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1 Introduction

The effect of intense magnetic fields on the properties of strongly interacting matter has

gained significant interest in recent years [1–3]. This is mostly motivated by the realiza-

tion that strong magnetic fields might play an important role in the study of the early

Universe [4], in the analysis of high energy non-central heavy ion collisions [5–7], and in

the description of compact stellar objects like the magnetars [8, 9]. It is well known that

magnetic fields also induce interesting phenomena such as the enhancement of the QCD

vacuum (the so-called “magnetic catalysis”) [10] and the decrease of critical temperatures

for chiral restoration and deconfinement QCD transitions [11, 12]. In this work we con-

centrate on the effect of a magnetic field ~B on the weak pion-to-lepton decays π− → l− ν̄l,

where l− = e−, µ−. In fact, the study of weak decays of hadrons in the presence of strong

electromagnetic fields has a rather long history (see e.g. refs. [13–16]). In most of the

existing calculations of these decay rates, however, the effect of the external field on the

internal structure of the participating particles has not been taken into account. In the

case of charged pions, only recently such an effect has been analyzed in the context of chiral

perturbation theory [17] and effective chiral models [18–20], as well as through lattice QCD

(LQCD) calculations [21]. In ref. [21] it is noted that the existence of the background field

opens the possibility of a nonzero pion-to-vacuum transition via the vector piece of the

hadronic current, implying the existence of a further form factor in addition to the pion
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decay constant fπ (which arises from the axial vector piece). Taking into account this new

decay constant and using some approximations for the dynamics of the participating par-

ticles, the authors of ref. [21] obtain an expression for the π− decay width in the presence

of the external field. In particular, it is claimed that for eB ∼ 0.3 GeV2, e being the proton

charge, the decay rate of charged pions into muons could be enhanced by a factor of about

50 with respect to its value at B = 0. Recently, a more complete analysis of the situa-

tion has been presented in ref. [22], where the most general form of the relevant hadronic

matrix elements in the presence of an external uniform magnetic field was determined. It

was found that in general the vector and axial vector pion-to-vacuum transitions (for the

case of charged pions) can be parametrized through one and three hadronic form factors,

respectively. Taking into account all four decay constants, in ref. [22] an expression for

the π− → l− ν̄l decay width that fully takes into account the effect of the magnetic field

on both pion and lepton wave functions was obtained using the Landau gauge. The same

expression was found in ref. [23] using the symmetric gauge, explicitly showing the gauge

independence of the result.

The main purpose of this article is to show that, once the above-mentioned improve-

ments are incorporated, the π− → l− ν̄l decay rate in the presence of the magnetic field

turns out to be strongly enhanced with respect to its value for B = 0. Taking values for

the decay constants from an effective Nambu-Jona-Lasinio (NJL) model, this enhancement

is found to range from ∼ 10 for eB = 0.1 GeV2 up to ∼ 103 for eB = 1 GeV2. Interestingly,

it is found that the ratio between π− partial decay rates into electrons and muons gets

also significantly increased, reaching a value of about 0.5 for eB = 1 GeV2. In addition,

it is observed that already for eB ' 0.1 GeV2 the angular distribution of the outgoing

antineutrinos is expected to be highly anisotropic, showing a significant suppression in the

direction of the magnetic field.

The paper is organized as follows. In section 2 we present a general theoretical analysis

of the π− → l− ν̄l decay width in the presence of the external field. This includes a

comparison with the B = 0 case and a discussion on the lack of the helicity suppression

mechanism. In section 3, numerical estimations are given in the framework of the NJL

model. Finally, in section 4 we summarize our research and provide some conclusions. We

also include two appendices. In appendix A we present a brief discussion on the relation

between gauge invariance and axial rotations, while in appendix B we give some expressions

for pion and lepton wavefunctions in the presence of the magnetic field.

2 π− → l− ν̄l decay

2.1 Absence of helicity suppression for nonzero external magnetic field

As well known, if there is no external magnetic field the decay width Γ(π− → l− ν̄l) in the

pion rest frame is given by

Γ−l (0) =
G2
F cos2 θc

4π
f2
π mπm

2
l

(
1−

m2
l

m2
π

)2

, (2.1)
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where GF is the Fermi effective coupling, θc is the Cabibbo angle, and the value of the

decay constant fπ = f(m2
π) ' 92.3 MeV can be obtained from the empirical π− mean

lifetime τ '
(∑

l Γ
−
l (0)

)−1
= 2.603× 10−8 s [24]. Owing to the m2

l factor, the total width

is strongly dominated by the muonic decay, for which the branching ratio reaches about

99.99%. The reason for this behavior can be easily understood in terms of “helicity suppres-

sion”. In the pion rest frame, the outgoing charged lepton and antineutrino have opposite

momenta, therefore the final state has zero orbital angular momentum, and angular mo-

mentum conservation requires both outgoing particles to have opposite spins. Taking the

direction of the momenta as the angular momentum quantization axis, this implies that

the charged lepton l− and the antineutrino ν̄l should have the same helicity. On the other

hand, the electroweak current couples the π− only to right-handed antineutrinos and left-

handed charged leptons. Then, if we assume that neutrinos are massless, the helicity of

the antineutrino will be +1. In the limit ml → 0 the helicity of the left-handed charged

lepton will be −1, i.e. opposite to that of the antineutrino. Since this is in contradiction

with the result above, the decay turns out to be forbidden in that limit.

