometric equations used was increasing as the trees

reached greater heights. Biomass increases sharply in equa-

tions including height especially when this variable is higher

than 10 m.

Estimations made for tropical humid forests around the

world range from 150 to 192 t.ha�1 for closed, undisturbed

forests [51], and around 50 t.ha�1 for open forests [65]. The

total amount of AGB in jungle-like environments is probably

the result of a combination of factors such as rainfall [66], type

of soils and nutrients content [67], topography, elevation, and

their interaction [68], type of forest (primary or secondary

forests) [13,66], forest structure [17,24], type of landscape or

other aspects associated with regional scale [69,70], and

degree of disturbance [62,71,72], among others. Only two

references could be found that report higher values for

Argentinean Yungas, one with the BEF method and one using

AE [31,73]. It can be safely assumed that these differences are

mainly due to the different scale of the studies, since the

works cited considered all the altitudinal belts of the Yungas

and the whole surface of this ecosystem in the country.

Moreover, the structure of the forest in the Yungas area

included in this study was clearly disturbed by humans and

livestock. Numerous recent and decomposing stumps were

found and there were unambiguous signs of wandering

animals and persons.

In environments similar to Chaco, discrepancies between

these results and estimationsmade in similar environments in

other forests of the world might be due to structural differ-

ences, as suggested by Martı́nez-Yrı́zar and others in their

studies of tropical deciduous forests in Mexico [55]. Different

altitude [74], latitude [75], and humidity gradients [59] in our

case might also be responsible for the discrepancies. The level

of degradation exerted by human activity in this environment

is high, as noted in previous studies [35,59]. Bonino found that

forest harvest and deforestation in Chaco produced a drastic

reduction in biomass stock in trees, decreasing from 50.9 t.ha�1

in the primary forest to 10.2 t.ha�1 in the secondary forest [59].

Height has been an important adjustment variable in our case,

reducing previous estimations made for AGB10 in Chaco by

using AE [31]. The AEmethod appears to bemore able to detect

local variations, whereas the BEFmethod could not detect such

differences, giving similar results to previous national estima-

tions made with this method [73]. The lower sensitivity of the

BEFmethod for Chaco could be due to the fact that this forest is

not as closed as the forests in which the method was originally

developed [42].

There are only a few studies referring to ecosystems such

as our shrublands. In Mediterranean shrub communities,

Navarro and Blanco [76] reported estimations of AGB fluctu-

ating around 4.5 to 17 t.ha�1, depending on the type of

shrubland. These authors mention that shrub biomass

density varies considerably according to climatic, edaphic,

and topographic differences, and also due to the history of

land use and the types of human disturbance. In Montado

(Portugal), Castro and Freitas [77] studied shrublands origi-

nating from natural forests following the removal of trees by

human activity such as clearing, burning, and grazing. The

increase in AGB after abandonment was strongly related to

the increase in shrub cover. Biomass yields ranging from

1.95 t.ha�1 in herbaceous-dominated communities to

a maximum of 11.6 t.ha�1 in advanced succession (shrub-

dominated communities) were found. In Argentina, AGB

values around 2.75 t.ha�1 were reported for shrubby grass-

land, defined as a community composed of a low-density layer

of saplings of trees and shrubs and characterized by the

absence of a tree cover [59]. The very definition of “shrubland”

Table 2 e Biomass density in t.haL1 (average ± mean standard error) estimated by two non-destructive methods, the
Biomass Expansion Factor (BEF) and Allometric Equations (AE). Means followed by different letters (a, b, and c) within the
same row indicate significant differences (P < 0.05).

Ecosystem n BEF AE (number 3, 5, and 7) AE (number 4, 6, and 8)

AGB0 AGB10 AGB0 AGB10 AGB0 AGB10

Yungas 23 27.6a � 3.1 147.5a � 10.7 14.5b � 1.5 82.2b � 8.8 6.2c � 0.8 130.1a � 17.0

Chaco 26 16.6a � 1.7 104.8a � 6.7 4.5b � 0.5 58.6b � 5.9 4.0b � 0.4 54.5b � 6.1

Shrublands 20 23.3a � 2.8 31.9a � 8.1 9.5b � 1.9 8.4b � 2.4 10.4b � 2.3 7.7b � 2.4
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is vague and dominant species in each shrubland are different

too. Therefore, differences in biomass estimations should not

come as a surprise, as indicated by Cozzo [61]. More studies

are necessary for these types of highly-variable, context-

dependent environments to assess their potential as carbon

sinks, especially bearing in mind that these ecosystems

sometimes present a close correlationwith the level of SOC, as

some studies have already shown [78,79].