In the presence of an external uniform magnetic ~B, the above situation becomes dra-

matically modified. For definiteness, let us take the magnetic field to lie along the z axis,
~B = (0, 0, B), with B > 0. As in the B = 0 case, we assume the charged pion to be in

its lowest possible energy state. The latter corresponds to the lowest Landau level (LLL)

` = 0, and the pion z component of the momentum pz = 0. It is worth stressing that,

even in this lowest energy state, the decaying pion cannot be at rest, due to the existence

of a nonvanishing zero-point motion. In fact, the three spacial components of pion mo-

mentum are not a good set of quantum numbers to describe the initial state in this case.

Moreover, the outcomes obtained for B = 0 from angular momentum conservation do not

apply for nonzero B. The analysis of the decay in terms of angular momenta of the initial

and final states is not straightforward, since for nonzero B canonical angular momenta of

charged particles turn out to be gauge dependent quantities, and total mechanical angular

momentum is in general not conserved [23, 25–27]. A brief discussion on how this can be

reconciled with the rotational invariance of the system is included in appendix A.

To have a better understanding of the situation, it is interesting to consider the case

in which the magnitude of the magnetic field is large enough so that the outgoing charged

lepton l− can only be in the LLL, n = 0 (the validity of this assumption will be discussed

below). Considering the explicit form of the corresponding spinors [22, 23], it is not hard

to show (see appendix B) that in the ml → 0 limit one has

γ5|l−(LLL)〉 = Q̂ · ~Σ|l−(LLL)〉 = − sign(qz) |l−(LLL)〉 , (2.2)

where ~Q = ~q + e ~A is the mechanical linear momentum operator (a gauge invariant quan-

tity) and qz is the z component of the momentum of the charged lepton. As expected, the

chirality of the LLL lepton state coincides with its helicity in the massless limit. Interest-

ingly, in eq. (2.2) only the parallel piece of the helicity operator contributes. This can be

understood by noting that for the LLL only one polarization state, namely that associated

to Σz(l
− ) = −1, is allowed (see appendix B). Being Σx and Σy polarization-changing op-

erators, the action of the sum QxΣx +QyΣy on the |l−(LLL)〉 state has to vanish in order
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to ensure that the latter is an helicity eigenstate, as it should be in the ml → 0 limit. Let

us consider now the outgoing antineutrino, taking it to be in a state of momentum ~k. Since

it has to be right-handed, the helicity operator satisfies

γ5|ν̄l〉 = k̂ · ~Σ |ν̄l〉 = + |ν̄l〉 . (2.3)

In this case, however, the transverse piece of the helicity operator provides in general a

nonvanishing contribution. On one hand, there is no restriction for antineutrino helicity

eigenstates to be in general a combination of the two available possible polarization states,

Σz(ν̄l) = ±1 [22, 23]. On the other hand, the antineutrino transverse momentum ~k⊥ is

in general nonvanishing, since, due to zero-point motion, the wavefunctions of charged

particles in the LLL involve a superposition of various transverse momenta. Therefore,

eq. (2.3) does not determine the sign of kz, and nothing forces the outgoing particles to

have the same helicity, in contrast with the B = 0 case. Thus, no helicity suppression

mechanism is present for nonzero B, and, consequently, the π− → l− ν̄l decay amplitude

does not necessarily vanish in the ml → 0 limit.

To quantitatively see how important the “non-helicity suppression” effect is, one has

to analyze in detail the π− → l− ν̄l decay width in the presence of the magnetic field. A

model independent expression for the width has been obtained in refs. [22, 23], taking the

decaying pion to be in the LLL, with pz = 0. The main steps leading to this expression

are summarized in the following subsections.

2.2 Particle states and gauge choice

The actual calculation of the partial widths Γ(π− → l− ν̄l) for nonzero external magnetic

field requires to choose a specific gauge. We note, however, that the widths are expected

to be gauge independent, as explicitly shown in refs. [22] and [23], where the same result

has been obtained considering the Landau and symmetric gauges, respectively. Here we

will retrieve some of the steps followed for the case of the symmetric gauge, in which one

has axial symmetry and the participating particles can be expressed in terms of states of

well defined angular momentum projection in the direction of the external field.

For our calculations we adopt the following conventions. For a space-time coordi-

nate four-vector xµ we use the notation xµ = (t, ~r ), taking the Minkowski metric gµν =

diag(1,−1,−1,−1). We assume the presence of a uniform static magnetic field ~B, and ori-

entate the spatial axes in such a way that ~B = B ẑ, with B > 0. Owing to axial symmetry,

it is convenient to use for ~r standard cylindrical coordinates ρ, φ and z. The vector potential

will be then given by Aµ = (0, ~A), with ~A = ~B × ~r/2 = (−Bρ sinφ/2, Bρ cosφ/2, 0).

As already mentioned, in the presence of an external magnetic field the three spacial

components of momentum are not a good set of quantum numbers for charged particles. In

fact, in the plane perpendicular to ~B, charged particle states are quantized in Landau levels.

For the symmetric gauge, given our axis choice, one can define a complete basis of states

of well defined energy taking as quantum numbers the z component of the momentum, the

Landau level and the z component of the canonical total angular momentum ~j. For the

antineutrino, having zero electric charge, we take kz, jz and k⊥ =
√
k2
x + k2

y, where ~k is the
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Pion (π−) Lepton (l− ) Antineutrino (ν̄l)

Parallel momentum pz qz kz

Landau level ` n –

jz `− ı n− υ − 1/2 − 1/2

Energy
√
m2
π− + (2`+ 1)Be + p2

z

√
m2
l + 2nBe + q2

z

√
k2
⊥ + k2

z

Shorthand notation p̆ = (`, ı, pz) q̆ = (n, υ, qz) k̆ = (, k⊥, kz)

Table 1. Notation for particle quantum numbers.

antineutrino linear momentum. The notation used for the quantum numbers of the π−,

l− and ν̄l is summarized in table 1. Here `, n, ı, and υ are non-negative integers,  is an

integer, and Be = |e ~B|. To this set of quantum numbers one has to add the polarization

τ (τ = 1, 2) of the charged lepton (we assume the antineutrino to be purely righthanded).

Notice that, although it is not indicated explicitly, the pion mass mπ− is a function of the

magnetic field B. The explicit form of the π−, l− and ν̄l wavefunctions and spinors in the

symmetric gauge is quoted in appendix B.

2.3 Decay amplitude

According to the notation introduced in the previous subsection, the transition matrix

element for the π− → l− ν̄l decay is given by 〈 l−(q̆, τ) ν̄l(k̆, R)|LW |π−(p̆) 〉. As usual, the

amplitude can be written in terms of leptonic and hadronic parts. Taking into account the

expressions for the involved fields quoted in appendix B (for more details, see also ref. [23])

one gets

〈 l−(q̆, τ) ν̄l(k̆,R)|LW |π−(p̆)〉=−GF√
2

cosθc×

×
∫
d4xHµ

L(x, p̆) Ū−l (x, q̆, τ)γµ (1−γ5)Vνl(x, k̆,R) , (2.4)

where Hµ
L(x, p̆) stands for the matrix element of the hadronic current,

Hµ
L(x, p̆) = Hµ

V (x, p̆)−Hµ
A(x, p̆) = 〈0|ψ̄u(x) γµ(1− γ5)ψd(x)|π−(p̆)〉 . (2.5)

The matrix element in eq. (2.5) involves strong interactions in a low energy regime

and cannot be treated perturbatively. Instead, it can be parameterized in terms of decay

form factors taking into account the Lorentz structure and the symmetries of the theory.

As it is well known, in the absence of external fields the amplitude can be written in terms

of a single form factor, namely, the pion decay constant fπ. In that case, owing to parity

symmetry, only the axial-vector piece Hµ
A can be nonzero. However, when a static external

electromagnetic field is present, several independent tensor structures are allowed and four

independent form factors can be defined. Three of them correspond to the axial-vector and

one to the vector piece of the hadronic current. Following ref. [22], the hadronic matrix
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element in eq. (2.5) can be parameterized as

Hµ
L(x, p̆) =

[
εµναβFναDβ

f
(V )
π−

2B
−Dµ f (A1)

π− + i FµνDν
f

(A2)
π−

B
− FµνFναDα

f
(A3)
π−

B2

]
×

√
2 〈0|φπ−(x)|π−(p̆)〉 , (2.6)

where Fµν is the electromagnetic field tensor, and Dµ = ∂µ − ieAµ. It can be seen that

the discrete symmetries of the interaction Lagrangian restrict all four form factors to be

real [22]. In the symmetric gauge, taking into account the expression for φπ− quoted in

appendix B, and defining “parallel” and “perpendicular” pieces H±‖,L and H±⊥,L, one gets

H±‖,L = H0
L ±H3

L = −
√

2
(
f

(A1)
π− ∓ f (V )

π−

) (
D0 ±D3

)
W−p̄ (x)

= i
√

2
(
f

(A1)
π− ∓ f (V )

π−

)
(Eπ− ± pz)W−p̄ (x) , (2.7)

H±⊥,L = H1
L ± iH2

L = −
√

2
(
f

(A1)
π− ± f (A2)

π− − f (A3)
π−

) (
D1 ± iD2

)
W−p̄ (x)

= ∓
√

2
(
f

(A1)
π− ± f (A2)

π− − f (A3)
π−

)√
(2`+ 1± 1)BeW

−
p̄±1(x) , (2.8)

where we have used the notation p̄± 1 = (Eπ− , `± 1, ı, pz).

Using these expressions together with the explicit form of the functions U−l (x, q̆, τ),

Vνl(x, k̆, R) and W−p̄ (x), one can perform the spatial integral in eq. (2.4) to get

〈 l−(q̆, τ) ν̄l(k̆, R)|LW |π−(p̆) 〉 = (2π)3 δ(Eπ− − El − Eν̄l) δ(pz − qz − kz)×

δ`−ı,n−υ+−1M(p̆, q̆, k̆, τ) . (2.9)

The explicit form of the function M(p̆, q̆, k̆, τ), as well as details of the calculation, can be

found in ref. [23]. As expected from the symmetries of the Lagrangian, eq. (2.9) shows the

conservation of the total energy and the z component of the momentum. Moreover, from

table 1 it is seen that the Kronecker delta in eq. (2.9) implies j
(π−)
z = j

(l− )
z + j

(ν̄l)
z , i.e.,

the z component of the total canonical angular momentum is also conserved. This is not

a general property but a particular feature of the calculation in the symmetric gauge, in

which the Lagrangian is invariant under axial rotations. We recall that, in the presence

of the external magnetic field, the canonical angular momentum is not a gauge invariant

quantity and does not represent a physical observable.