3.3. Carbon stock for the different ecosystems

Fig. 1 shows the total carbon stock estimated for the three

ecosystems, with all pools considered. Based on these results,

it was calculated that about 16 Mt of CO2 have been seques-

tered from the atmosphere in 50,000 ha. Considering that an

average Argentinean citizen emits almost 6 tCO2.y
�1 [80], the

values obtained in our studies are roughly equivalent to the

emissions of 3 million inhabitants in one year or the emis-

sions of more than three times the entire population of the

province of Salta [41].

Fractions AGB10 and SOC are the largest contributors in all

cases (Figs. 1 and 2). In Yungas, the most humid ecosystem of

the three studied, above-ground tree biomass (both AGB0 and

AGB10) represent 45% of the total carbon fixed, while the soil

contributes 36.5%. In Chaco and shrublands, on the other

hand, the carbon retained in the soil is 1.7 and 3.7 times higher

than in above-ground tree biomass. In shrublands, the

contribution of AGB0 is higher than that of AGB10, a situation

which has not been observed in the other ecosystems studied.

The soil is an important carbon reservoir, becoming the

most relevant fraction in drier environments. However, when

comparing the absolute values of SOC between the three

environments (Table 3), the soil shows an important rela-

tionshipwith the vegetation found above the ground. The SOC

involves 69.4% of the total carbon stock of the shrublands

although, when expressed in absolute terms, represents only

65% and 52% of the SOC in Chaco and Yungas, respectively.

The maintenance of a vegetation cover is therefore important

as it will eventually be incorporated into the soil improving its

fertility, porosity, infiltration rate, water retention capacity,

and resistance to erosion, as noted in a number of studies

[17,59,67,81].

The remaining reservoirs (BGB, LUV, HUV, and LI) together

represent only 19, 16, and 12% of the total carbon stock in

Yungas, Chaco and shrublands, respectively. In all cases, the

BGB fraction made the greatest contribution.

3.4. Forestland use planning and climate change
mitigation

The forest formations studied in Coronel Moldes are repre-

sented in the province of Salta with 5.6million ha of Chaco, 2.3

million hectares of Yungas and about 900,000 ha of other

wooded land [33]. Assuming these areas have identical char-

acteristics as the forests studied, it can be estimated that
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about 3 billion tCO2 are sequestered by these forests in the

province. This estimation should be confirmed with

measurements in other parts of the province where these

forests are also present. These ecosystems are undergoing

rapid deforestation [28]. Our results suggest that forest

degradation is not only limited to shrublands, but that it is

also detectable in Yungas and Chaco. Economic activities such

as agriculture and logging which take place in these ecosys-

tems are arguably not respecting their carrying capacity. Local

institutions do not seem to be capable of stopping, controlling,

or regulating these activities. A recent land use planning

process carried out in the province of Salta has been criticized

by environmentalists and scientists alike for its alleged

ambiguity and softness on loggers and big agricultural

producers. Indigenous peoples and small farmers have even

made a case before the country’s Supreme Court of Justice in

order to stop logging and agricultural clearings until a final

decision is reached on the ownership of the land. The

Supreme Court has preliminarily ruled to stop all deforesta-

tion activities in four departments of the Province, but the

final decision is still pending. A detailed description of this

case is out of the scope of this paper. Whether entering into

a market-based system like the one promoted by the Kyoto

Protocol will be part of the solution to the problem of defor-

estation and conservation of local native forests remains to be

seen. Decisions are highly political and many times the rele-

vant decision-makers are thousands of kilometres away. No

decisions affecting the future of these forests should be taken

until agreements on this issue are reached or until judiciary

processes are properly finished. Competing claims on the

ownership of the forest land, the products of the forests, and

the provision of ecosystem services must be taken into

consideration in a comprehensive forest management [12,24].

Different strategies could be used to incorporate the

potential of native forests for the mitigation of GHG into land

use planning initiatives. In general terms, native forests can

be managed to maintain or enhance existing carbon stocks in

forests or to replace fossil fuels with the use of biomass as

energy source [7,9,48]. GHG mitigation objectives can be

combined with other local economic development objectives

and the conservation of biodiversity [18,21].