2.4 Partial decay width

The width for the π− → l− ν̄l decay is given by

Γ−l (B) = lim
L, T→∞

∑
τ=1,2

∑
n,υ,

∫
dqz

(2π)32El

dkz dk⊥ k⊥
(2π)22Eν̄l

|〈 l− (q̆, τ) ν̄l(k̆, R)|LW |π−(p̆) 〉|2

2(2π)2Eπ−LT
,

(2.10)

where T and L are the time interval and length on the z-axis in which the interaction is

active. At the end of the calculation, the limit L, T →∞ should be taken. From the result
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in eq. (2.9) we get

Γ−l (B) =
1

16πEπ−

∞∑
n,υ=0

∞∑
=−∞

∫
dqz dkz dk⊥ k⊥

(2π)2ElEν̄l
×

δ(Eπ− − El − Eν̄l) δ(pz − qz − kz) δ`−ı,n−υ−1+

∣∣Mπ−→ l− ν̄l

∣∣2 , (2.11)

where ∣∣Mπ−→ l− ν̄l

∣∣2 =
∑
τ=1,2

∣∣∣M(p̆, q̆, k̆, τ)
∣∣∣2 . (2.12)

Now, as it is usually done, we concentrate on the situation in which the decay-

ing pion is in the lowest energy state. This corresponds to ` = 0 and pz = 0, hence

Eπ− = (m2
π− +Be)

1/2. Here we will quote the final expression obtained for the decay

width. Details of the calculation can be found in ref. [23]. The result can be expressed in

terms of three form factor combinations aπ− , bπ− and cπ− , given by

aπ− = f
(A1)
π− − f (V )

π− , bπ− = f
(A1)
π− + f

(V )
π− , cπ− = f

(A1)
π− + f

(A2)
π− − f (A3)

π− . (2.13)

One has [23]

Γ−l (B) =
G2
F cos2 θc
2π E2

π−
Be

nmax∑
n=0

∫ umax

0
du

1

k̄z(u)

un−1

n!
e−uA

(n)
π− (u) , (2.14)

where the function A
(n)
π− (u) is given by

A
(n)
π− (u) =

[
E2
π− − 2Be(n− u)−m2

l

]
×[

m2
l

2
(n|aπ− |2 + u|bπ− |2) +Be(n− u)(n|aπ− − cπ− |2 + u|bπ− − cπ− |2)

]
+

2Beu
[
E2
π−(n|aπ− − bπ− |2 − (n− u)|bπ− − cπ− |2) + (n− u)m2

l |cπ− |2
]
, (2.15)

and we have used the definitions umax =
(
Eπ−−

√
2nBe+m2

l

)2
/(2Be), nmax = (E2

π−−m
2
l )/(2Be)

and

k̄z(u) =
1

2Eπ−

{[
E2
π− − 2Be(n− u)−m2

l

]2
− 8BeE

2
π− u

}1/2

. (2.16)

The integration variable chosen here is u = k2
⊥/(2Be). The sum over  and the integrals

over qz and kz can be calculated with the help of the deltas, while the sum over υ can be

performed analytically.

As expected, the decay width does not depend on the quantum number ı. The latter

determines the canonical angular momentum j
(π−)
z of the decaying pion, which, as stated,

is a gauge dependent quantity. Though the expression of the decay amplitude will vary

in general for different gauge choices, it is clear that the result for the decay width in

eq. (2.14) has to be gauge independent. Indeed, the same result for Γ−l (B) has been found

in ref. [22] using the Landau gauge.

As discussed in the previous subsection, the decay constants in eq. (2.13) parameterize

the most general form of the pion-to-vacuum vector and axial vector hadronic matrix

– 7 –
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elements. Their theoretical determination would require either to use LQCD simulations

or to rely on some hadronic effective model. Before addressing possible estimates for these

quantities, let us analyze how “non-helicity suppression” is realized in eq. (2.14). Once

again we concentrate in the case of a large external magnetic field. Since the pion is built

of charged quarks, the pion mass will depend in general on the magnetic field. Now, if the

mass growth is relatively mild, for large magnetic fields one should get Be > m2
π− −m

2
l . In

fact, this is what one obtains from lattice QCD calculations [21] as well as from effective

approaches like the Nambu-Jona-Lasinio model [20], for values of Be say & 0.05 GeV2.

According to the above expressions, this implies nmax = 0, hence the outgoing muon or

electron (let us assume that the energy is below the τ production threshold) is expected to

lie in its LLL (n = 0), where only one polarization state is allowed. A further simplification

can be obtained when the squared lepton mass can be neglected in comparison with Be
(or, equivalently, in comparison with E2

π− , which is expected to grow approximately as Be).

For ml � Be, one can take ml → 0. Then, El = k̄z and the integral over k⊥ extends up to

Eπ− . In this limit the decay width is given by

Γ−l (B)
∣∣∣nmax=0
ml=0

=
G2
F cos2 θc
π

B2
e

Eπ−

[
1−
(

1+
E2
π−

2Be

)
e−E

2
π−

/(2Be)

]∣∣∣f (V )
π− −f

(A2)
π− +f

(A3)
π−

∣∣∣2 .
(2.17)

As anticipated, there is no helicity suppression, and the width does not vanish in the

ml = 0 limit. In fact, it turns out to grow with the magnetic field as B2
e/Eπ− , with

some suppression due to the factor in square brackets. Clearly, the physical relevance of

eq. (2.17) depends on whether the term proportional to the form factor combination on the

right hand side is the dominant one in the full expression for the decay width. As can be

seen from eq. (2.15), the terms involving the form factor f
(A1)
π− — which, in general, would

compete with the form factors in eq. (2.17) — become negligible in the limit ml → 0.

While in the case of the π− decay to e−ν̄e this should be a good approximation already for

Be ∼ 0.05 GeV2, for decays into muons (and taus) the situation is less clear, and corrections

arising from a nonzero lepton mass should be taken into account.

3 Numerical results within the NJL model

In order to provide actual estimates for the magnetic field dependence of the π− decay

width we need some input values for the decay constants. Although some results have been

provided by existing LQCD simulations [21], present lattice analyses involve relatively large

error bars and, moreover, only include the calculation of the form factors f
(A1)
π− and f

(V )
π− .

Therefore, we will consider here the values calculated in ref. [28] for all four form factors in

the framework of the NJL model. In fact, beyond the first lattice data points, results from

ref. [21] show an overall increase in f
(A1)
π− with the magnetic field, in qualitative agreement

with the values obtained from NJL model calculations [28]. For f
(V )
π− , NJL predictions

are compatible within errors with lattice data, which have been obtained for eB up to

0.3 GeV2 [21, 28].
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3.1 Γ−
e and Γ−

µ decay widths

Our results for the π− decay widths are shown in figure 1. They correspond to the parame-

ter set denoted by “Set I” in ref. [28]. In the upper left panel we quote the π− partial decay

widths to both µ−ν̄µ and e−ν̄e as functions of eB, in a logarithmic scale. It is seen that the

partial widths become strongly enhanced when the magnetic field is increased above say

0.1 GeV2/e. This enhancement is more pronounced for the decay to e−ν̄e (dashed line),

since for low values of B helicity suppression becomes important. The bump observed in

this curve for eB ∼ 10−2 GeV2 is due to the fact that this region is dominated by the

n = 1 Landau level contribution, which disappears at about eB ∼ 2 × 10−2 GeV2 leaving

n = 0 as the only energetically allowed electron Landau level. The dotted line in the graph

corresponds to the asymptotic decay width quoted in eq. (2.17). In the upper right panel

we quote the ratio Γe/Γµ as a function of eB. The absence of helicity suppression leads

to a strong increase of this ratio with the magnetic field, reaching a value of about 0.5 for

eB ' 1 GeV2, while for B = 0 one has Γe/Γµ ' 1.2 × 10−4. In the lower panels we show

the behavior of the total decay width Γe + Γµ, normalized to its value at B = 0. For this

effective model the enhancement factor is found to be about 1000 for eB ' 1 GeV2. Left

and right panels show our results in logarithmic and linear scales, respectively. To have an

estimation of the relative significance of the contribution coming from the vector piece of

the hadronic amplitude, in the left panel we show with a dotted line the result obtained

for the total width after setting f
(V )
π− = 0. For large B the correction will be given by a

global factor, as can be seen from eq. (2.17). In the right panel we include for comparison

the results arising form LQCD calculations quoted in ref. [21], which cover values of eB

up to about 0.45 GeV2. Dark and light gray regions correspond to staggered and quenched

Wilson quarks, respectively. Although these LQCD results also predict a significant growth

of the total width with the magnetic field, it is seen that in our case the slope of the curve

gets more rapidly enhanced with B. This is, in part, due to the e−ν̄e channel contribution.

It is worth to remark that our results for the ratio Γe/Γµ are different from those obtained

in ref. [21], where helicity suppression leads to a ratio of the order of 10−5 that becomes

almost independent of the magnetic field. Finally, it is important to mention that the

results in figure 1 do not depend significantly on the model parametrization (e.g. it is seen

that the results for parameter Sets II and III of ref. [28] do not differ from those in figure 1

by more than 3%).

3.2 Angular distribution of outgoing neutrinos

It is also interesting to discuss with some detail the angular distribution of the outgoing

antineutrinos. While for B = 0 the distribution is isotropic, this changes significantly in

the presence of a large magnetic field. Denoting w = cos θ = kz/|~k|, the differential decay

rate can be written as

dΓ−l (B)

dw
=
G2
F cos2 θc

4π

nmax∑
n=0

(1− r)2

r (1− w2)2

un−1

n!
e−u

[
|w|

A
(n)
π− (u)

k̄z(u)
+ wB

(n)
π− (u)

]
, (3.1)
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Figure 1. (Color online) Upper left panel: π− partial decay widths into e−ν̄e (dashed line) and

µ−ν̄µ (full line), and n = 0 asymptotic contribution for ml = 0 (dotted line) as functions of eB.