AGB would yield, in shrublands alone, about

38,000 GJ.ha�1.y�1, assuming a growth of about 0.54 t.ha�1.y�1

and a harvest efficiency of 70%. The mitigation potential

would depend on which type of fossil fuel gets replaced in

each case [18]. It can be calculated that, on average, about 3 kg

of biomass can replace 1 L of petrol. Table 4 presents some

rough calculations that may illustrate the potential of using

the biomass generated in the ecosystems studied as energy

source. The bioenergy potential was calculated according to

FAO [82], where annual productivity, a poorly studied variable

for the country’s native forests, was estimated as a percentage

of the stock of above-ground tree biomass in each ecosystem

(considering both AGB0 and AGB10). A 2% annual productivity

rate for Yungas and a 3% annual productivity rate for Chaco

and shrublands were considered. This means an annual

growth of 3.1, 1.8 and 0.5 t.ha�1.y�1, respectively. The potential

of biomass available for energy purposes was estimated at 70

and 80% of the annual growth. Most of the annual harvest

should be done in the biomass fraction with a dbh � 10 cm

(AGB10), except for shrublands (Table 4). For Coronel Moldes,

any of the factors used (70 and 80%) would mean a bioenergy

potential of about 866e990 TJ (Terajoule: 1012J) per year or

around 21 to 24 thousand tons of oil equivalent (toe; 1 toe is

approximately 42 GJ) of fossil fuels substituted, according to

the replacement fuel (e.g. natural gas or diesel).

The use of all available bioenergy present in the studied

forests could mitigate the emissions of 8,000 to 12,000 inhabi-

tants, which represents double and triple the current

municipal population.However, it is important tonote thatnot

all potential resources are accessible and availability varies

spatially, thereby significantly reducing the available stock in

manyplaces.Anyproposeduseof biomass for energypurposes

should be studied in detail depending on physical, economic,

social, cultural, technological, and legal constraints.

The forests of Chaco and Yungas could also be recovered

and enriched, and these practices could maintain and even

increase current carbon stocks [18,19,83]. While carbon

sequestration capacity decreases as it reaches the carbon

carrying capacity of a forest ecosystem [26] or climax, if these

forests aremanaged properly, their ability to sequester carbon

may bemaintained over time [83] and will also have a positive

impact on biodiversity, local economy, and other social

aspects [84,85]. The state of degradation found in the forests

studied suggests that the carbon sequestration capacity of

these forests is likely to be greater than estimated.

Table 4 e Biomass and bioenergy potentials for each
ecosystem, according to different usage factors. Annual
productivity considered (as a percentage of the stock of
above-ground tree biomass) was 2% for Yungas and 3%
for Chaco and shrublands.

Ecosystem AGB10

used (%)
Biomass

potential (t.y�1)
Bioenergy

potential (GJ. y�1)

Usage factors

70% 80% 70% 80%

Yungas 89.6 5.6 6.4 82.3 94.1

Chaco 93.2 51 58.2 745.5 852.1

Shrublands 44.3 2.6 3 38.2 43.6

Table 3e Carbon stored (average ± standard deviation) in themain carbon pools (in tC.haL1) for all ecosystems studied. See
description of acronyms in the text.

Ecosystem n AGB10 AGB0 BGB LUV HUV LI SOC

Yungas 23 69.4 � 34.0 8.0 � 6.5 16.1 � 7.5 1.2 � 0.5 0.1 � 0.1 2.8 � 1.4 63.0 � 34.7

Chaco 26 28.2 � 12.8 2.1 � 1.2 9.0 � 2.8 1.8 � 0.9 0.2 � 0.3 2.1 � 1.0 50.4 � 22.9

Shrublands 20 4.0 � 4.6 5.0 � 4.0 3.0 � 1.2 0.4 � 0.2 0.5 � 0.4 1.0 � 0.5 32.8 � 11.3
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4. Conclusions

Carbon stocks in the ecosystems studied were 162, 92, and

48tC.ha�1 forYungas,Chaco,andshrublands, respectively.The

maincarbonreservoirs inall threeecosystemsareAGBandsoil.

AGB is themost important reservoir in Yungas,while soil plays

this fundamental role in the other two, drier environments.

Overall, indirect methods appear to be effective choices for

estimating above-ground tree biomass. Yet, when it was

possible to collect local field data, the AE method seemed

more accurate. In Yungas, there were differences between

both allometric equations used, and this paper therefore

advises incorporating height and wood density data when

using them to improve their accuracy.

This study suggests that carbon stocks in native forests,

particularly in Chaco and Yungas, could be restored, main-

tained, or even increased through the application of simple

silvicultural practices. This should be relevant to local and

national decisionmakers in charge of negotiations concerning

the conservation, sustainable management of forests, and

enhancement of forest carbon stocks.

Native forests in the province have a high potential for the

mitigation of GHG, since the use of available biomass might

replace fossil fuels and concomitantly reduce CO2 emissions.

The carbon sequestration potential in the ecosystems studied

suggests that it could be part of a broader strategy aiming to

set up more comprehensive and sustainable land use plan-

ning in the region.
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