Upper right panel: ratio Γe/Γµ as a function of eB. Lower panels: total decay width as a function

of eB, normalized to its value at B = 0, shown in logarithmic scale (left) and linear scale (right). In

the lower left panel, the dotted line corresponds to the normalized total width in the absence of the

vector channel (i.e., taking f
(V )
π− = 0). LQCD bands quoted in ref. [21] (see text) are included in the

lower right panel for comparison. Our results correspond to the model in ref. [28], parameter Set I.

where

r =
1

Eπ−

√
E2
π− −

(
E2
π− − 2nBe −m2

l

)
(1− w2) , u =

E2
π−

2Be

(1− r)2

(1− w2)
, (3.2)

and the function B
(n)
π− (u) is defined as

B
(n)
π− (u) = Eπ−

[(
u|bπ− |2 − n|aπ− |2

)
m2
l + 2Be(n− u)

(
u|bπ− − cπ− |2 − n|aπ− − cπ− |2

)]
.

(3.3)

The term proportional to B
(n)
π− (u) in eq. (3.1) vanishes after integration over w, therefore

it does not contribute to the total decay width.

Once again, to get definite predictions for the angular distributions we rely on the

values for the pion mass and decay constants obtained in ref. [28] within the NJL model,

taking the parameter Set I. Our numerical results for the normalized differential partial

decay widths are shown in figure 2, where several representative values of eB are considered.

Left and right panels correspond to π− decays into e−ν̄e and µ−ν̄µ, respectively. It is seen

that the fraction of antineutrinos that come out in the half-space w > 0 fluctuates when
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Figure 2. (Color online) Normalized differential partial decay widths of the π− into e−ν̄e (left)

and µ−ν̄µ (right), as functions of w = cos θ for selected values of eB. The results correspond to the

model in ref. [28], parameter Set I.

the magnetic field is increased, becoming strongly suppressed for values of eB much larger

than the lepton mass squared. This can be qualitatively understood as follows. When

eB � m2
l , only n = 0 is allowed. In addition, in the massless limit the lepton has to be

left-handed, therefore from eq. (2.2) one gets qz > 0. Conservation of the z component

of total momentum implies qz + kz = pz = 0. Hence, for large B, in the ml → 0 limit

all antineutrinos should be produced with momenta in the half-space kz < 0. Indeed, for

ml = 0 and n = 0 the normalized differential decay width is given by

1

Γ−l (B)

dΓ−l (B)

dw
=


2λ2 (1 + w)

(1− w)3

e−λ(1+w)/(1−w)

1− (1 + λ) e−λ
if w ≤ 0

0 if w > 0

, (3.4)

where λ = E2
π−/(2Be). In addition, it is worth noticing that for large values of B most

antineutrinos come out with low |kz|, i.e. in directions approximately perpendicular to the

magnetic field.

4 Summary and conclusions

In this article we get an estimation of the effect of an external uniform magnetic field

on the magnitude of the decay rate Γ(π− → l− ν̄l) and the angular distribution of the

antineutrinos in the final state. Our analysis takes into account the contribution of all

four possible π− decay form factors. The values of these constants and that of the pion

mass are taken from a NJL model for effective strong interactions, considering the π−

in its lowest possible energy state. Our results show that the total decay rate Γe + Γµ
becomes strongly increased with respect to its value at B = 0, the enhancement factor

ranging from ∼ 10 for eB = 0.1 GeV2 up to ∼ 103 for eB = 1 GeV2. Moreover, owing to
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the presence of the new decay constants and the features of nonzero B kinematics, it is

found that the decay width Γ−l does not vanish in the limit ml = 0. As a consequence, for

large values of B the ratio Γe/Γµ changes dramatically with respect to the B = 0 value

(of about 1.2 × 10−4), reaching a magnitude of ∼ 0.5 at eB ' 1 GeV2. This could be

interesting e.g. regarding the expected flavor composition of neutrino fluxes coming from

the cores of magnetars and other stellar objects. Finally, it is found that for large B the

angular distribution of outgoing antineutrinos is expected to be highly anisotropic, showing

a significant suppression in the direction of the external field.
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A Axial rotations and gauge invariance

The consequences of the invariance of the physical system under rotations in the plane

perpendicular to the magnetic field, as well as the relation of this invariance with the

conservation of the corresponding component of the angular momentum, are delicate issues

that deserve some extra comments.

Let us consider a charged pion in the presence of a uniform magnetic field, using the

conventions stated in the main text of this work. Given the symmetry of the physical sys-

tem, any observable is expected to be invariant under rotations about the z axis. However,

it is worth noticing that the Lagrangian and the action that describe the system at the

quantum mechanical level are given in terms of the electromagnetic four-vector potential.

Thus, they are not necessarily invariant under these rotations. For the particular case

of the symmetric gauge used in this work, rotational symmetry is manifest. However, in

general this will be not true for other gauges. To illustrate this point let us consider the

Landau gauge (LG), in which Aµ = (0, 0, xB, 0). A spatial rotation by an angle θ about

the z axis changes Aµ into A′µ, which is given by

A′µ = (0, − sin θ (x cos θ + y sin θ) B, cos θ (x cos θ + y sin θ) B, 0) . (A.1)

The breakdown of the invariance of the Lagrangian under this rotation is manifest. More-

over, it can be checked that in the LG neither the z component of the canonical angular

momentum nor that of the mechanical angular momentum commute with the Hamiltonian

of the system, i.e., they are not conserved quantities. In order to reconcile this result with

the expected invariance of the physical quantities under spatial rotations, we can observe

that A′µ can also be written as

A′µ = (0, 0, xB, 0) + ∂µχ , (A.2)
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with

χ =
B sin θ

2

(
x2 cos θ + 2x y sin θ − y2 cos θ

)
. (A.3)

In this way, it is seen that the rotated system is connected to a gauge transformed system

through a gauge transformation defined by χ. This shows that, in the Landau gauge,

performing a spatial rotation about the z axis is equivalent to performing a specific gauge

transformation. Thus, in this gauge the expected invariance of physical observables under

spatial rotations is guaranteed by the gauge invariance of the system.

Let us illustrate the previous statement for the case of the π− field. As discussed in

appendix A.2 of ref. [22], in the Landau gauge the π− wavefunction can be written as

Fp̃(x) = Ñ` e
−iEπ− t eipyy eipzzD`

(√
2Be

(
x+

py
Be

))
(A.4)

where D`(x) are cylindrical parabolic functions, and we have defined p̃ = (Eπ− , `, py, pz)

and Ñ` = (4πBe)
1/4/
√
`! . After a rotation by an angle θ about the z axis, one gets a

rotated wavefunction FR
p̃ (x) given by

FR
p̃ (x) = Ñ` e

−iEπ− t eipy(−x sinθ+y cosθ) eipzzD`

(√
2Be

(
x cosθ+y sinθ+

py
Be

))
. (A.5)

On the other hand, performing the gauge transformation defined in eqs. (A.2) and (A.3),

the pion wave function in eq. (A.4) transforms into Fχp̃ (x), given by

Fχp̃ (x) = eieχ Fp̃(x) = ei sin θ (x2 cos θ+2x y sin θ−y2 cos θ)Be/2 Fp̃(x) . (A.6)

Obviously, FR
s,p̄ (x) and Fχs,p̄ (x) are different. However, they are connected in the sense

that they share the same subspace of defined values of energy and momentum pz . This

subspace is built varying the value of py , which is not gauge invariant and therefore cannot

be taken as a physical quantity [22].

The fact that the functions FR
p̃ (x) and Fχp̃ (x) belong to the same subspace of energy

and momentum pz can be verified by projecting one function onto the other. One has∫
d3x Fχp̃′(x)∗ FR

p̃ (x) = (2π)2δ
(
p′z − pz

)
δ``′ ×√

2π

Be sin θ
e−i[(p

2
y+p′y

2) cos θ−2pyp′y ]/(2Be sin θ) e−i[(`+1/2)θ−π/4] , (A.7)

which proves our statement, taking into account the (gauge independent) relation

Eπ− =
√
m2
π− + (2`+ 1)Be + p2

z. As a check of the completeness of the transformed func-

tions, it can be seen that∫
dp′zdp

′
y

(2π)3

∞∑
`′=0

∫
d3x′ FR

p̃′′(x
′)∗Fχp̃′(x

′)

∫
d3x Fχp̃′(x)∗FR

p̃ (x) = (2π)3δ(p′′z − pz)δ(p′′y − py)δ``′′ .

(A.8)
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B Particle fields under a uniform magnetic field in the symmetric gauge

For convenience, we quote in this appendix the main expressions for π−, l− and νl fields in

the presence of a magnetic field together with the eigenvalues of some relevant operators.

For a more detailed description, see e.g. refs. [23] and [29].

According to our conventions, the π− field can be written as [23]

φπ−(x) =

∞∑
`,ı=0

∫
dpz

(2π)3 2Eπ−

[
a−(p̆) W−p̄ (x) + a+(p̆)† W+

p̄ (x)∗
]
, (B.1)

where p̄ = (Eπ− , p̆), with p̆ = (`, ı, pz) and Eπ− =
√
m2
π− + (2`+ 1)Be + p2

z. The functions

W±p̄ (x) are solutions of the eigenvalue equation

DµDµ W±p̄ (x) = −
[
E2
π− − (2`+ 1)Be − p2

z

]
W±p̄ (x) , (B.2)

where Dµ = ∂µ − ieAµ. Using cylindrical coordinates, their explicit form is given by

W±p̄ (x) =
√

2π e−i(Eπ− t−pzz) e∓i(`−ı)φR`,ı(ρ) , (B.3)

where

R`,ı(ρ) = N`,ı ξ
(`−ı)/2 e−ξ/2 L`−ıı (ξ) . (B.4)

Here we have used the definitions N`,ı = (Be ı!/`!)
1/2 and ξ = Be ρ

2/2 , while Lαm(x) are

the associated Laguerre polynomials.

The charged lepton fields in this gauge can be written as

ψl(x) =
∑
τ=1,2

∞∑
n,υ=0

∫
dqz

(2π)3 2El

[
b (q̆, τ) U−l (x, q̆, τ) + d (q̆, τ)† V +

l (x, q̆, τ)
]
, (B.5)

where q̆ = (n, υ, qz) and El =
√
m2
l + 2nBe + q2

z . For n > 0, in the Weyl basis, the spinors

in eq. (B.5) are given by

U−l (x, q̆, τ) =

√
π√

El +ml
e−i(Elt−qzz)ei(n−υ−1/2)φ×δτ,1


e−iφ/2 ε− Rn−1,υ(ρ)

−ieiφ/2
√

2nBe Rn,υ(ρ)

e−iφ/2 ε+ Rn−1,υ(ρ)

ieiφ/2
√

2nBe Rn,υ(ρ)

+ δτ,2


ie−iφ/2

√
2nBe Rn−1,υ(ρ)

eiφ/2 ε+ Rn,υ(ρ)

−ie−iφ/2
√

2nBe Rn−1,υ(ρ)

eiφ/2 ε− Rn,υ(ρ)


 ,
(B.6)

V +
l (x, q̆, τ) =

√
π√

El +ml
ei(Elt−qzz)ei(n−υ−1/2)φ×δτ,1


−ie−iφ/2

√
2nBe Rn−1,υ(ρ)

eiφ/2 ε+ Rn,υ(ρ)

−ie−iφ/2
√

2nBe Rn−1,υ(ρ)

−eiφ/2 ε− Rn,υ(ρ)

+ δτ,2


−e−iφ/2 ε− Rn−1,υ(ρ)

−ieiφ/2
√

2nBe Rn,υ(ρ)

e−iφ/2 ε+ Rn−1,υ(ρ)

−ieiφ/2
√

2nBe Rn,υ(ρ)


 ,
(B.7)
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where ε± = El + ml ± qz. In the particular case of the lowest Landau level (LLL) n = 0,

from these equations it is seen that U−l (x, q̆, 1) = V +
l (x, q̆, 2) = 0, i.e., only one polarization

state is allowed in each case. Using the notation q̆LLL = (0, υ, qz), the explicit forms of the

spinors are

U−l (x, q̆LLL) =

√
π√

El +ml
e−i(Elt−qzz)e−iυφR0,υ(ρ)


0

ε+

0

ε−

 , (B.8)

V +
l (x, q̆LLL) =

√
π√

El +ml
ei(Elt−qzz)e−iυφR0,υ(ρ)


0

ε+

0

−ε−

 . (B.9)

It is interesting to consider in this context the canonical orbital angular momentum

operator ~l = ~r × ~p and the spin operator ~S = ~Σ/2. Given the fact that the magnetic

field breaks rotational invariance, only the z components of these operators are relevant.

These are given by lz = −i∂/∂φ and Sz = diag(1,−1, 1,−1)/2. Defining the canonical

total angular momentum as jz = lz + Sz, one obtains

jz|l(q̆, τ)〉 =

(
n− υ − 1

2

)
|l(q̆, τ)〉 . (B.10)

Thus, as expected from axial symmetry, it is seen that for the charged leptons in the

symmetric gauge one can find energy eigenstates that are also eigenstates of jz. It is

worth noticing that only the total canonical angular momentum is well-defined, i.e., energy

eigenstates are not in general eigenstates of lz and Sz separately.

Let us consider now the limit in which the charged lepton mass ml vanishes. This

is interesting when the magnetic field is relatively strong, say Be � m2
l . In the limit

ml = 0 the chirality operator γ5 becomes equivalent to the helicity operator and commutes

with the Hamiltonian. Consequently, one can obtain energy eigenstates of well defined

chirality/helicity as linear combinations of the two polarization states. In the particular

case of the LLL, since only one polarization state is available, it has to be a helicity

eigenstate. The corresponding particle and antiparticle spinors are obtained from eqs. (B.8)

and (B.9) taking ml = 0. It can be easily seen that in this case the relations in eq. (2.2) are

satisfied. In this way, for large enough magnetic fields — such that only the LLL is relevant

and ml can be neglected — a negatively charged lepton (like the muon or the electron) is

lefthanded if qz is positive, and it is righthanded otherwise.

For the case of the π−, from the above equations it is easy to see that the canonical

orbital angular momentum is given by

lz |π−(p̆)〉 = (`− ı) |π−(p̆)〉 . (B.11)

Since the π− is a spin zero particle, one has in this case jz = lz .

Finally, let us consider the neutrino and antineutrino fields. It is usual to write these

fields in terms of operators of well-defined linear momentum ~k. However, for our purposes
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it is convenient to expand the usual plane wave functions in terms of eigenfunctions of lz.

Next, we couple these wavefunctions to the eigenstates of Sz, and write the neutrino and

antineutrino states in terms of eigenstates of the total angular momentum jz = lz + Sz.

The resulting expansion for the fields reads

ψνl(x) =

∞∑
=−∞

∫
dkz
2π

∫ ∞
0

dk⊥ k⊥
4πEνl

[
b(k̆, L) Uνl(x, k̆, L) + d(k̆, R)† Vνl(x, k̆, R)

]
, (B.12)

where k̆ = (, k⊥, kz) and Eνl = Eν̄l =
√
k2
⊥ + k2

z . In the Weyl basis, the spinors Uνl and

Vνl are given by

Uνl

(
x, k̆, L

)
= − i e−i(Eν̄l t−kzz) e−i φ


√
Eν̄l − kz J(k⊥ρ)

i
√
Eν̄l + kz e

iφ J−1(k⊥ρ)

0

0

 , (B.13)

Vνl

(
x, k̆, R

)
= −(−i) ei(Eν̄l t−kzz) e−i φ


√
Eν̄l − kz J(k⊥ρ)

−i
√
Eν̄l + kz e

iφ J−1(k⊥ρ)

0

0

 . (B.14)

Note that, as it is clear from the explicit form of the spinors, in the expansion we have

already taken into account that neutrinos (antineutrinos) are lefthanded (righthanded).

It is seen that antineutrino states satisfy

jz |ν̄l(k̆, R)〉 =

(
− 1

2

)
|ν̄l(k̆, R)〉 ,

γ5 |ν̄l(k̆, R)〉 = k̂ · ~Σ |ν̄l(k̆, R)〉 = |ν̄l(k̆, R)〉 . (B.15)
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